
COMPUTER
SCIENCE

A LEVEL
Delivery Guide

H446

Theme: 1.2.2 System Application
Generation
June 2015

We will inform centres about any changes to the specification. We will also
publish changes on our website. The latest version of our specification will
always be the one on our website (www.ocr.org.uk) and this may differ from
printed versions.

Copyright © 2015 OCR. All rights reserved.

Copyright
OCR retains the copyright on all its publications, including the specifications.
However, registered centres for OCR are permitted to copy material from this
specification booklet for their own internal use.

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee.
Registered in England. Registered company number 3484466.

Registered office: 1 Hills Road
Cambridge
CB1 2EU

OCR is an exempt charity.

http://www.ocr.org.uk

3

CONTENTS

Introduction Page 4

Curriculum Content Page 5

Thinking Conceptually Page 6

Thinking Contextually Page 10

Learner Resources Page 11

A LEVEL
COMPUTER SCIENCE

4

Delivery guides are designed to represent a body of
knowledge about teaching a particular topic and contain:

•	 Content: a clear outline of the content covered by the
delivery guide;

•	 Thinking Conceptually: expert guidance on the key
concepts involved, common difficulties students may
have, approaches to teaching that can help students
understand these concepts and how this topic links
conceptually to other areas of the subject;

•	 Thinking Contextually: a range of suggested teaching
activities using a variety of themes so that different
activities can be selected that best suit particular classes,
learning styles or teaching approaches.

If you have any feedback on this Delivery Guide or
suggestions for other resources you would like OCR to
develop, please email resources.feedback@ocr.org.uk.

KEY
Click to view associated resources
within this document.

Click to view external resources

Introduction

only AS Level content only

5

a) The nature of applications, justifying suitable applications for a specific purpose.

b) Utilities.

c) Open source vs Closed source.

d) Translators: Interpreters, compilers and assemblers.

e) Stages of compilation (Lexical Analysis, Syntax Analysis, Code Generation and Optimisation).

f) Linkers and loaders and use of libraries.

Curriculum Content

6

Thinking Conceptually

The nature of applications, justifying suitable applications for a specific purpose Resources

Students should be familiar with applications but may have not considered that there are alternatives and if so, what the
differences are. This could provide the basis for an interesting discussion about apps on smartphone vs traditional applications on
PCs, Free vs Paid, advertising and alternative pieces of software such as Microsoft Word vs Libre Office, Google Docs, Pages (Mac)
and Evernote, just to name a few. What categories do these pieces of software fall under?

Are some categories newer than others? Which pieces of software need certain hardware to function (e.g. speed, memory,
cameras etc)?

The website http://download.cnet.com/windows/ can be used by students to get inspiration.

Who would use different categories of software?
http://en.wikipedia.org/wiki/Application_software
http://www.teach-ict.com/as_as_computing/ocr/H047/F451/311/c_application_sw/miniweb/index.htm

Click here

Click here

Click here

Utilities Resources

Utilities differ from general applications as they are usually focused on system maintenance such as firewalls, antivirus, backup,
data compression or defragmentation, for example. The same sort of teaching methods as above can be used for utilities.

A video that covers most utility software can be found here: https://www.youtube.com/watch?v=_PAsXKddNF4
http://en.wikipedia.org/wiki/Utility_software

Click here

Click here

Approaches to teaching the content
Much of what students need to understand about this area of the specification can make
good use of discussion, although the later sections about compilers and interpreters won’t
necessarily be things that students have come across before.

http://download.cnet.com/windows/
http://en.wikipedia.org/wiki/Application_software
http://www.teach-ict.com/as_as_computing/ocr/H047/F451/311/c_application_sw/miniweb/index.htm
http://download.cnet.com/windows/
http://en.wikipedia.org/wiki/Application_software
http://www.teach-ict.com/as_as_computing/ocr/H047/F451/311/c_application_sw/miniweb/index.htm
https://www.youtube.com/watch?v=_PAsXKddNF4
http://en.wikipedia.org/wiki/Utility_software
https://www.youtube.com/watch?v=_PAsXKddNF4
http://en.wikipedia.org/wiki/Utility_software

7

Thinking Conceptually

Open source vs Closed source

Open source software is that for which the source code is free and the user can edit the source code and can potentially
contribute to the community to improve the piece of software. Linux is an example of this, since it is free and open source. Closed
source is where the company that owns the source code keeps it to itself. The software might be free or need to be paid for.
Microsoft works in this way.

You could watch some of the videos below before having a class discussion on which type of software students think is better in
the long run – closed or open source? You could get students into groups and let them prepare their argument for or against.

Some engaging videos that cover the basics using practical examples can be found at:
https://www.youtube.com/watch?v=Tyd0FO0tko8 and https://www.youtube.com/watch?v=a8fHgx9mE5U

http://en.wikipedia.org/wiki/Comparison_of_open_source_and_closed_source

Click here

Click here

Click here

Translators: Interpreters, compilers and assemblers Resources

A translator is a program that translates a computer program written in one language into another which functions exactly the
same. This is commonly used since computers don’t understand programs written in high level languages like Java and Python
and so something is needed to translate these into machine code that the computer understands and can run.

http://en.wikipedia.org/wiki/Translator_(computing)

Assemblers are programs that translate an assembly language program into machine code so that a computer can understand it.
Assemblers do not ‘make’ any executable files.

Compilers do the same sort of basic thing as assemblers, except they are more advanced as they can perform operations such as
code optimisation and they compile straight from the source language (e.g. Java) into the target language (machine code).

Interpreters are different from compilers because instead of compiling all of a program into machine code at once it does so one
statement at a time.

http://www.teach-ict.com/as_as_computing/ocr/H447/F453/3_3_2/translators_compilers/miniweb/index.htm

Video – What is Compiler and Interpreter (in easiest way) (Scott Barron):
http://community.computingatschool.org.uk/resources/1711 also at https://www.youtube.com/watch?v=kmQUB-5cEgM

Click here

Click here

Click here

Click here

https://www.youtube.com/watch?v=Tyd0FO0tko8
https://www.youtube.com/watch?v=a8fHgx9mE5U
http://en.wikipedia.org/wiki/Comparison_of_open_source_and_closed_source
https://www.youtube.com/watch?v=Tyd0FO0tko8
https://www.youtube.com/watch?v=a8fHgx9mE5U
http://en.wikipedia.org/wiki/Comparison_of_open_source_and_closed_source
http://en.wikipedia.org/wiki/Translator_(computing)
http://www.teach-ict.com/as_as_computing/ocr/H447/F453/3_3_2/translators_compilers/miniweb/index.htm
http://community.computingatschool.org.uk/resources/1711
https://www.youtube.com/watch?v=kmQUB-5cEgM
http://en.wikipedia.org/wiki/Translator_(computing)
http://www.teach-ict.com/as_as_computing/ocr/H447/F453/3_3_2/translators_compilers/miniweb/index.htm
http://community.computingatschool.org.uk/resources/1711
https://www.youtube.com/watch?v=kmQUB-5cEgM

8

Stages of compilation (Lexical Analysis, Syntax Analysis, Code Generation and
Optimisation)

Resources

Lexical analysis is responsible for gathering all the source code and ‘tokenising’ it. This means that it will be able to understand
which are variables, which are keywords (such as if, else etc) and also remove comments.

Syntax analysis ensures that the code makes logical sense. For instance, if a bracket has been missed out, this is usually the stage
where it would warn the user after processing its checks.

Code generation is where the computer converts the high level code that has been written by the user into code that is
understood by the computer (machine code). This process may also contain some optimisation.

http://en.wikipedia.org/wiki/Compiler#Structure_of_a_compiler

http://www.teach-ict.com/as_as_computing/ocr/H447/F453/3_3_2/lexical_syntax_analysis/miniweb/index.htm

An activity here may be to write the different stages on the board jumbled up and students have to put them into the right order
and explain what each one does.

Click here

Click here

Linkers and loaders and use of libraries Resources

Linkers take object files and required libraries and combine them into a single executable file:
http://en.wikipedia.org/wiki/Linker_(computing)

Loaders place programs and libraries into memory and so prepare a program for execution.
http://en.wikipedia.org/wiki/Loader_(computing)

A good overview of Assembler, Compiler, Interpreter, Linker, Loader can be found here:
http://vijaybhargav05bop.blogspot.co.uk/2013/03/assembler-compiler-interpreter-linker.html

Click here

Click here

Click here

Thinking Conceptually

http://www.teach-ict.com/as_as_computing/ocr/H447/F453/3_3_2/lexical_syntax_analysis/miniweb/index.htm
http://en.wikipedia.org/wiki/Compiler#Structure_of_a_compiler
http://www.teach-ict.com/as_as_computing/ocr/H447/F453/3_3_2/lexical_syntax_analysis/miniweb/index.htm
http://en.wikipedia.org/wiki/Linker_(computing)
http://en.wikipedia.org/wiki/Loader_(computing)
http://vijaybhargav05bop.blogspot.co.uk/2013/03/assembler-compiler-interpreter-linker.html
http://en.wikipedia.org/wiki/Linker_(computing)
http://en.wikipedia.org/wiki/Loader_(computing)
http://vijaybhargav05bop.blogspot.co.uk/2013/03/assembler-compiler-interpreter-linker.html

9

Common misconceptions or difficulties students may have
There are quite a few different terms that students may not have
encountered before in this topic. A student glossary is an excellent idea;
students can add terms that are unfamiliar to them and define them in
their own words.

Keywords: Open source, Closed source, Translator, Interpreter, Compiler,
Assembler, Lexical analysis, Tokenisation, Syntax analysis, Code
generation, Optimisation, Linker, Loader, Library

Conceptual links to other areas of the specification – useful ways to
approach this topic to set students up for topics later in the course
This section of the specification is probably best taught before moving
onto 1.2.4 Types of Programming Language since it covers what happens
during compilation or interpretation of different languages. This would
make it easier for students to understand some of the differences and
similarities between languages, and also how these languages are
understood by the computer.

Thinking Conceptually

10

Thinking Contextually

Activities Resources

Activity 1 – Different types of software
Part 1

Students should use the set of cards below to try and find different pieces of software that fit into those categories, using the
table to record their findings. This should expand students’ ideas about what software is out there and how they are categorised.

Part 2

Taboo is a fun game where one person has to sit at the front of their group and they have a set of things that they must get the
rest of their group to guess without using any of the words in the answer. For example, for Microsoft Word you might say “Bill
Gates letter writing software”. You could divide students up into teams, and if anyone is a bit reluctant they could always be the
judge/scorekeeper.

Learner
Resource
1

Activity 2
Part 1

Using the terms on the cards below, make a powerpoint presentation with a word per slide about what each of the terms
means. You could get students to work in groups, and then you have the choice of getting them to present it. Students could
rate presentations and choose parts of the best ones to feed into Part 2.

Part 2

Make a mindmap that uses all the words from the cards below, trying to reduce the explanation of the terms used to the bare
minimum. This could be done as a class or in groups so that each student has to come up with a picture and short description
for each word, which should make the process much faster.

Learner
Resource
2

Activity 3 – Compiler vs Interpreter (Digital schoolhouse)
http://www.resources.digitalschoolhouse.org.uk/key-stage-4-ages-15-16/215-compiler-vs-interpreter

An interesting activity based on the idea of the United Nations to help students understand the differences between compilers
and interpreters.

You will need to print out the 12 role cards given on the document from the website and students will have to arrange
themselves into countries A, B and C and read their cards out in order from 1–12.

Questions are provided to help students draw out reasonings as to how interpreters differ from compilers.

Click here

http://www.resources.digitalschoolhouse.org.uk/key-stage-4-ages-15-16/215-compiler-vs-interpreter
http://www.resources.digitalschoolhouse.org.uk/key-stage-4-ages-15-16/215-compiler-vs-interpreter

11

Learner Resource 1 Activity 1 cards

Security software Browsers Business software Communications
Desktop

enhancements

Developer tools
Digital photo

software
Drivers Educational software

Entertainment
software

Games
Graphic design

software
Audio software Video software

See
page 10

12

Learner Resource 1 Activity 1

Software name Type of software Application or utility? How much does it
cost?

Open or closed
source?

What platform is it
available for?

Is it special in any way
compared to other
software? Why?

Who might use this
piece of software?
What would they use
it for?

13

Learner Resource 2 Activity 2

Open source Closed source Translator Interpreter Compiler

Assembler Lexical analysis Syntax analysis Code generation Optimisation

Linker Loader Library

See
page 10

14

OCR Resources: the small print
OCR’s resources are provided to support the teaching of OCR specifications, but in no way constitute an endorsed teaching method that is required by the Board and the decision to use them lies with the individual teacher. Whilst every effort is made to ensure the accuracy of the content, OCR cannot be held
responsible for any errors or omissions within these resources. We update our resources on a regular basis, so please check the OCR website to ensure you have the most up to date version.

© OCR 2015 - This resource may be freely copied and distributed, as long as the OCR logo and this message remain intact and OCR is acknowledged as the originator of this work.

Please get in touch if you want to discuss the accessibility of resources we offer to support delivery of our qualifications: resources.feedback@ocr.org.uk

We’d like to know your view on the resources we produce. By clicking on the ‘Like’ or ‘Dislike’ button you can help us to ensure that our resources work for you. When the email template pops up please add
additional comments if you wish and then just click ‘Send’. Thank you.

If you do not currently offer this OCR qualification but would like to do so, please complete the Expression of Interest Form which can be found here:
http://www.ocr.org.uk/qualifications/expression-of-interest/

mailto:resources.feedback%40ocr.org.uk?subject=
mailto:resources.feedback%40ocr.org.uk?subject=I%20liked%20Computer%20Science%20DG%20on%20System%20application%20generation
http://www.ocr.org.uk/qualifications/expression-of-interest/
mailto:resources.feedback%40ocr.org.uk?subject=I%20disliked%20Computer%20Science%20DG%20on%20System%20application%20generation

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored.

©OCR 2015 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England.
Registered office 1 Hills Road, Cambridge CB1 2EU. Registered company number 3484466. OCR is an exempt charity.

OCR customer contact centre
General qualifications
Telephone 01223 553998
Facsimile 01223 552627
Email general.qualifications@ocr.org.uk

mailto:general.qualifications%40ocr.org.uk?subject=

	Introduction
	Curriculum Content
	Thinking Conceptually
	Thinking Contextually
	Learner Resources

