

AS Level Mathematics A H230/01 Pure Mathematics and Statistics

Sample Question Paper

Date – Morning/Afternoon

Time allowed: 1 hour 30 minutes

Version 2.4

You must have:

Printed Answer Booklet

You may use:

• a scientific or graphical calculator

INSTRUCTIONS

- Use black ink. HB pencil may be used for graphs and diagrams only.
- Complete the boxes provided on the Printed Answer Booklet with your name, centre number and candidate number.
- Answer **all** the questions.
- Write your answer to each question in the space provided in the Printed Answer Booklet. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question.
- The acceleration due to gravity is denoted by gms^{-2} . Unless otherwise instructed, when a numerical value is needed, use g = 9.8.

INFORMATION

- The total number of marks for this paper is 75.
- The marks for each question are shown in brackets [].
- You are reminded of the need for clear presentation in your answers.
- The Printed Answer Booklet consists of **12** pages. The Question Paper consists of **12** pages.

Formulae AS Level Mathematics A (H230)

Binomial series

$$(a+b)^{n} = a^{n} + {}^{n}C_{1} a^{n-1}b + {}^{n}C_{2} a^{n-2}b^{2} + \dots + {}^{n}C_{r} a^{n-r}b^{r} + \dots + b^{n} \qquad (n \in \Box),$$

where ${}^{n}C_{r} = {}_{n}C_{r} = {\binom{n}{r}} = \frac{n!}{r!(n-r)!}$

Differentiation from first principles

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Standard deviation

$$\sqrt{\frac{\Sigma\left(x-\overline{x}\right)^2}{n}} = \sqrt{\frac{\Sigma x^2}{n} - \overline{x}^2} \text{ or } \sqrt{\frac{\Sigma f\left(x-\overline{x}\right)^2}{\Sigma f}} = \sqrt{\frac{\Sigma f x^2}{\Sigma f} - \overline{x}^2}$$

The binomial distribution

If
$$X \sim B(n, p)$$
 then $P(X = x) = {n \choose x} p^x (1-p)^{n-x}$, mean of X is np, variance of X is $np(1-p)$

Kinematics

v = u + at $s = ut + \frac{1}{2}at^{2}$ $s = \frac{1}{2}(u + v)t$ $v^{2} = u^{2} + 2as$ $s = vt - \frac{1}{2}at^{2}$

Section A: Pure Mathematics Answer all the questions

- 1 Given that $f(x) = 6x^3 5x$, find
 - (a) f'(x), [2]
 - **(b)** f''(2). [2]

2 Points *A* and *B* have coordinates (3, 0) and (9, 8) respectively. The line *AB* is a diameter of a circle.

(a)	Find the coordinates of the centre of the circle.	[2]
(b)	Find the equation of the tangent to the circle at the point <i>B</i> .	[3]

- 3 The points *P*, *Q* and *R* have coordinates (-1, 6), (2, 10) and (11, 1) respectively.Find the angle *PRQ*.
- 4 The curve $y = 2x^3 + 3x^2 kx + 4$ has a stationary point where x = 2.

(a)	Determine the value of the constant <i>k</i> .	[5]

(b) Determine whether this stationary point is a maximum or a minimum point. [2]

[4]

5 (a) Find
$$\int (x^3 - 6x) dx$$
. [3]
(b) (i) Find $\int (\frac{4}{x^2} - 1) dx$. [3]

4

(ii) The diagram shows part of the curve $y = \frac{4}{x^2} - 1$.

The curve crosses the *x*-axis at (2, 0). The shaded region is bounded by the curve, the *x*-axis, and the lines x = 1 and x = 5.

[3]

Calculate the area of the shaded region.

6 In this question you must show detailed reasoning.

The cubic polynomial f(x) is defined by $f(x) = 4x^3 + 4x^2 + 7x - 5$.

(a) Show that
$$(2x-1)$$
 is a factor of $f(x)$. [2]

(**b**) Hence solve the equation
$$4\sin^3\theta + 4\sin^2\theta + 7\sin\theta - 5 = 0$$
 for $0^\circ \le \theta \le 360^\circ$. [7]

- 7 (a) Sketch the curve $y = 2x^2 x 3$. [3]
 - (b) Hence, or otherwise, solve $2x^2 x 3 < 0$. [2]
 - (c) Given that the equation $2x^2 x 3 = k$ has no real roots, find the set of possible values of k.

[3]

Section B: Statistics

Answer **all** the questions

- 8 A club secretary wishes to survey a sample of members of his club. He uses all members present at a particular meeting as his sample.
 - (a) Explain why this sample is likely to be biased.

Later the secretary decides to choose a random sample of members.

The club has 253 members and the secretary numbers the members from 1 to 253. He then generates random 3-digit numbers on his calculator. The first six random numbers generated are 156, 965, 248, 156, 073 and 181. The secretary uses each number, where possible, as the number of a member in the sample.

- (b) Find possible numbers for the first four members in the sample. [2]
- 9 The probability distribution of a random variable *X* is given in the table.

x	1	2	3
$\mathbf{P}(X=x)$	0.6	0.3	0.1

Two values of *X* are chosen at random.

Find the probability that the second value is greater than the first. [3]

- 10 (a) Write down and simplify the first four terms in the expansion of $(x+y)^7$. Give your answer in ascending powers of x. [2]
 - (b) Given that the terms in x^2y^5 and x^3y^4 in this expansion are equal, find the value of $\frac{x}{y}$. [2]
 - (c) A hospital consultant has seven appointments every day. The number of these appointments which start late on a randomly chosen day is denoted by *L*. The variable *L* is modelled by the distribution $B(7, \frac{3}{8})$.

Show that, in this model, the hospital consultant is equally likely to have two appointments start late or three appointments start late. [3]

[1]

11 The scatter diagram below shows data taken from the 2011 UK census for each of the Local Authorities in the North East and North West regions.

The scatter diagram shows the total population of the Local Authority and the proportion of its workforce that travel to work by bus, minibus or coach.

(a) Samuel suggests that, with a few exceptions, the data points in the diagram show that Local Authorities with larger populations generally have higher proportions of workers travelling by bus, minibus or coach.

On the diagram in the Printed Answer Booklet draw a ring around each of the data points that Samuel might regard as an exception. [1]

(b) Jasper suggests that it is possible to separate these Local Authorities into more than one group with different relationships between population and proportion travelling to work by bus, minibus or coach.

Discuss Jasper's suggestion, referring to the data and to how differences between the Local Authorities could explain the patterns seen in the diagram. [3]

- 12 It is known that under the standard treatment for a certain disease, 9.7% of patients with the disease experience side effects within one year. In a trial of a new treatment, 450 patients with this disease were selected and the number, *X*, that experienced side effects within one year was noted. It was found that 51 of the 450 patients experienced side effects within one year.
 - (a) Test, at the 10% significance level, whether the proportion of patients experiencing side effects within one year is greater under the new treatment than under the standard treatment.

[7]

(b) It was later discovered that all 450 patients selected for the trial were treated in the same hospital.

Comment on the validity of the model used in part (a). [1]

13 Clara used some data from the 2011 UK census to summarise information on carbon emissions due to travel to work, in two Local Authorities.Her results are shown below.

	Method of travel to work	Individual motorised transport	Shared motorised transport	Public transport	No motorised transport	
	Carbon emissions category	High	Medium	Low	None	Total
Local	Number of workers	174 374	42 112	61 483	76 024	353 993
A	Percentage of workers	49.3	11.9	17.4	21.5	100
Local	Number of workers	39 433	9944	4614	16 232	70 223
B	Percentage of workers	56.2	14.2	6.6	23.1	100

(a) Clara calculated the values for the column headed "shared motorised transport" by doubling the value in the "passenger in a car or van" column of the original data set.

Explain what assumption she has made and what other adjustment would need to be made to the data to take account of this. [2]

(b) Clara suggests that the average carbon emissions per worker due to travelling to work is larger in region B than in region A.

(i)	Use data from the table to support Clara's suggestion.	[1]

(ii) Use data from the table to argue against Clara's suggestion. [1]

END OF QUESTION PAPER

BLANK PAGE

BLANK PAGE

Office for National Statistics, https://www.ons.gov.uk/ Reproduced under the terms of the Open Government License 3.0, http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

OCR is committed to seeking permission to reproduce all third-party content that it uses in the assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

...day June 20XX – Morning/Afternoon

AS Level Mathematics A H230/01 Pure Mathematics and Statistics

SAMPLE MARK SCHEME

Duration: 1 hour 30 minutes

MAXIMUM MARK 75

This document consists of 16 pages

Text Instructions

1. Annotations and abbreviations

Annotation in scoris	Meaning
✓and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
^	Omission sign
MR	Misread
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by *
сао	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
owrt	
awit	Anything which rounds to
BC	Anything which rounds to By Calculator

2. Subject-specific Marking Instructions for A Level Mathematics A

- a Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
- An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
 If you are in any doubt whatsoever you should contact your Team Leader.
- c The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Е

Mark for explaining a result or establishing a given result. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

H230/01

Mark Scheme

- d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

- f Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.) We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case. When a value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. Follow through should be used so that only one mark is lost for each distinct accuracy error, except for errors due to premature approximation which should be penalised only once in the examination. There is no penalty for using a wrong value for *g*. E marks will be lost except when results agree to the accuracy required in the question.
- g Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.
- h For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
- i If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- j If in any case the scheme operates with considerable unfairness consult your Team Leader.

H230/01	l
---------	---

Mark Scheme

(Question		Answer	Marks	AO	Guidance	
1	(a)		$18x^2$	B1	1.1		
			-5	B1	1.1		
				[2]			
1	(b)		f''(x) = 36x	M1	1.1	FT their (i)	
			f''(2) = 72	A1FT	1.1	FT their (i)	
				[2]			
2	(a)		$(3+9 \ 0+8)$	M1	1.1a	Correct working for <u>either</u> coordinate	
			$\left(\frac{2}{2}, \frac{2}{2} \right)$			May be implied by $x = 6$ or $y = 4$	
			(6, 4)	A1	1.1		
				[2]			
2	(b)		Gradient of radius through <i>B</i> is $\frac{8-4}{9-6} = \frac{4}{3}$	M1	1.1		
			Gradient of tangent is $-\frac{3}{4}$	M1	1.1	FT their gradient	
			So equation of tangent is $y = -\frac{3}{4}x + \frac{59}{4}$ oe	A1	2.2a		
				[3]			
3			e.g. $(2-(-1))^2 + (10-6)^2$	M1	3.1a	Find at least one of PQ^2 , QR^2 or RP^2	or PQ, QP or QR seen
			$PQ^2 = 25, QR^2 = 162, RP^2 = 169$	A1	1.1		
			$\angle PRO = \cos^{-1} \frac{169 + 162 - 25}{5}$	M1	1.1	Use cosine rule to find an angle of	
			\sim 2×13× $\sqrt{162}$			triangle PQR	
			= 22.4 to 3 sf	A1	1.1	Accept 3 sf or better (22.38013503)	
				[4]			

H230/01

Question		n	Answer	Marks	AO	Guidance		
4	(a)			M1	3.1a	Attempt differentiation		
			$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 + 6x - k$	A1	1.1			
			At $x = 2$ there is a stationary point, so $\frac{dy}{dx} = 0$	E1	2.1	Explain the substitution step		
			$6 \times 2^2 + 6 \times 2 - k = 0$	M1	1.1a	Substitute $x = 2$ in their $\frac{dy}{dx} = 0$		
			<i>k</i> = 36	A1FT	1.1	FT their $\frac{dy}{dx} = 0$		
				[5]				
4	(b)		$\frac{d^2 y}{dx^2} = 12x + 6$ and $12 \times 2 + 6 (= 30)$	M1	1.1	Attempt differentiation again and substitute $x = 2$, FT their $\frac{dy}{dx}$	OR M1 Attempt to evaluate gradient or y either side	
			$\frac{d^2 y}{dx^2} > 0$ hence minimum	A1FT	2.2a	Correct conclusion FT www from their $\frac{d^2 y}{dx^2}$ at $x = 2$	A1 Correct values and conclusion M1 For a complete sketch (all intercepts and both turning points identified)	
				[2]			A1 for conclusion given.	

H23	0/	0	1
-----	----	---	---

Question		n	Answer	Marks	AO	Guidance	
5	(a)			M1	1.1a	Attempt to integrate	At least one power
							increases by one
			$\frac{1}{4}x^4$	A1	1.1		
			$-3x^2 + c$	A1	1.1	Correct integral including $+c$	
				[3]			
5	(b)	(i)	$\frac{4}{-4} = 4 r^{-2}$	B1	1.1	soi	
			x^2				
			$-4x^{-1}$	M1	1.1a	Attempt to integrate a power not a	
						positive integer	
			-x+c oe	A1	1.1	Correct integral including $+c$	
						Penalise omission of $+c$ only once	
				[3]			
5	(b)	(ii)	$\int_{-1}^{2} (4 - x) dx = \int_{-1}^{5} (4 - x) dx$	M1	3.1 a	Add absolute areas	Both M1 and A1 may be
			$\left[\left(\frac{1}{r^2} - 1 \right) dx - \left(\frac{1}{r^2} - 1 \right) dx \right]$	A1FT	1.1	Correct integrals seen or	implied by correct answer
						$\left[their(ii)(a)\right]_{1}^{2} - \left[their(ii)(a)\right]_{2}^{5}$	
			Area = $2\frac{4}{5}$ oe	A1	1.1	BC	SC1 for $-\frac{4}{5}$ or $\frac{4}{5}$
				[3]			

Question		on	Answer	Marks	AO	Guidance		
6	(a)		DR $f\left(\frac{1}{2}\right) = 4\left(\frac{1}{2}\right)^3 + 4\left(\frac{1}{2}\right)^2 + 7\left(\frac{1}{2}\right) - 5$ $= \frac{1}{2} + 1 + \frac{7}{2} - 5 = 0$	*M1	2.1	Must show an intermediate line of reasoning without brackets or indices	OR *M1 Attempt to divide $f(x)$ by $(2x-1)$	
			Since $f(\frac{1}{2}) = 0$ therefore $(2x-1)$ is a factor	dep*E1	2.1		dep*E1 State 'No remainder, hence $2x-1$ is a factor'	
				[2]				
6	(b)		DR Substituting $x = \sin \theta$ into the equation in part (i)	M1	3.1a	Connect the equations given in part (i)	Must be shown	
			gives the equation in part (ii)			and (ii)		
			so since $x = \frac{1}{2}$ is a solution in part (i), $\sin \theta = \frac{1}{2}$ is a solution in part (ii)	E1	3.2a	Interpret to give a solution for the equation		
			Hence $\theta = 30$ or 150	A1	1.1	for both correct with no extras		
			Attempt method for finding quadratic factor in terms of x or $\sin \theta$	M1	1.1 a	Attempt to obtain quadratic factor by any correct method	Or consider the existence of further solutions, e.g. by calculus	
			$2x^2 + 3x + 5$	A1	1.1			
			$2x^2 + 3x + 5 = 0$ has no solutions because	M1	2.1	Attempt to solve the quadratic factor		
			$D = 9 - 4 \times 2 \times 5 < 0$ So there are no more solutions of the given equation	E1	2.4	Explicitly use $b^2 - 4ac < 0$ oe		
				[7]				

(Question		Answer	Marks	AO	Guidance	
7	(a)		$x = \frac{3}{2}, x = -1$	B1	1.1	BC Correct roots	
				B1 B1	1.1	 Good curve: Correct shape, symmetrical positive quadratic FT Minimum point in the correct quadrant for their roots FT their <i>x</i> intercepts correctly labelled <i>y</i> intercept at (0, -3) 	Must have a curve
				[3]			
7	(b)			M1	1.1	Choosing the interval between their <i>x</i>	
			(2)		11	intercepts This intercel identified clearly	Other clean notation is
			$x \in \left(-1, \frac{3}{2}\right)$	AIFI	1.1	FT their x values in part (i)	Other clear notation is
				[2]			

(Question	Answer	Marks	AO	Guidance	
7	(c)	No real roots implies that the discriminant is				OR
		negative				
		$b^2 - 4ac = 1^2 - 4 \times 2 \times -(3+k) < 0$	M1	3.1 a		M1 Attempt to find turning
						point and use $k < y_{\min}$
		25 + 8k < 0	A1	1.1		A1 Turning point at
						$\left(\frac{1}{4},-\frac{25}{8}\right)$
		$k < -\frac{25}{8}$	A1	3.2a		
		0	[3]			
8	(9)	$\mathbf{F} \mathbf{g}$ Members who attend may be of a particular	[J] R1	25	Any correct explanation	
U	(a)	type	DI	2.0	Sample is not random B0	
		E g. Absent members cannot be included			Sample is not random by	
		E.g. Absent members cannot be menuded	[1]			
0		156 249	[1] D1	11		
ð	(b)	156, 248	BI	1.1		965 must be discarded
		73, 181	B1	1.1	Allow 073	In <i>this</i> context do not
						accept a repeat of 156
			[2]			

(Question		Answer	Marks	AO	Guidance		
9			0.6×0.3 or 0.6×0.1 or 0.3×0.1	M1	3.1a	Any correct product seen, oe	OR	
							M1	
							$0.6^2 + 0.3^2 + 0.1^2 (= 0.46)$	
			$0.6 \times 0.3 + 0.6 \times 0.1 + 0.3 \times 0.1$ oe	M1	1.1	Fully correct method	M1 0.5×(1−'0.46')	
			= 0.27	A1	1.1			
				[3]				
10	(a)		$y^7 + 7xy^6 + 21x^2y^5 + 35x^3y^4$	B2	1.1	B1 for three terms correct		
					1.1			
				[2]				
10	(b)		$21x^2y^5 = 35x^3y^4$	M1	3.1a	Equate their terms in $x^2 y^5$ and $x^3 y^4$		
			x 3	A1	1.1			
			$\frac{-}{y} = \frac{-}{5}$ or 0.6					
				[2]				
10	(c)		$P(I-k) = C (3)^k (5)^k$	M1	3.3	Seen or implied		
			$\Gamma(L-\kappa) = \frac{1}{7}C_k(\overline{8})(\overline{8})$					
			$P(L=2) = {}_{7}C_2 \left(\frac{3}{8}\right)^2 \left(\frac{5}{8}\right)^5$					
			and P(L=3) = $_7C_2\left(\frac{3}{2}\right)^3\left(\frac{5}{2}\right)^4$	M1	3.4	Attempt to find the probabilities for		
						each case		
			So P(L=2)=21× $\frac{3^2 \times 5^5}{7}$ =7× $\frac{3^3 \times 5^5}{7}$	E1	2.1	For both values and a conclusion		
			3''''''''''''''''''''''''''''''''''''					
			and P(L=3) = $35 \times \frac{3^{\circ} \times 5^{\circ}}{8^{7}} = 7 \times \frac{3^{\circ} \times 5^{\circ}}{8^{7}}$ so they are					
			equal					
				[3]				

Question		on Answer	Marks	AO	Guidance	
11	(a)	0.25	B1	2.2b	At least the three with solid rings.	
		5 0.20 - · · · ·			No extras other than those in the	
					dashed ring.	
		₩ 1.15 × ×				
		x 46 0.10 x x				
		* * ×				
		0.00 0 100,000 200,000 300,000 400,000 500,000 600,000				
		Population	[1]			
11	(b)		R1	2.2h	For identifying (not necessarily using	Identifying some points of
11	(0)	0.25	DI	2.20	the diagram) the two subpopulations	those ringed as being in
		act act			shown as being one in which there is a	different subpopulations
		8 0.20 - ×			positive correlation between the two	unreferit subpopulations
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			variables and one in which larger	
		r sing			populations do not appear to lead to	
					increases in the proportion travelling	
		od 0.05 - *** * ** ** ** ** **			hy hus	
		0.00 0 100,000 200,000 300,000 400,000 500,000 600,000				
		Population	F 1	1.2	For identifying two distinct	
		e.g. the dotted finged group are metropolitan	E1	1.4	For identifying two distinct	
		have high grouportions of travelling by hus			subpopulations in terms of the	
		The solid ringed group are probably large			structure of the large data set	
		"unitary outborities" which are not urbon so they				
		don't have good hus services				
		The unringed points are a mix of small "uniter:	F 1	22	For avalaining why it might ha	
		authorities" and "non-matronolitan districts"	LI	2.3	difficult to tall the others apart	
		which are difficult to tall apart with these data			uniformation ten me omens apart.	
		which are difficult to tell apart with these data.	[2]			
			[3]			

H230/01

(Question		Answer	Marks	AO	Guidance	
12	(a)		$H_0: p = 0.097$	B1	1.1	Must be stated in terms of parameters	
			$H_1: p > 0.097$ where p is the proportion of	B 1	2.5	Undefined <i>p</i> B1B0	
			patients experiencing side effects within a year				
			$X \sim B(450, 0.097)$ and $X = 50$	M1	3.3	Stated or implied	Only 0.138 seen without
							parameters/distribution
			$P(X \ge 51) = 1 - 0.862 = 0.138 (3 \text{ s.f.})$	A1	3.4	BC	M1AO
			Comparison with 0.1	A1	1.1		
			Do not reject H ₀	M1	1.1		
			No evidence (at 10% level) that proportion under	A1	2.2b	In context, not definite, e.g. Proportion	FT their 0.138, but not
			new treatment greater than under standard			not greater A0	comparison with 0.1
			treatment				
				[7]			
12	(b)		E.g. The patients could be treated together so they	B1	3.5a	In context, referring to independence	
			are not independent, so the binomial model is not			or random sampling. Must include a	
			valid.			comment on appropriateness.	
			E.g. The 450 patients are not a random sample				
			from the population, so the binomial model is not				
			valid.				
			E.g. It is not known whether the proportion of				
			patients experiencing side effects under the				
			standard treatment is 9.7%, so the binomial model				
			used may not be valid.				
				[1]			

(Questio	on	Answer	Marks	AO	Guidance
13	(a)		She has assumed that any car has exactly two	B1	2.2b	
			people in it: one passenger and the driver.			
			Subtract the value in "Passenger in a car or van"	B1	2.2a	Must refer to "Driving a car or van", or
			from the value in "Driving a car or van" to get the			equivalent
			number of people driving alone.			
				[2]		
13	(b)	(i)	The proportion using individual motorised	B 1	2.3	Or other valid reason taken from data
			transport in region B (56.2) is greater than region			
			A (49.3)			
				[1]		
13	(b)	(ii)	The proportion using no motorised transport in	B1	2.3	Or other valid reason taken from data
			region B (23.1) is greater than region A (21.5)			
				[1]		

Assessment Objectives (AO) Grid

Question	AO1	AO2	AO3 (PS)	AO3 (M)	Total
Pure					
1 a	2				2
1b	2				2
2a	2				2
2b	2	1			3
3	3		1		4
4 a	3	1	1		5
4b	1	1			2
5a	3				3
5bi	3				3
5bii	2		1		3
6 a		2			2
6 b	3	2	2		7
7a	3				3
7 b	2				2
7c	1		2		3
Statistics					
8 a		1			1
8b	2				2
9	2		1		3
10a	2				2
10b	1		1		2
10c		1		2	3
11a		1			1
11b	1	2			3
12a	3	2		2	1
12b				1	7
13a		2			2
13bi		1			1
13bii		1			1
Totals	43	18	9	5	75

PS = Problem Solving M = Modelling

Summary of Updates

Date	Version	Change
October 2018	2	We've reviewed the look and feel of our papers through text, tone, language, images and formatting. For more information please see our assessment principles in our "Exploring our question papers" brochures on our website.
November 2019	2.1	Amendment to Instructions rubric on front cover.
May 2022	2.4	Copyright acknowledgements updated.