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Delivery guides are designed to represent a body of 
knowledge about teaching a particular topic and contain:

•	 Content: A clear outline of the content covered by the 
delivery guide;

•	 Thinking Conceptually: Expert guidance on the key 
concepts involved, common difficulties students may 
have, approaches to teaching that can help students 
understand these concepts and how this topic links 
conceptually to other areas of the subject;

•	 Thinking Contextually: A range of suggested teaching 
activities using a variety of themes so that different 
activities can be selected which best suit particular 
classes, learning styles or teaching approaches.

If you have any feedback on this Delivery Guide or 
suggestions for other resources you would like OCR to 
develop, please email resourcesfeedback@ocr.org.uk.

KEY

  Click to view associated resources within this 
document.

 Click to view external resources.

 AS Level content only.

Introduction

mailto:resourcesfeedback%40ocr.org.uk?subject=
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Content (from A-level)

Software programs exist to solve problems. So, programming is a highly structured way of problem solving. Students should 
develop the ability to:

Break the problem down into smaller manageable chunks and understand how these interact

Plan the program before coding it using pseudocode and flowcharts

Visualise the flow of data and understand its types, as well as the process of user interaction with the program

Be aware of the facilities of the chosen language and how well they match the problem at hand

Create efficient code without logical or syntax errors

Be aware of the facilities of the chosen IDE to debug and construct interfaces

2.2.1 Programming techniques

a) Programming constructs: sequence, iteration, branching.

b) Recursion, how it can be used and compares to an iterative approach.

c) Global and local variables.

d) Modularity, functions and procedures, parameter passing by value and by reference.

e) Use of an IDE to develop/debug a program.

f ) Use of object-oriented techniques.

Curriculum Content
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a) Programming constructs: sequence, iteration, branching.

How to Think Like a Computer Scientist

Learning with Python: Interactive Edition 2.0 (the Runestone Interactive Project at Luther College, led by Brad Miller and 
David Ranum, based on the original work by: Jeffrey Elkner, Allen B. Downey and Chris Meyers) –  
http://openbookproject.net/thinkcs/python/english3e/ 

http://interactivepython.org/runestone/static/thinkcspy/toc.html and specifically:

http://interactivepython.org/runestone/static/thinkcspy/Selection/BooleanValuesandBooleanExpressions.html

http://interactivepython.org/runestone/static/thinkcspy/PythonTurtle/TheforLoop.html

http://openbookproject.net/thinkcs/python/english3e/iteration.html 

Interactive online textbook that uses Python to illustrate programming concepts. It has interactive code but is also 
available as a PDF. The original book is available on the Amazon and direct from publisher  
(http://www.greenteapress.com/thinkpython/).

Controlling Program Flow in Plain English (John G. McGuinn): Explaining these concepts using everyday actions of making 
coffee – http://www.tutorials4u.com/c/t05.htm

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-
programming-fall-2008/video-lectures/lecture-2/ (MIT Electrical Engineering and Computer Science » Introduction to 
Computer Science and Programming » Video Lectures » 2: Branching, Conditionals, and Iteration)

This is a good overview but can be a bit dry (but surprisingly accessible).

Curriculum Content

http://openbookproject.net/thinkcs/python/english3e/
http://interactivepython.org/runestone/static/thinkcspy/toc.html
http://interactivepython.org/runestone/static/thinkcspy/Selection/BooleanValuesandBooleanExpressions.html
http://interactivepython.org/runestone/static/thinkcspy/PythonTurtle/TheforLoop.html
http://openbookproject.net/thinkcs/python/english3e/iteration.html
http://www.greenteapress.com/thinkpython/
http://www.tutorials4u.com/c/t05.htm
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/video-lectures/lecture-2/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/video-lectures/lecture-2/
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b) Recursion, how it can be used and compares to an iterative approach.

http://openbookproject.net/thinkcs/python/english3e/recursion.html

http://fractalfoundation.org/OFC/OFC-11-1.html

c) Global and local variables.

d) Modularity, functions and procedures, parameter passing by value and by reference.

http://openbookproject.net/thinkcs/python/english3e/functions.html

e) Use of an IDE to develop/debug a program.

http://openbookproject.net/thinkcs/python/english3e/app_a.html

f ) Use of object-oriented techniques.

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

Curriculum Content

http://openbookproject.net/thinkcs/python/english3e/recursion.html
http://fractalfoundation.org/OFC/OFC-11-1.html
http://openbookproject.net/thinkcs/python/english3e/functions.html
http://openbookproject.net/thinkcs/python/english3e/app_a.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
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Common misconceptions or difficulties students 
may have
Conceptual links to other areas of the specification – useful 
ways to approach this topic to set students up for topics later 
in the course.

The most important technique is the ability to break down a 
complex task into simple sub-tasks and write (or recycle) self-
contained code in the form of functions and procedures (and 
classes/objects at the higher end of ability). The code that isn’t 
made modular becomes quickly overwhelming and leads 
to endless debugging rather than program improvement, 
despite having an added benefit of learners becoming familiar 
with the debugging tools of their IDE. 

It is advisable to introduce functions and procedures as 
early as possible, before branching and iteration. Left too 
late, modular programming tends to put learners under 
stress as it requires them to relearn the skills they have just 
become comfortable with.  Teaching learners that we define 
our routines in one place and trigger them in another place 
in a program is great for focusing them and reduces the 
number of blocks they need to track at any one time. While 
it might be easier to introduce procedures before functions, 
it is important that learners get a chance to use both, so 
they can later use the most appropriate ones for the task 
at hand. 

The use of functions requires more planning and confidence 
in coding and will not come easy to all learners. Object-
oriented programming takes modularity to a new level and 

introduces another layer of variables – object variables. It is 
important that learners understand that every task can be 
done either through procedures with global/local variables, 
or functions with local variables only and parameter passing 
between the functions, or with objects and it is advisable to 
ask pupils to produce multiple versions of the same program 
using all three paradigms.

Sequence, iteration and branching are best introduced 
through the various validation routines and any mistakes, 
especially logical mistakes, become obvious quite soon, 
simplifying the debugging. Nested branching (an if statement 
inside another if statement) is not trivial but the process of 
validating input data requires it, e.g., the type check often 
needs to be performed before range check and needs 
planning and sequencing of nested branching. 

Non-conditional Iteration is best illustrated through lists/
arrays, especially 2d arrays. Being able to generate a times 
table or read a CSV file are the rights of passage, while 
conditional Iteration lends itself to validation and user 
interface duties. 

Understanding recursion requires confident knowledge of 
functions, parameter passing, selection and iteration. In other 
words, it brings together almost all of the concepts of this 
section. While recursion can always be replaced by simple 
iteration, conceptually, it requires more meticulous program 
planning and hence is a good discriminator in assessment and 
is also needed for efficient sorting and searching. Sorting a 
nested list based on one of the sub-columns

Thinking Conceptually
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Thinking Contextually

Activity 1: Branching Resources

Little Man Computer makes heavy use of branching under three conditions: positive accumulator, zero accumulator and always. 
Branching effectively replaces iteration.

The explanation can be found here: http://www.gcsecomputing.org.uk/lmc/branching.html.

As LMC doesn’t have a division operator, it has to rely on repeated subtraction and counting how many times one number can 
be subtracted from another without making the result zero. This is analogous to the main point of division – to find out how 
many times can we fit one number inside the other.

Task 1: Create a flow chart for dividing 15 into 3 without the use of division.

[Solution: Num is numerator, Den is denominator, Counter will give us the result.]

http://www.gcsecomputing.org.uk/lmc/branching.html
http://www.gcsecomputing.org.uk/lmc/branching.html
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Activity 1: Branching Resources

Task 2: Pretend that your favourite high-level programming language doesn’t have division or multiplication. How would you 
implement this example?

[Solution in Python

numerator=15

denominator=3

counter=0

while numerator>0:

    numerator=numerator-denominator

    counter=counter+1

print(counter)

]

Output:

>>> 

5

>>>

Thinking Contextually
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Activity 1: Branching Resources

Task 3: Implement this program in LMC.

[Solution]

loop LDA c

ADD one

STA c

LDA n

SUB d

STA n

BRZ loopend

BRP loop

loopend LDA c

OUT

HLT

n DAT 15

d DAT 3

c DAT 0

one DAT 1

[End solution]

Thinking Contextually
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Activity 1: Branching Resources

Task 4: Write out a dry trace table for dividing 15 into 3.

STEP ACC PC CIR MAR MDR DAT 1 DAT 2 DAT 3 OUT

Thinking Contextually
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Activity 1: Branching Resources

[Solution]

Run LMC in the step mode and copy out the registers’ contents into the table.

Can be written as:

STEP ACC PC CIR MAR MDR DAT 1 DAT 2 DAT 3 OUT

41 5 10 0 0 0 0 3 1 5

[End solution]

Thinking Contextually
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Activity 2: Sorting a nested list Resources

Nested lists can’t be easily sorted by the second column in Python (or most other languages).

Task A: Design a solution that can sort a 2-column nested list alphabetically by the second, not first column.

[Solution]

Step 1:

Thinking Contextually
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Activity 2: Sorting a nested list Resources

Save in the same folder as your Python program will be.

n=[ ] #set up empty list to become the main nested list

f=open(“tosort.csv”,”rt”)

contents=f.read()

rows=contents.split(“\n”)

print(rows)

Output:

>>>

[‘John,Bull’, ‘Peter,Jennings’, ‘Amira,Kataf’, ‘Helga,Danson’, ‘’]

>>>

Need to remove the empty last element:

n=[ ] #set up empty list to become the main nested list

f=open(“tosort.csv”,”rt”)

contents=f.read( )

rows=contents.split(“\n”)

rows.remove(“”)

print(rows)

Output:

>>> 

[‘John,Bull’, ‘Peter,Jennings’, ‘Amira,Kataf’, ‘Helga,Danson’]

>>>

Thinking Contextually
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Activity 2: Sorting a nested list Resources

Populate the nested (2d) list n:

n=[] #set up empty list to become the main nested list

f=open(“tosort.csv”,”rt”)

contents=f.read()

rows=contents.split(“\n”)

rows.remove(“”)

for row in rows:

    n.append(row.split(“,”)  )

print(n)

Output:

>>>

[[‘John’, ‘Bull’], [‘Peter’, ‘Jennings’], [‘Amira’, ‘Kataf’], [‘Helga’, ‘Danson’]]

>>>

Thinking Contextually
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Activity 2: Sorting a nested list Resources

Display the list in tabulated form:

n=[] #set up empty list to become the main nested list

f=open(“tosort.csv”,”rt”)

contents=f.read()

rows=contents.split(“\n”)

rows.remove(“”)

for row in rows:

    n.append(row.split(“,”)  )

print(n)#output in raw form

for each in n: #output in table form separated by tab symbol “\t”

    print(“\t”.join(each))

Output:

>>> 

[[‘John’, ‘Bull’], [‘Peter’, ‘Jennings’], [‘Amira’, ‘Kataf’], [‘Helga’, ‘Danson’]]

John  Bull

Peter  Jennings

Amira  Kataf

Helga  Danson

>>>

[End solution]

Thinking Contextually
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Activity 3: Iterative vs recursive printing out of a list Resources

Task A: Given a list a=[2,9,6,8,3], develop at least two iterative solutions to print out every item on this list, from the first to the last.

[Solution]

a=[2,9,6,8,3] #set up a list

print(a) #print the list in its raw form

for i in a: #iterative solution

    print(i)

#or

for i in range(len(a)):

    print(a[i])

>>> 

2

9

6

8

3

>>>

[End solution]

Thinking Contextually
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Activity 3: Iterative vs recursive printing out of a list Resources

Task B: Given a list a=[2,9,6,8,3], develop at least two iterative solutions to print out every item on this list, from the last to the first.

[Solution]

for i in range(len(a)-1,-1,-1):

    print(a[i])

for x in a[::-1]:

    print(x) 

[End solution]

Thinking Contextually
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Activity 3: Iterative vs recursive printing out of a list Resources

Task C: Given a list a=[2,9,6,8,3], develop at least one recursive solution to print out every item on this list, from the first to the least 
and one recursive solution to print out every item from the last to the first.

[Solution]

def r(x): 

    if x==0: #terminating condition when counting down

        print( a[0])

    else:

        print(a[x]) 

        r(x-1) #calls itself

r(4)

def r1(x):

    ubound= len(a)-1

    if x==ubound: #terminating condition when counting up to length #of list

        print( a[ubound])

    else:

        print(a[x]) 

        r1(x+1) #calls itself

r1(0)

[End solution]

Thinking Contextually
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Activity 1: Branching
Little Man Computer makes heavy use of branching under 3 conditions: positive accumulator, zero accumulator 
and always. Branching effectively replaces iteration.

The explanation can be found here: http://www.gcsecomputing.org.uk/lmc/branching.html.

As LMC doesn’t have a division operator, it has to rely on repeated subtraction and counting how many times one 
number can be subtracted from another without making the result zero. This is analogous to the main point of 
division – to find out how many times we can fit one number inside the other.

Task 1: Create a flow chart for dividing 15 into 3 without the use of division.

Task 2: Pretend that your favourite high-level programming language doesn’t have division or multiplication. How 
would you implement this example?

Task 3: Implement this program in LMC.

Learner resource 1.1

http://www.gcsecomputing.org.uk/lmc/branching.html
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Task 4: Write out a dry trace table for dividing 15 into 3.

STEP ACC PC CIR MAR MDR DAT 1 DAT 2 DAT 3 OUT

Learner resource 1.1
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Activity 2: Sorting a nested list.
Nested lists can’t be easily sorted by the second column in Python (or most other languages).

Task A: Design a solution that can sort a 2-column nested list alphabetically by the second, not first column.

Activity 3: Iterative vs recursive printing out of a list.
Task A: Given a list a=[2,9,6,8,3], develop at least two iterative solutions to print out every item on this list, from the 
first to the last.

Task B: Given a list a=[2,9,6,8,3], develop at least two iterative solutions to print out every item on this list, from the 
last to the first.

Task C: Given a list a=[2,9,6,8,3], develop at least one recursive solution to print out every item on this list, from the 
first to the least and one recursive solution to print out every item from the last to the first.

Learner resource 1.1
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