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Section A (54 marks)

1 (a) (i) A curve has polar equation cos sinr a b2 2i i= + , where a 02  and b 02 .

   Show, by considering its cartesian equation, that the curve is a circle which passes through the 
origin. Find the centre and radius of the circle in terms of a and b. [5]

  (ii) For the case a b 1= = , use integration to show that the region bounded by a minor arc of the 
circle and the lines 6i = r  and 3i = r  has area 1

3
+ r . [5]

 (b) Given that lnt t1f = +^ ^h h, obtain expressions for tf l^ h, tf ll^ h and tf lll^ h. Hence show that the 
Maclaurin series for ln t1+^ h begins

    t t t
2 3

2 3

- +  … .

  Deduce the first two non-zero terms of the Maclaurin series for ln
t
t

1

1

-

+J

L
KK
N

P
OO. [8]

2 (a) (i) By considering z
z
1
5

+
J

L
KK

N

P
OO , where cos sinz ji i= + , show that

    cos cos5 5 3 10cos cos
5

16

1i i i i= + +^ h. [5]

  (ii) Use de Moivre’s theorem to find an expression for cos5i  in terms of powers of cosi . [5]

 (b) (i) Obtain the roots of the equation w 4 2
5 =  in the form re ji . Show the points corresponding to 

these roots in an Argand diagram. [4]

  (ii) For each root w, let v w 2e
/10j= r .

   Show the points corresponding to the values of v on your Argand diagram.

   Find, in simplified form, an equation for which the values of v are the roots. [4]
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3 This question concerns the matrix M where 
5

4

2

1

3

1

3

2

4

M =
-

- -

J

L

K
KK

N

P

O
OO.

 (i) Obtain the characteristic equation of M.

  Find the eigenvalues of M. [7]

 These eigenvalues are denoted by 1m , 2m , 3m , where 
1 2 3
1 1m m m .

 (ii) Verify that an eigenvector corresponding to 1m  is 
1

3

1-

J

L

K
KK

N

P

O
OO and that an eigenvector corresponding to 2m  is 

  
1

2

1-

J

L

K
KK
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P

O
OO. Find an eigenvector of the form 

a

c
1
J

L

K
KK

N

P

O
OO corresponding to 3m . [5]

 (iii) Write down a matrix P and a diagonal matrix D such that M PDP
1= - . (You are not required to 

calculate P 1- .)

  Hence write down an expression for M4 in terms of P and a diagonal matrix. You should give the 
elements of the diagonal matrix explicitly. [3]

 (iv) Use the Cayley-Hamilton theorem to obtain an expression for M4 as a linear combination of M and 
M2. [3]

Section B (18 marks)

4 (i) Starting with the relationship cosh sinht t 1
2 2- = , deduce a relationship between tanh t2  and sech2t. [1]

 You are given that tanhy xar= .

 (ii) Show that 
xx

y
1

1

d

d

2
=
-

. [4]

 (iii) Show, by integrating the result in part (ii), that lny
x
x

2

1

1

1
=

-

+J

L
KK

N

P
OO. [4]

 (iv) Show that tanh
x

x
1 3

1

3

1

2

1
d ar

2

0

6

3

-
== . Express this answer in logarithmic form. [4]

 (v) Use integration by parts to find tanh x xar dy , giving your answer in terms of logarithms. [5]

END OF QUESTION PAPER
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