Wednesday 28 June 2017 - Morning
 A2 GCE MATHEMATICS

4734/01 Probability \& Statistics 3

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:
Duration: 1 hour 30 minutes

- Printed Answer Book 4734/01
- List of Formulae (MF1)

Other materials required:
Scientific or graphical calculator

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. If additional space is required, you should use the lined page(s) at the end of the Printed Answer Book. The question number(s) must be clearly shown.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do not write in the barcodes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- The Printed Answer Book consists of 12 pages. The Question Paper consists of $\mathbf{4}$ pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

- Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

Answer all the questions.
1 The random variable X has the distribution $\mathrm{N}\left(\mu, 3^{2}\right)$. A random sample of 9 observations of X produced the following values.

6	2	3	6	8	11	12	5	10

(i) Find a 90% confidence interval for μ.
(ii) Explain what is meant by a 90% confidence interval in this context.

2 In a random sample of 40 female students, 32 passed a particular examination. In a random sample of 34 male students, 25 passed the same examination. Test at the 5% significance level whether the proportion of females passing the examination differs from the proportion of males passing the examination.

3 The hair colour and eye colour of 100 randomly selected people were noted. The results are shown in the table.

	Dark hair	Not dark hair
Brown eyes	36	22
Not brown eyes	16	26

Use a χ^{2} test at the 5% significance level to test whether there is an association between hair colour and eye colour.
$4 \quad X, Y$ and Z are random variables. X and Y have independent Poisson distributions with means 2 and 3 respectively, and $Z=4 X+5 Y$.
(i) Find $\mathrm{E}(Z)$ and $\operatorname{Var}(Z)$.
(ii) Explain how your answers to part (i) show that Z does not have a Poisson distribution.
(iii) Find $\mathrm{P}(Z=15)$.

A greengrocer sells apples whose masses are normally distributed. The greengrocer claims that the mean mass of the apples is at least 180 grams. A shopper buys a random selection of 8 apples from the greengrocer. The masses of these apples, in grams, are as follows.

$$
\begin{array}{llllllll}
160 & 200 & 164 & 170 & 186 & 192 & 162 & 178
\end{array}
$$

These 8 masses were used to calculate an unbiased estimate of the population variance, and the value was found to be 223.714 , correct to 3 decimal places. Test at the 1% significance level whether there is any evidence to doubt the greengrocer's claim.

6 Each time a motorist refuels her car, she calculates the average rate of fuel consumption C, in $\mathrm{km} / 1$, since the last time she refuelled the car. She investigates whether C has a normal distribution. She chose 60 of her calculations at random, and the results are summarised in the table.

$C(\mathrm{~km} / \mathrm{l})$	<16.5	$16.5-17.0$	$17.0-17.5$	$17.5-18.0$	$18.0-18.5$	$18.5-19.0$	$19.0-19.5$	>19.5
Observed frequency	0	8	17	12	11	8	4	0

(i) Show that an estimate of the mean fuel consumption is $17.8 \mathrm{~km} / 1$.

The standard deviation of the data in the table was calculated and was found to be $0.7286 \mathrm{~km} / 1$, correct to 4 decimal places. Using these values for the mean and standard deviation, the expected frequencies for the eight classes were found, and these are shown in the table.

$C(\mathrm{~km} / \mathrm{l})$	<16.5	$16.5-17.0$	$17.0-17.5$	$17.5-18.0$	$18.0-18.5$	$18.5-19.0$	$19.0-19.5$	>19.5
Expected frequency	2.23	5.93	12.25	16.07	13.42	7.11	2.40	0.59

(ii) Show how the expected value of 12.25 for the 17.0 - 17.5 class was calculated.
(iii) Carry out a χ^{2} goodness of fit test at the 5% level of significance.

7 A continuous random variable X has probability density function

$$
\mathrm{f}(x)= \begin{cases}k x^{2} & 0 \leqslant x \leqslant 2 \\ k x^{2}-1.5 x+3 & 2<x \leqslant 4 \\ 0 & \text { otherwise }\end{cases}
$$

where k is a constant.
(i) Show that $k=\frac{3}{16}$.
(ii) Find $\mathrm{P}(1.5 \leqslant X \leqslant 3)$.
(iii) Show that the upper quartile of X is 2.41 , correct to 2 decimal places.

8 Ten randomly selected joints of meat, $\mathrm{A}, \mathrm{B}, \ldots, \mathrm{J}$, are each cut in half. One half of each joint of meat is frozen and packed using process 1 and the other half is frozen and packed using a new process 2 . All the halves are then placed in the same freezer. For each pack, the number of days that the meat takes to spoil is found. The results are shown in the table.

Joint	A	B	C	D	E	F	G	H	I	J
Process 1	78	108	80	171	184	153	50	145	91	156
Process 2	111	106	77	196	230	148	58	155	90	170

Carry out a paired sample t-test, at the 5% significance level, to investigate whether meat frozen and wrapped using process 2 takes longer to spoil than meat frozen and wrapped using process 1 . State any necessary assumption.
[10]

9 The object distance U and the image distance V for a convex lens are variables. They are related to the focal length f of the lens, which is a constant, by the formula

$$
\frac{1}{U}+\frac{1}{V}=\frac{1}{f}
$$

U is a random variable with a continuous uniform distribution over the interval from $3 f$ to $4 f$. Find the probability density function of V.

END OF QUESTION PAPER

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.
For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE
OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

