
COMPUTER
SCIENCE

A LEVEL
Delivery Guide

H446

Theme: Programming techniques
September 2015

We will inform centres about any changes to the specification. We will also
publish changes on our website. The latest version of our specification will
always be the one on our website (www.ocr.org.uk) and this may differ from
printed versions.

Copyright © 2015 OCR. All rights reserved.

Copyright
OCR retains the copyright on all its publications, including the specifications.
However, registered centres for OCR are permitted to copy material from this
specification booklet for their own internal use.

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee.
Registered in England. Registered company number 3484466.

Registered office: 1 Hills Road
Cambridge
CB1 2EU

OCR is an exempt charity.

www.ocr.org.uk

3

CONTENTS

Introduction 4

Curriculum Content 5

Thinking Conceptually 8

Thinking Contextually 9

Learner Resources 21

A LEVEL
COMPUTER SCIENCE

4

Delivery guides are designed to represent a body of
knowledge about teaching a particular topic and contain:

•	 Content: A clear outline of the content covered by the
delivery guide;

•	 Thinking Conceptually: Expert guidance on the key
concepts involved, common difficulties students may
have, approaches to teaching that can help students
understand these concepts and how this topic links
conceptually to other areas of the subject;

•	 Thinking Contextually: A range of suggested teaching
activities using a variety of themes so that different
activities can be selected which best suit particular
classes, learning styles or teaching approaches.

If you have any feedback on this Delivery Guide or
suggestions for other resources you would like OCR to
develop, please email resourcesfeedback@ocr.org.uk.

KEY

 Click to view associated resources within this
document.

 Click to view external resources.

 AS Level content only.

Introduction

mailto:resourcesfeedback%40ocr.org.uk?subject=

5

Content (from A-level)

Software programs exist to solve problems. So, programming is a highly structured way of problem solving. Students should
develop the ability to:

Break the problem down into smaller manageable chunks and understand how these interact

Plan the program before coding it using pseudocode and flowcharts

Visualise the flow of data and understand its types, as well as the process of user interaction with the program

Be aware of the facilities of the chosen language and how well they match the problem at hand

Create efficient code without logical or syntax errors

Be aware of the facilities of the chosen IDE to debug and construct interfaces

2.2.1 Programming techniques

a) Programming constructs: sequence, iteration, branching.

b) Recursion, how it can be used and compares to an iterative approach.

c) Global and local variables.

d) Modularity, functions and procedures, parameter passing by value and by reference.

e) Use of an IDE to develop/debug a program.

f) Use of object-oriented techniques.

Curriculum Content

6

a) Programming constructs: sequence, iteration, branching.

How to Think Like a Computer Scientist

Learning with Python: Interactive Edition 2.0 (the Runestone Interactive Project at Luther College, led by Brad Miller and
David Ranum, based on the original work by: Jeffrey Elkner, Allen B. Downey and Chris Meyers) –
http://openbookproject.net/thinkcs/python/english3e/

http://interactivepython.org/runestone/static/thinkcspy/toc.html and specifically:

http://interactivepython.org/runestone/static/thinkcspy/Selection/BooleanValuesandBooleanExpressions.html

http://interactivepython.org/runestone/static/thinkcspy/PythonTurtle/TheforLoop.html

http://openbookproject.net/thinkcs/python/english3e/iteration.html

Interactive online textbook that uses Python to illustrate programming concepts. It has interactive code but is also
available as a PDF. The original book is available on the Amazon and direct from publisher
(http://www.greenteapress.com/thinkpython/).

Controlling Program Flow in Plain English (John G. McGuinn): Explaining these concepts using everyday actions of making
coffee – http://www.tutorials4u.com/c/t05.htm

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-
programming-fall-2008/video-lectures/lecture-2/ (MIT Electrical Engineering and Computer Science » Introduction to
Computer Science and Programming » Video Lectures » 2: Branching, Conditionals, and Iteration)

This is a good overview but can be a bit dry (but surprisingly accessible).

Curriculum Content

http://openbookproject.net/thinkcs/python/english3e/
http://interactivepython.org/runestone/static/thinkcspy/toc.html
http://interactivepython.org/runestone/static/thinkcspy/Selection/BooleanValuesandBooleanExpressions.html
http://interactivepython.org/runestone/static/thinkcspy/PythonTurtle/TheforLoop.html
http://openbookproject.net/thinkcs/python/english3e/iteration.html
http://www.greenteapress.com/thinkpython/
http://www.tutorials4u.com/c/t05.htm
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/video-lectures/lecture-2/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/video-lectures/lecture-2/

7

b) Recursion, how it can be used and compares to an iterative approach.

http://openbookproject.net/thinkcs/python/english3e/recursion.html

http://fractalfoundation.org/OFC/OFC-11-1.html

c) Global and local variables.

d) Modularity, functions and procedures, parameter passing by value and by reference.

http://openbookproject.net/thinkcs/python/english3e/functions.html

e) Use of an IDE to develop/debug a program.

http://openbookproject.net/thinkcs/python/english3e/app_a.html

f) Use of object-oriented techniques.

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

Curriculum Content

http://openbookproject.net/thinkcs/python/english3e/recursion.html
http://fractalfoundation.org/OFC/OFC-11-1.html
http://openbookproject.net/thinkcs/python/english3e/functions.html
http://openbookproject.net/thinkcs/python/english3e/app_a.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

8

Common misconceptions or difficulties students
may have
Conceptual links to other areas of the specification – useful
ways to approach this topic to set students up for topics later
in the course.

The most important technique is the ability to break down a
complex task into simple sub-tasks and write (or recycle) self-
contained code in the form of functions and procedures (and
classes/objects at the higher end of ability). The code that isn’t
made modular becomes quickly overwhelming and leads
to endless debugging rather than program improvement,
despite having an added benefit of learners becoming familiar
with the debugging tools of their IDE.

It is advisable to introduce functions and procedures as
early as possible, before branching and iteration. Left too
late, modular programming tends to put learners under
stress as it requires them to relearn the skills they have just
become comfortable with. Teaching learners that we define
our routines in one place and trigger them in another place
in a program is great for focusing them and reduces the
number of blocks they need to track at any one time. While
it might be easier to introduce procedures before functions,
it is important that learners get a chance to use both, so
they can later use the most appropriate ones for the task
at hand.

The use of functions requires more planning and confidence
in coding and will not come easy to all learners. Object-
oriented programming takes modularity to a new level and

introduces another layer of variables – object variables. It is
important that learners understand that every task can be
done either through procedures with global/local variables,
or functions with local variables only and parameter passing
between the functions, or with objects and it is advisable to
ask pupils to produce multiple versions of the same program
using all three paradigms.

Sequence, iteration and branching are best introduced
through the various validation routines and any mistakes,
especially logical mistakes, become obvious quite soon,
simplifying the debugging. Nested branching (an if statement
inside another if statement) is not trivial but the process of
validating input data requires it, e.g., the type check often
needs to be performed before range check and needs
planning and sequencing of nested branching.

Non-conditional Iteration is best illustrated through lists/
arrays, especially 2d arrays. Being able to generate a times
table or read a CSV file are the rights of passage, while
conditional Iteration lends itself to validation and user
interface duties.

Understanding recursion requires confident knowledge of
functions, parameter passing, selection and iteration. In other
words, it brings together almost all of the concepts of this
section. While recursion can always be replaced by simple
iteration, conceptually, it requires more meticulous program
planning and hence is a good discriminator in assessment and
is also needed for efficient sorting and searching. Sorting a
nested list based on one of the sub-columns

Thinking Conceptually

9

Thinking Contextually

Activity 1: Branching Resources

Little Man Computer makes heavy use of branching under three conditions: positive accumulator, zero accumulator and always.
Branching effectively replaces iteration.

The explanation can be found here: http://www.gcsecomputing.org.uk/lmc/branching.html.

As LMC doesn’t have a division operator, it has to rely on repeated subtraction and counting how many times one number can
be subtracted from another without making the result zero. This is analogous to the main point of division – to find out how
many times can we fit one number inside the other.

Task 1: Create a flow chart for dividing 15 into 3 without the use of division.

[Solution: Num is numerator, Den is denominator, Counter will give us the result.]

http://www.gcsecomputing.org.uk/lmc/branching.html
http://www.gcsecomputing.org.uk/lmc/branching.html

10

Activity 1: Branching Resources

Task 2: Pretend that your favourite high-level programming language doesn’t have division or multiplication. How would you
implement this example?

[Solution in Python

numerator=15

denominator=3

counter=0

while numerator>0:

 numerator=numerator-denominator

 counter=counter+1

print(counter)

]

Output:

>>>

5

>>>

Thinking Contextually

11

Activity 1: Branching Resources

Task 3: Implement this program in LMC.

[Solution]

loop LDA c

ADD one

STA c

LDA n

SUB d

STA n

BRZ loopend

BRP loop

loopend LDA c

OUT

HLT

n DAT 15

d DAT 3

c DAT 0

one DAT 1

[End solution]

Thinking Contextually

12

Activity 1: Branching Resources

Task 4: Write out a dry trace table for dividing 15 into 3.

STEP ACC PC CIR MAR MDR DAT 1 DAT 2 DAT 3 OUT

Thinking Contextually

13

Activity 1: Branching Resources

[Solution]

Run LMC in the step mode and copy out the registers’ contents into the table.

Can be written as:

STEP ACC PC CIR MAR MDR DAT 1 DAT 2 DAT 3 OUT

41 5 10 0 0 0 0 3 1 5

[End solution]

Thinking Contextually

14

Activity 2: Sorting a nested list Resources

Nested lists can’t be easily sorted by the second column in Python (or most other languages).

Task A: Design a solution that can sort a 2-column nested list alphabetically by the second, not first column.

[Solution]

Step 1:

Thinking Contextually

15

Activity 2: Sorting a nested list Resources

Save in the same folder as your Python program will be.

n=[] #set up empty list to become the main nested list

f=open(“tosort.csv”,”rt”)

contents=f.read()

rows=contents.split(“\n”)

print(rows)

Output:

>>>

[‘John,Bull’, ‘Peter,Jennings’, ‘Amira,Kataf’, ‘Helga,Danson’, ‘’]

>>>

Need to remove the empty last element:

n=[] #set up empty list to become the main nested list

f=open(“tosort.csv”,”rt”)

contents=f.read()

rows=contents.split(“\n”)

rows.remove(“”)

print(rows)

Output:

>>>

[‘John,Bull’, ‘Peter,Jennings’, ‘Amira,Kataf’, ‘Helga,Danson’]

>>>

Thinking Contextually

16

Activity 2: Sorting a nested list Resources

Populate the nested (2d) list n:

n=[] #set up empty list to become the main nested list

f=open(“tosort.csv”,”rt”)

contents=f.read()

rows=contents.split(“\n”)

rows.remove(“”)

for row in rows:

 n.append(row.split(“,”))

print(n)

Output:

>>>

[[‘John’, ‘Bull’], [‘Peter’, ‘Jennings’], [‘Amira’, ‘Kataf’], [‘Helga’, ‘Danson’]]

>>>

Thinking Contextually

17

Activity 2: Sorting a nested list Resources

Display the list in tabulated form:

n=[] #set up empty list to become the main nested list

f=open(“tosort.csv”,”rt”)

contents=f.read()

rows=contents.split(“\n”)

rows.remove(“”)

for row in rows:

 n.append(row.split(“,”))

print(n)#output in raw form

for each in n: #output in table form separated by tab symbol “\t”

 print(“\t”.join(each))

Output:

>>>

[[‘John’, ‘Bull’], [‘Peter’, ‘Jennings’], [‘Amira’, ‘Kataf’], [‘Helga’, ‘Danson’]]

John Bull

Peter Jennings

Amira Kataf

Helga Danson

>>>

[End solution]

Thinking Contextually

18

Activity 3: Iterative vs recursive printing out of a list Resources

Task A: Given a list a=[2,9,6,8,3], develop at least two iterative solutions to print out every item on this list, from the first to the last.

[Solution]

a=[2,9,6,8,3] #set up a list

print(a) #print the list in its raw form

for i in a: #iterative solution

 print(i)

#or

for i in range(len(a)):

 print(a[i])

>>>

2

9

6

8

3

>>>

[End solution]

Thinking Contextually

19

Activity 3: Iterative vs recursive printing out of a list Resources

Task B: Given a list a=[2,9,6,8,3], develop at least two iterative solutions to print out every item on this list, from the last to the first.

[Solution]

for i in range(len(a)-1,-1,-1):

 print(a[i])

for x in a[::-1]:

 print(x)

[End solution]

Thinking Contextually

20

Activity 3: Iterative vs recursive printing out of a list Resources

Task C: Given a list a=[2,9,6,8,3], develop at least one recursive solution to print out every item on this list, from the first to the least
and one recursive solution to print out every item from the last to the first.

[Solution]

def r(x):

 if x==0: #terminating condition when counting down

 print(a[0])

 else:

 print(a[x])

 r(x-1) #calls itself

r(4)

def r1(x):

 ubound= len(a)-1

 if x==ubound: #terminating condition when counting up to length #of list

 print(a[ubound])

 else:

 print(a[x])

 r1(x+1) #calls itself

r1(0)

[End solution]

Thinking Contextually

21

Activity 1: Branching
Little Man Computer makes heavy use of branching under 3 conditions: positive accumulator, zero accumulator
and always. Branching effectively replaces iteration.

The explanation can be found here: http://www.gcsecomputing.org.uk/lmc/branching.html.

As LMC doesn’t have a division operator, it has to rely on repeated subtraction and counting how many times one
number can be subtracted from another without making the result zero. This is analogous to the main point of
division – to find out how many times we can fit one number inside the other.

Task 1: Create a flow chart for dividing 15 into 3 without the use of division.

Task 2: Pretend that your favourite high-level programming language doesn’t have division or multiplication. How
would you implement this example?

Task 3: Implement this program in LMC.

Learner resource 1.1

http://www.gcsecomputing.org.uk/lmc/branching.html

22

Task 4: Write out a dry trace table for dividing 15 into 3.

STEP ACC PC CIR MAR MDR DAT 1 DAT 2 DAT 3 OUT

Learner resource 1.1

23

Activity 2: Sorting a nested list.
Nested lists can’t be easily sorted by the second column in Python (or most other languages).

Task A: Design a solution that can sort a 2-column nested list alphabetically by the second, not first column.

Activity 3: Iterative vs recursive printing out of a list.
Task A: Given a list a=[2,9,6,8,3], develop at least two iterative solutions to print out every item on this list, from the
first to the last.

Task B: Given a list a=[2,9,6,8,3], develop at least two iterative solutions to print out every item on this list, from the
last to the first.

Task C: Given a list a=[2,9,6,8,3], develop at least one recursive solution to print out every item on this list, from the
first to the least and one recursive solution to print out every item from the last to the first.

Learner resource 1.1

OCR Resources: the small print
OCR’s resources are provided to support the teaching of OCR specifications, but in no way constitute an endorsed teaching method that is required by the Board and the decision to use them lies with the individual teacher. Whilst every effort is made to ensure the accuracy of the content, OCR cannot be held
responsible for any errors or omissions within these resources. We update our resources on a regular basis, so please check the OCR website to ensure you have the most up to date version.

© OCR 2015 - This resource may be freely copied and distributed, as long as the OCR logo and this message remain intact and OCR is acknowledged as the originator of this work.

Little Man Computer Simulator courtesy of Mike Coley - http://www.gcsecomputing.org.uk

Please get in touch if you want to discuss the accessibility of resources we offer to support delivery of our qualifications: resources.feedback@ocr.org.uk

We’d like to know your view on the resources we produce. By clicking on the ‘Like’ or ‘Dislike’ button you can help us to ensure that our resources work for you. When the email template pops up please add
additional comments if you wish and then just click ‘Send’. Thank you.

If you do not currently offer this OCR qualification but would like to do so, please complete the Expression of Interest Form which can be found here: www.ocr.org.uk/expression-of-interest

http://www.gcsecomputing.org.uk
http://www.ocr.org.uk/expression-of-interest
mailto:resources.feedback%40ocr.org.uk?subject=I%20liked%20the%20OCR%20A%20Level%20Computer%20Science%2C%20Delivery%20Guide%2C%20Programming%20Techniques
mailto:resources.feedback%40ocr.org.uk?subject=I%20disliked%20the%20OCR%20A%20Level%20Computer%20Science%2C%20Delivery%20Guide%2C%20Programming%20Techniques

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored.

©OCR 2015 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England.
Registered office 1 Hills Road, Cambridge CB1 2EU. Registered company number 3484466. OCR is an exempt charity.

OCR customer contact centre
General qualifications
Telephone 01223 553998
Facsimile 01223 552627
Email general.qualifications@ocr.org.uk

mailto:general.qualifications%40ocr.org.uk?subject=

	OCR A Level Computer Science Delivery Guide
	Contents
	Introduction
	Curriculum Content
	Thinking Conceptually
	Thinking Contextually
	Learner Resources

	Introduction
	Curriculum Content
	Content (from A-level)
	2.2.1 Programming techniques

	Thinking Conceptually
	Common misconceptions or difficulties students may have

	Thinking Contextually
	Activity 1: Branching
	Activity 2: Sorting a nested list
	Activity 3: Iterative vs recursive printing out of a list

	Learner resource 1.1
	Activity 1: Branching
	Activity 2: Sorting a nested list.
	Activity 3: Iterative vs recursive printing out of a list.

	Button 2:
	See page 21:

