Oxford Cambridge and RSA

GCE

Mathematics (MEI)

Unit 4751: Introduction to Advanced Mathematics (C1)
Advanced Subsidiary GCE

Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

1. These are the annotations, (including abbreviations), including those used in scoris, which are used when marking

Annotation in scoris	Meaning
BP	Blank Page - this annotation must be used on all blank pages within an answer booklet (structured or unstructured) and on each page of an additional object where there is no candidate response.
\checkmark and \mathbf{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0,1
B0, B1	Independent mark awarded 0,1
SC	Special case
\wedge	Omission sign
MR	Misread
Highlighting	
	Meaning
Other abbreviations in mark scheme	E1
U1	Mark for explaining
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working

2. Subject-specific Marking Instructions for GCE Mathematics (MEI) Pure strand

Annotations should be used whenever appropriate during your marking.
The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

The following types of marks are available.
M
A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified

A

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B

Mark for a correct result or statement independent of Method marks.

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.

The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
f Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.
For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Question		Answer	Marks	Guidance	
1	(i)	1	$\begin{gathered} 1 \\ {[1]} \end{gathered}$		
1	(ii)	27	2 [2]	condone ± 27; B1 for $[\pm] 3^{3}$ or $\sqrt{729}$ or for $\left[9^{\frac{1}{2}}=\right] 3$ or ± 3 soi	
1	(iii)	$\frac{25}{16} \text { or } 1 \frac{9}{16} \text { isw }$	2 [2]	B1 for $\frac{5}{4}$ or $\frac{1}{\frac{16}{25}}$ or $\frac{16}{25}$ oe	B0 for 1.5625 without fractions seen; if this is found, check for possible use of calculator throughout the paper
2		substitution to eliminate one variable simplification to $a x=b$ or $a x-b=0$ form, or equivalent for y $(9 / 7,22 / 7)$ oe or $x=9 / 7 y=22 / 7$ oe isw	M1 M1 A2 [4]	or multiplication or division to make one pair of coefficients the same; condone one error in either method or appropriate subtraction / addition; condone one further error in either method A1 each	independent of first M1 A0 for just rounded decimals or for $-9 /-7$ oe
3	(i)	$x<-11 / 2$ oe www as final answer	2 [2]	M1 for $-2 x>11$ oe or $x<11 /-2$	if working with equals throughout, give 2 for correct final answer, 0 otherwise

Question		Answer	Marks	Guidance	
3	(ii)	$250 c^{10} d^{-2}$ or $\frac{250 c^{10}}{d^{2}}$ as final answer	2 [2]	B1 for two correct elements; must be multiplied if B0, allow $\mathbf{S C 1}$ for $125 c^{6} d^{3}$ obtained from numerator or for all elements correct but added	
4		$a(2 c-5)=3 c+2 a$ or $2 a c-5 a=3 c+2 a$ $a(2 c-5)-2 a=3 c$ or $2 a c-7 a=3 c$ or ft $a(2 c-7)=3 c$ or ft [$a=] \frac{3 c}{2 c-7}$ or simplified equivalent or ft as final answer	M1 M1 M1 M1 [4]	for multiplying up correctly (may also expand brackets) for collecting a terms on one side, remaining term[s] on other [need not be simplified] for factorising a terms, need not be simplified; may be implied by final answer for division by their two-term factor (accept a 3 term factor that would simplify to 2 terms); for all 4 marks to be earned, work must be fully correct and simplified and not have a triple-or quadruple-decker answer	annotate this question if partially correct ft only if two or more a terms ft only if two or more a terms, needing factorising may be earned before $2^{\text {nd }}$ M1 candidates whose final answer expresses c in terms of a : treat as MR after the first common M and mark equivalently, applying MR -1 if they gain further Ms. So that a final answer, correctly obtained, of $[c=] \frac{7 a}{2 a-3}$ or simplified equivalent earns 3 marks in total
5	(i)	$11 \sqrt{2}$	2 [2]	M1 for $[\sqrt{50}=] 5 \sqrt{2}$ or $[3 \sqrt{8}=] 6 \sqrt{2}$	

Question		Answer	Marks	Guidance	
7	(i)	$[x=] 5,[x=]-1$ www	$\begin{gathered} 2 \\ {[2]} \end{gathered}$	M1 for $x-2= \pm 3$ or for $(x-5)(x+1)[=0]$	0 for just $x=5$ or for $x-2=3$
7	(ii)	parabola shape curve the correct way up intersecting x-axis at 5 and -1 or ft from (i) and y-axis at -5 turning point $(2,-9)$	1 1 [3]	must extend beyond x-axis; seen on graph or identified as tp elsewhere in this part	condone ' U ' shape or very slight curving back in/out; condone some doubling / feathering - deleted work sometimes still shows up in rm assessor; must not be ruled; condone fairly straight with clear attempt at curve at minimum; be reasonably generous on attempt at symmetry e.g. condone minimum on y-axis for this mark may be implied by 2 and -9 marked on axes 'opposite' turning point
8		$8+2 a+c=11$ $-1-a+c=8$ Correct method for eliminating one variable, condoning one further error $a=-2, c=7$	B1 B1 M1 A2 [5]	accept 2^{3} instead of 8 or $c-(a+1)=8$ oe (often from division) accept $(-1)^{3}$ instead of -1 dep on two equations in a and c and at least B1 earned A1 for one correct	
9	(i)	-5.7 to $-5.8,-2.2$ to $-2.3,-1$ isw	2 [2]	B1 for 2 correct or for all 3 only stated in coordinate form, ignoring y coordinates	

Question		Answer	Marks	Guidance	
9	(ii)	$1=(x+2)\left(x^{2}+7 x+7\right)$	M1	condone missing brackets if expanded correctly; or M1 for correct expansion of $(x+2)\left(x^{2}+7 x+7\right)$	
		correct completion with at least one interim stage of working to given answer: $x^{3}+9 x^{2}+21 x+13=0$	A1		
		[$x=-1$ is root so $](x+1)$ is factor soi	M1	implied by division of cubic by $x+1$	condone some confusion of root/factor for this mark if division of cubic by $x+1$ seen
		correctly finding other factor as $x^{2}+8 x+13$	M2	M1 for correct division of cubic by $(x+1)$ as far as obtaining $x^{2}+8 x$ (may be in grid) or for two correct terms of $x^{2}+8 x+13$ obtained by inspection	allow seen in grid without + signs
		$\frac{-8 \pm \sqrt{8^{2}-4 \times 13}}{2} \mathrm{oe}$	M1	for use of formula, condoning one error, for $x^{2}+8 x+13=0$	or M1 for $(x+4)^{2}=4^{2}-13$ oe or further stage, condoning one error
		$\frac{-8 \pm \sqrt{12}}{2}$ isw or $-4 \pm \sqrt{3}$ isw and $x=-1$	A1	$x=-1$ may be stated earlier	isw wrong simplification or giving as coordinates
			[7]		

Question			Answer drawing the translated quadratic or showing that the horizontal gap between the relevant parts of the curve is always less than 3 estimated coordinates of the point of intersection (1.8 to $2,0.2$ to 0.3)	Marks B1	Guidance	
9	(iii)	A			must be a reasonable translation of given quadratic, only intersecting given curve once; intersections with x axis -3 to -2.5 and 1.5 to 2 ; ignore above $y=1$	
9	(iii)	B	$y=x^{2}+x-5 \text { or } y=\left(x+\frac{1}{2}\right)^{2}-\frac{21}{4}$	2	M1 for $[y=](x-3)^{2}+7(x-3)+7$ oe or for simplified equation with ' $y=$ ' omitted or for $y=(x-a)(x-b)$ where a and b are the values $3+\frac{-7 \pm \sqrt{21}}{2}$ oe (may have been wrongly simplified)	M0 for use of estimated roots in (A)

Question		Answer centre $\mathrm{D}=\left(\frac{2+8}{2}, \frac{7+-1}{2}\right)$ or $(5,3)$ soi radius $=5$ or $r^{2}=25$ or for finding dist between A, B or C and their centre D oe $(x-a)^{2}+(y-b)^{2}=r^{2}$ soi $(x-5)^{2}+(y-3)^{2}=25$ or 5^{2} isw	Marks B1 B1 M1 A1 [4]	Guidance	
10	(ii)			may be implied by circle eqn may be implied by circle eqn general formula may be quoted or implied by eqn using their values, but it must be clear that they are using their r^{2} rather than their r or their d or d^{2} alternative method: allow B4 for $(y-7)(y+1)+(x-2)(x-8)=0$	if already found in (i), must be used in (ii) to get the mark here if already found in (i), must be used in (ii) to get the mark here for this method mark, allow use of their values, even if obtained from $A B$ or $B C$ as diameter
10	(iii)	$[\operatorname{grad} \mathrm{AD}=] \frac{7-3}{2-5}$ isw or $-\frac{4}{3}$ oe grad $\operatorname{tgt}=3 / 4$ oe www or $-1 /$ their grad AD oe $y-7=$ their $3 / 4(x-2)$ or $7=$ their $\frac{3}{4} \times 2+c$ $4 y=3 x+22$ oe where a, b, c are integers, isw	B1 M1 M1 A1 [4]	or may use $\mathrm{CD}\left(\frac{-1-3}{8-5}\right), \mathrm{AC}\left(\frac{7-(-1)}{2-8}\right)$ or ft their D from (ii) or $\mathbf{B 1}$ for correct differentiation: $2 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-10-6 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$ oe M0 if grad AD used; M0 for a spurious gradient used allow correct answer to imply 3rd M1, provided first two Ms have been earned	if D wrong, check back to (ii) for any ft $\mathrm{NB}: \mathrm{A}(2,7) \mathrm{B}(0,3)$ and $\mathrm{C}(8,-1)$ perp gradient to AB or BC used: may earn 2nd M1 only

Question		Answer$(0,-3)$$(-1 / 2,0)$ and $(3,0)$ www	Marks B1 B2 [3]	Guidance	
11	(i)			condone $y=-3$, isw condone $x=-1 / 2$ and 3 ; B1 for one correct www or M1 for $(2 x+1)(x-3)$ or correct use of formula or reversed coordinates	if not coordinates, must be clear which is x and which is y
11	(ii)	$2 x^{2}-6 x-6[=0]$ isw or $x^{2}-3 x-3[=0]$ or $2 y^{2}-18 y+30[=0]$ use of formula or completing the square, with at most one error $\left(\frac{6 \pm \sqrt{84}}{4}, \frac{18 \pm \sqrt{84}}{4}\right) \text { or }\left(\frac{3 \pm \sqrt{21}}{2}, \frac{9 \pm \sqrt{21}}{2}\right)$ oe isw	M1 M1 A2 [4]	for equating curve and line, and rearrangement to zero, condoning one error no ft from $2 x^{2}-6 x=0$ or other factorisable equations A1 for one set of coords or for x values correct (or y s from quadratic in y); need not be written as coordinates	allow rearranging to constant if they go on to attempt completing the square if completing the square must get to the stage of complete square only on lhs as in 9(ii) A0 for unsimplified y coords eg $\frac{3+\sqrt{21}}{2}+3$

Question		Answer	Marks	Guidance	
11	(iii)	$2 x^{2}-5 x-3=x+k$	M1	for equating curve and line	
		$2 x^{2}-6 x-3-k[=0]$	M1	for rearrangement to zero, condoning one error, but must include k; this second M1 implies the first, eg it may be obtained by subtracting the given equations	
		$b^{2}-4 a c<0$ oe for non-intersecting lines	M1	eg allow for just quoting this condition; may be earned near end with correct inequality sign used there allow 'discriminant is negative' if further work implies $b^{2}-4 a c$	some may use condition for intersecting lines or for a tangent and then swap condition at the end; only award this M1 and the final A mark if the work is completely clear
		$36-8 \times-(3+k)[<0]$ oe	A1	for correct substitution into $b^{2}-4 a c$; no ft from wrong equation; if brackets missing or misplaced, must be followed by a correct simplified version	can be earned with equality or wrong inequality, or in formula - this mark is not dependent on the $3^{\text {rd }} \mathrm{M}$ mark;
		$k<-\frac{15}{2} \text { oe }$	A1	isw if 3rd M1 not earned, allow B1 for $-\frac{15}{2}$ obtained for k with any symbol	

Question		Answer or, for those using a tangent condition with trials to find the boundary value rearrangement with correct boundary value of k eg $2 x^{2}-6 x+4.5[=0]$ or $2 x^{2}-6 x-(3-7.5)[=0]$ showing $36-8 \times-(3-7.5)=0$ or $36-8 \times 4.5=0$ oe		Guidance	
11	(iii) cont	$\begin{aligned} & \text { or, for those using a tangent condition with } \\ & \text { trials to find the boundary value } \\ & \text { rearrangement with correct boundary value of } \\ & k \text { eg } 2 x^{2}-6 x+4.5[=0] \text { or } \\ & 2 x^{2}-6 x-(3-7.5)[=0] \\ & \text { showing } 36-8 \times-(3-7.5)=0 \text { or } \\ & 36-8 \times 4.5=0 \text { oe } \\ & k<-\frac{15}{2} \text { oe } \end{aligned}$ or, for using tangent with differentiation $y^{\prime}=4 x-5$ [when $y=x+k$ is $\operatorname{tgt}] 4 x-5=1$ $\begin{aligned} & x=1.5, y=-6 \\ & -6=1.5+k \text { or } k=-7.5 \mathrm{oe} \\ & k<-7.5 \mathrm{oe} \end{aligned}$	M2 M1 A2 M1 M1 A1 A1 A1 [5]	M1 for $2 x^{2}-5 x-3=x-7.5$ may be in formula implies previous M2 B1 for $-\frac{15}{2}$ obtained for k as final answer with any symbol	mark one mark scheme or another, to the advantage of the candidate, but not a mixture of schemes M0 for trials with wrong values without further progress, though may still earn an M1 for $b^{2}-4 a c<0$

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
GROUP
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

