

# GCE

## **Mathematics**

Unit 4732: Probability and Statistics 1

Advanced Subsidiary GCE

## Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

4732

### Mark Scheme <u>S1 June 2017 Mark Scheme SSU v4</u>

June 2017

|   | Question |  | "answer which rounds to to 3 sfs". If correct ans seen to<br>Answer                    |                      | Mk        | Guidance                                                                                                                                                   |                                                                                                                                                                                 |  |
|---|----------|--|----------------------------------------------------------------------------------------|----------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1 | i        |  | $S_{xx} = 476 - \frac{56^2}{7}$                                                        | (= 28)               |           |                                                                                                                                                            |                                                                                                                                                                                 |  |
|   |          |  | $S_{yy} = 124943.34 - \frac{935.2^2}{7}$ $S_{xy} = 7485.6 - \frac{56 \times 935.2}{7}$ | (= 0.62)<br>(= 4)    | M1        | Correct method for one S                                                                                                                                   |                                                                                                                                                                                 |  |
|   |          |  | $r = \frac{"4"}{\sqrt{"28" \times "0.62"}}$                                            |                      | M1        | Correct method for all Ss and correct substn into correct <i>r</i> formula                                                                                 |                                                                                                                                                                                 |  |
|   |          |  | = 0.960 (3 sf)                                                                         |                      | A1<br>[3] | allow 0.96                                                                                                                                                 | Correct ans, no wking, M1M1A1                                                                                                                                                   |  |
|   | ii       |  | None oe                                                                                |                      | B1<br>[1] |                                                                                                                                                            | Ignore all else                                                                                                                                                                 |  |
|   | iii      |  | $b = \frac{"4"}{"28"}$ (= $\frac{1}{7}$ or 0.14                                        | l or better)         | M1        | ft their Ss from (i) for M1M1 not A1                                                                                                                       | or $b = \frac{7485.6 - \frac{56 \times 935.2}{7}}{476 - \frac{56^2}{7}}$                                                                                                        |  |
|   |          |  | $y - \frac{935.2}{7} = "\frac{1}{7}"(x - \frac{56}{7})$ oe                             |                      | M1        | or $a = \frac{935.2}{7} - \frac{1}{7} \times \frac{56}{7}$ oe                                                                                              | or $a = 133.6 - \frac{1}{7} \times 8$                                                                                                                                           |  |
|   |          |  | $y = 0.143x + 132$ or $y = \frac{1}{7}x$                                               | + <u>4636</u><br>35  | A1        | oe Correct to 3 sfs except allow 132.5                                                                                                                     | but allow $y = 0.14x + 130$ with no error seen                                                                                                                                  |  |
|   |          |  |                                                                                        |                      | [3]       | Must include "y =" for A1                                                                                                                                  | Correct ans, no wking, M1M1A1                                                                                                                                                   |  |
|   | iv       |  | <i>x</i> is controlled Allow <i>x</i> is ir or Amount of additive is cont              | ndependent<br>rolled | B1        | or values of <i>x</i> are fixed, given, exact,<br>or <i>x</i> is changed<br>NOT " <i>x</i> changes" or " <i>x</i> is constant"<br>NOT " <i>x</i> is known" | Ignore all else<br>NOT <i>x</i> doesn't depend on <i>y</i><br>NOT <i>y</i> depends on <i>x</i> or <i>y</i> is depend't<br>NOT " <i>x</i> increases by same amount<br>each time" |  |
| 2 | ;        |  | All correct lines & probs OR                                                           | abala                | [1]<br>B1 | Allow oxtra lipos with no proha given                                                                                                                      | "probs" includes 1 – p                                                                                                                                                          |  |
| 2 |          |  | All correct lines & probs & lal                                                        |                      | B1<br>[2] | Allow extra lines with no probs given,<br>or prob = 0 given, for B1B1                                                                                      | Ignore products at end, if shown                                                                                                                                                |  |
|   |          |  |                                                                                        |                      |           | No need for labels "2nd attempt" and<br>"3rd attempt"                                                                                                      | Instead of $p \& 1 - p$ , allow 0.7 & 0.3<br>or incorrect $p \& 1-p$ from (iii)                                                                                                 |  |

| 4732 |     |   |                                                                                               |     | Mark Scheme                                                                                           | June 2017                                                                                                     |
|------|-----|---|-----------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|      |     |   |                                                                                               |     | SC: One line omitted, all probs and labels given on other lines B1B0                                  | NOT $q$ instead of 1 – $p$                                                                                    |
|      | ii  |   | $\frac{4}{5} + \frac{1}{5} \times \frac{3}{4}$ or $1 - \frac{1}{5} \times \frac{1}{4}$        | M2  | $\frac{4}{5}$ +prod of 2 P's or 1– prod of 2 P's M1                                                   | eg $\frac{4}{5} + \frac{1}{5} \times \frac{4}{5}$ or $1 - \frac{1}{5} \times \frac{1}{5}$                     |
|      |     |   | $=\frac{19}{20}$ or 0.95                                                                      | A1  | No ft from tree diag.                                                                                 | or $\frac{4}{5} + \frac{1}{5} \times \frac{3}{5}$ or $1 - \frac{1}{5} \times \frac{2}{5}$ M1M0A0              |
|      |     |   |                                                                                               | [3] |                                                                                                       |                                                                                                               |
|      | iii |   | $1 - \frac{1}{5} \times \frac{1}{4} \times (1 - p) = \frac{197}{200}$ or $\frac{3}{200}$ seen | M1  | or '0.95'+ $\frac{1}{5} \times \frac{1}{4} \times p = \frac{197}{200}$ or $\frac{7}{200}$ seen        | or $\frac{4}{5} + \frac{1}{5} \times \frac{3}{4} + \frac{1}{5} \times \frac{1}{4} \times p = \frac{197}{200}$ |
|      |     |   | $\frac{1-p}{20} = \frac{3}{200}$ any correct step, one fract each side                        | M1d | eg $\frac{19+p}{20} = \frac{197}{200}$ or $\frac{1}{20} p = \frac{7}{200}$                            | eg $\frac{1}{20}p = \frac{7}{200}$ oe in decimals                                                             |
|      |     |   | 7                                                                                             |     | Dep 1st M1                                                                                            |                                                                                                               |
|      |     |   | $\rho = \frac{7}{10}$                                                                         | A1  |                                                                                                       | ft from tree diag for M1M1, not A1                                                                            |
|      |     |   |                                                                                               |     | $\frac{197}{200} - (\frac{4}{5} + \frac{1}{5} \times \frac{3}{4}) \qquad (= \frac{7}{200}) \qquad M1$ |                                                                                                               |
|      |     |   |                                                                                               |     | $\frac{7}{200} \div (\frac{1}{4} \times \frac{1}{5})$ or $\frac{7}{200} \times 20$ oe M1              |                                                                                                               |
|      |     |   |                                                                                               | [3] | $=\frac{7}{10}$ A1                                                                                    | or similar arithmetic methods                                                                                 |
| 3    | i   | а | $\frac{6}{10} \times \frac{4}{9} \times \frac{3}{8}$ oe                                       | M1  | Must see this, oe                                                                                     | ${}^{6}C_{1} \times {}^{4}C_{2}$ (must see ${}^{4}C_{2}$ ) M1                                                 |
|      |     |   | ×3                                                                                            | M1  | prod of any 3 probs × 3<br>or add 3 prods of 3 probs                                                  | $\div^{10}C_3$ any no. $\div^{10}C_3$ or 120 M1                                                               |
|      |     |   | $=\frac{3}{10}$ oe <b>AG</b>                                                                  |     | or add 3 prous or 3 probs                                                                             | NB <sup>3</sup> C <sub>2</sub> ×0.6×0.4 <sup>2</sup> scores M0M1A0                                            |
|      |     |   | $=\frac{10}{10}$ be AS                                                                        | A1  |                                                                                                       | $NB^{+}C_{2}$ × 0.6 × 0.4 Scores MOWITAU                                                                      |
|      |     |   |                                                                                               |     | NB Incorrect methods = $\frac{3}{10}$ M0M0A0:                                                         |                                                                                                               |
|      |     |   |                                                                                               |     | eg $\frac{\text{No. of discs taken}}{\text{Total no. of discs}} = \frac{3}{10}$                       |                                                                                                               |
|      |     |   |                                                                                               |     | eg 1 - $(\frac{1}{30} + \frac{3}{30} + \frac{1}{2} + \frac{1}{6}) = \frac{3}{10}$                     |                                                                                                               |
|      |     |   |                                                                                               |     | $eg \frac{1}{10} + \frac{1}{10} + \frac{1}{10} = \frac{3}{10}$ with no other wking                    |                                                                                                               |
|      |     |   |                                                                                               | [3] |                                                                                                       |                                                                                                               |
|      |     |   |                                                                                               |     |                                                                                                       |                                                                                                               |

| 4732 | 2    |     |                                                                                     |                | Mark Scheme                                                | June 2017                                                                                                                                                                                    |
|------|------|-----|-------------------------------------------------------------------------------------|----------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | i    | b   | $P(X=3) = \frac{1}{6} \text{ or } \frac{5}{30} \text{ oe or } 0.167 (3 \text{ sf})$ | B1             | May be seen in table or workng                             | May be implied by ans to mean                                                                                                                                                                |
|      |      |     | Σxp                                                                                 | M1             | $\geq$ 2 non-zero terms correct, ft their $\frac{1}{6}$    |                                                                                                                                                                                              |
|      |      | ļ   |                                                                                     |                | If ÷ 4: M0                                                 |                                                                                                                                                                                              |
|      |      |     | $=\frac{9}{5}$ or $1\frac{4}{5}$ or 1.8 oe                                          | A1ft           | ft their $\frac{1}{6}$                                     |                                                                                                                                                                                              |
|      |      |     | $\Sigma x^2 p \qquad (= 3.8)$                                                       | M1             | $\geq$ 2 non-zero terms correct, ft their $\frac{1}{6}$ .  | (x - "1.8") attempted all 4 values M1                                                                                                                                                        |
|      |      |     | – "1.8" <sup>2</sup>                                                                | M1             | If $\div$ 4: M0<br>any no – their $\mu^2$ , dep +ve result | $\Sigma(x = 1.8)^2 p \ge 3$ terms correct M1                                                                                                                                                 |
|      |      |     | $=\frac{14}{25}$ or 0.56 oe                                                         | A1             |                                                            | $2(x - 1.8) p \ge 3$ terms correct MT                                                                                                                                                        |
|      |      |     | $=\frac{1}{25}$ 010.00 0e                                                           | [6]            | cao                                                        |                                                                                                                                                                                              |
|      |      |     | $\frac{10!}{4! \times 6!}$ or ${}^{10}C_4$ or ${}^{10}C_6$ alone                    | <del>-</del>   |                                                            |                                                                                                                                                                                              |
|      | II   |     | $4! \times 6!$ or $C_4$ or $C_6$ alone                                              | M1             |                                                            |                                                                                                                                                                                              |
|      |      |     | = 210                                                                               | A1<br>[2]      | 210 × or ÷ M0A0                                            |                                                                                                                                                                                              |
| 4    | lf P | use | d instead of C <u>consistently in all parts attem</u>                               | <u>pted</u> (a | • • • • • • • • •                                          |                                                                                                                                                                                              |
| 4    |      | T   | 593775                                                                              | B1             | Answers. ()                                                | ) 427518000 (ii) 550368 (iii) 7338240                                                                                                                                                        |
| •    | 1    |     |                                                                                     | [1]            |                                                            |                                                                                                                                                                                              |
|      | ii   |     | $^{14}C_2 \times {}^9C_2 \times {}^7C_2$ alone                                      | M1             |                                                            | MR: $\div {}^{30}C_6$ (= $\frac{84}{725}$ or 0.116) M1A0                                                                                                                                     |
|      |      |     | = 68796                                                                             | A1<br>[2]      | or 68800 (3 sf)                                            |                                                                                                                                                                                              |
|      | iii  |     | 14 (or ${}^{14}C_1$ ) × ${}^{16}C_5$ or 14 × 4368 alone                             | M2             | or M1 for either <sup>16</sup> C₅ or 4368 seen             | $\begin{array}{r} 14 \times ({}^{9}C_{5} + {}^{9}C_{4} \times 7 + {}^{9}C_{3} \times {}^{7}C_{2} + {}^{9}C_{2} \times {}^{7}C_{3} \\ + 9 \times {}^{7}C_{4} + {}^{7}C_{5}) & M2 \end{array}$ |
|      |      |     |                                                                                     |                | or 14 (or ${}^{14}C_1$ ) × any no. seen                    | 4 57                                                                                                                                                                                         |
|      |      |     | = 61152                                                                             | A1             | or 61200 (3 sf)                                            |                                                                                                                                                                                              |
|      |      |     |                                                                                     | [3]            |                                                            | MR: $\div {}^{30}C_6$ (= $\frac{224}{2175}$ or 0.103) M2A0                                                                                                                                   |
| 5    | i    |     | 530 (± 5)                                                                           | B1<br>[1]      |                                                            |                                                                                                                                                                                              |
|      |      |     |                                                                                     |                |                                                            |                                                                                                                                                                                              |

| 4732 | 2  |                                                                                                                                                                                  | ļ               | Mark Scheme                                                                                                                                                                                                                                                                 | June 2017                                                                                                                                                                                                           |
|------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | ii | $\frac{20}{100}$ × their 530 (= 106)<br>Read graph at cf = their 530 – their 106<br>Min mk = 34 (± 1)                                                                            | M1<br>M1<br>A1  | May be implied by ans or mark on graph<br>seen on graph or implied by <u>correct</u> ans<br>cao<br><u>If ans in range</u> ignore wking, M1M1A1                                                                                                                              | 0.8 × their 530 (= 424)<br>Read graph at cf their 424 $\pm$ 10<br>Not nec'y integer<br><u>If ans not in range</u> and 1st M1 scored,<br>2nd M1 can be scored only by mark<br>drawn on graph from their 424 $\pm$ 10 |
|      |    | <u>Type 1 answer</u><br>Individual marks unknown<br>or Data is in classes or groups or ranges<br>or Upper bounds used<br>'Classes' or 'groups' may be implied<br>eg by "between" | B1              | <u>Type 2 answer</u><br>No incr in freq above <i>a</i><br>Curve not incr above <i>a</i><br>Curve stops incr at <i>a</i><br>Curve stops incr at <i>a</i><br>Horiz or level or stnry or plateaus from <i>a</i><br>Line horiz before <i>a</i><br>Curve does not reach <i>a</i> | where 54 <u>&lt; a &lt; 55</u>                                                                                                                                                                                      |
|      |    | Hiest in class 50 - 54 or between 50& 54<br>Allow 50 - 55 or 49.5 - 54.5                                                                                                         | B1<br>[2]       | Highest mk is $\leq 54$ Allow $\leq 55$                                                                                                                                                                                                                                     | eg Hiest mk between 54 and 59 B1B0<br>eg Hiest mk is in class 55-59 B1B0<br>Ignore all else<br>The two B-marks are independent                                                                                      |
|      | iv | Steepest part of graph oe<br>or Slope most vertical or similar<br>25 - 29                                                                                                        | B1<br>B1<br>[2] | or Greatest increase in cf<br>or Increases by largest amount<br>or Greatest frequency oe (dep on 25-29)<br>Allow 25 - 30                                                                                                                                                    | NOT Greatest cum freq<br>NOT Most students are in this class<br>Ignore all else<br>The two B-marks are independent                                                                                                  |
| 6    | i  | 1 2 3 4 5<br>2 1 3 4 5                                                                                                                                                           | M1<br>A1<br>[2] | or 5 4 3 2 1<br>4 5 3 2 1                                                                                                                                                                                                                                                   | M1 attempt ranks<br>A1 correct ranks                                                                                                                                                                                |
|      | ii | Σ <i>d</i> <sup>2</sup> attempted, dep using ranks (= 2)<br>1 - $\frac{6\times"2"}{5(25-1)}$ dep using ranks                                                                     | M1              | $S_{xx} = S_{yy} = 55 \cdot 15^{2} / 5 \ (=10)$<br>$S_{xy} = 54 \cdot 15^{2} / 5 \ (=9)$<br>$r_{s} = \frac{'9'}{'10'}$                                                                                                                                                      | Correct method or result for one S:M1<br>Correct method three Ss and $r_s$ : M1                                                                                                                                     |

| 4732 | <b>!</b> |                                                                                       |           | Mark Scheme                                                                                                                      | June 2017                                                                                    |
|------|----------|---------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|      |          | $=\frac{9}{10}$ oe                                                                    | A1        |                                                                                                                                  |                                                                                              |
|      | iii      | $\Sigma d^2$ = their '2' stated or implied                                            | [3]<br>B1 | eg by a set of ranks for which $\Sigma d^2 = '2'$<br>(could be the original set)<br>or by two 1's and three 0's seen             | or swap 2 <u>adjacent</u> ranks, stated or<br>shown B1                                       |
|      |          | 4 possible sets of ranks (Not "4" seen)                                               | B1        |                                                                                                                                  | $\frac{1}{5} \times \frac{1}{4} \times \frac{1}{3} \times \frac{1}{2}$ (xbut not squared) M1 |
|      |          | "4" ÷ 5!                                                                              | M1        | Divide any no. by 5! or 120 or ${}^{5}P_{3}$<br>or div by 5! x<br>but not div by (5!) <sup>2</sup> except 3rd SC below           | $\frac{1}{5} \times \frac{1}{4} \times \frac{1}{3} \times \frac{1}{2} \times 4$ correct B1   |
|      |          | $=\frac{1}{30}$ oe or 0.0333 (3 sf)                                                   | A1        |                                                                                                                                  | $=\frac{1}{30}$ oe or 0.0333 (3 sf) A1                                                       |
|      |          |                                                                                       |           | eg $\frac{4}{5!} \times 2 = \frac{1}{15}$ B1B1M1A0                                                                               |                                                                                              |
|      |          |                                                                                       | [4]       | SC: $\frac{8}{2 \times 5!}$ or $\frac{8}{240} = \frac{1}{30}$ B1B1M1A1<br>SC: $\frac{4 \times 5!}{5!^2} = \frac{1}{30}$ B1B1M1A1 |                                                                                              |
| 7    | i        | $5.8^2 = \frac{\Sigma w^2}{75} - 52.3^2$                                              | M1        | or 5.8 = $\sqrt{\frac{\Sigma w^2}{75}}$ - 52.3 <sup>2</sup> )                                                                    |                                                                                              |
|      |          | $\Sigma w^2 = 207669.75$ or $\frac{830679}{4}$ oe                                     | A1<br>[2] | Allow 208000 with correct working, no errors seen                                                                                | NOT other ans that rounds to 208000                                                          |
|      | ii       | mean = $\frac{75 \times 52.3 + 5760}{75 + 100}$                                       | M1<br>A1  | or $\frac{3922.5+5760}{175}$ or $\frac{9682.5}{175}$                                                                             |                                                                                              |
|      |          | = 55.3 (3 sf)<br>var = $\frac{"207\ 669.75"+335\ 497}{75+100}$ -"55.329" <sup>2</sup> | M1        | or $\frac{543166.75}{175}$ -"55.329" <sup>2</sup>                                                                                | $\frac{\text{Their(i)} + 335 \text{ 497}}{75 + 100} - (\text{their mean of } 175)^2$         |
|      |          | (= 42.5)<br>sd = 6.52 (3 sf)                                                          | A1        | Allow 6.51 art 6.52 or 6.51                                                                                                      | NB ans 6.76 prob'y from mean = 55.3<br>M1A1M1A0 but check wking                              |
| I    |          |                                                                                       | 1         | 1                                                                                                                                |                                                                                              |

| 4732 |     |   |                                                                                                                                 |           | June 2017                                                                                                                                                                             |                                                                                                                                                                                              |
|------|-----|---|---------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |     |   |                                                                                                                                 | [4]       |                                                                                                                                                                                       | NB May see 55.3 used in sd calc'n,<br>but correct sd given (6.52). This gets<br>full marks on the assumption that<br>although candidate wrote "55.3" she<br>used more sig figs in the calc'n |
| 8    | i   |   | B(10, $\frac{7}{8}$ ) or Binomial & <i>n</i> = 10, <i>p</i> = $\frac{7}{8}$                                                     | B1        | or Binomial and (10, $\frac{7}{8}$ )                                                                                                                                                  | NB just 10 & $\frac{7}{8}$ seen: not enough                                                                                                                                                  |
|      |     |   | Arrival of each parcel is independent<br>or Prob parcel arrives not affected by others<br>or Prob parcel arrives is constant oe | B1        | Allow: Parcels are independent<br>Deliveries are independent<br>Arrivals are independent<br>P(parcel arrives) is independent<br>Friends are indep                                     | In context<br>Ignore all else<br>The two B-marks are independent<br>NOT No other factors involved                                                                                            |
|      | ii  | а | 0.263 (3 sf)                                                                                                                    | [2]<br>B1 |                                                                                                                                                                                       |                                                                                                                                                                                              |
|      |     | a |                                                                                                                                 | [1]       |                                                                                                                                                                                       |                                                                                                                                                                                              |
|      | ii  | b | P(X = 9, 10)<br>= $10(\frac{1}{8})(\frac{7}{8})^9 + (\frac{7}{8})^{10}$ alone<br>= 0.639 (3 sf)                                 | M1<br>A1  | all correct or (ii)(a) + $10(\frac{1}{8})(\frac{7}{8})^9$                                                                                                                             | or 1 - $P(X \le 8)$ all terms correct<br>or 1 - 0.361<br>0.639, no wking, M1A1                                                                                                               |
|      |     |   |                                                                                                                                 | [2]       |                                                                                                                                                                                       | Use of tables: M0A0<br>0.64, no wking: M0A0                                                                                                                                                  |
|      | iii |   | Their "0.263" or $(\frac{7}{8})^{10}$ used                                                                                      | M1        | or better                                                                                                                                                                             |                                                                                                                                                                                              |
|      |     |   | $5 \times "0.263"^4 \times (1 - "0.263") + "0.263"^5$                                                                           | M1        |                                                                                                                                                                                       | or 1–(0.737 <sup>5</sup> ++ <sup>5</sup> C <sub>3</sub> ×0.737 <sup>2</sup> ×0.263 <sup>3</sup> )<br>all 4 terms correct ft their 0.263                                                      |
|      |     |   | = 0.0189 (3 sf)                                                                                                                 | A1<br>[3] | сао                                                                                                                                                                                   | If (ii)(b) used instead of (ii)(a), (must see working) allow M0M1A0                                                                                                                          |
| 9    | i   | а | $(1 - 0.2)^3 \times 0.2$                                                                                                        | M1        |                                                                                                                                                                                       | <u> </u>                                                                                                                                                                                     |
|      |     |   | $=\frac{64}{625}$ or 0.102 (3 sf)                                                                                               | A1        |                                                                                                                                                                                       |                                                                                                                                                                                              |
|      |     |   |                                                                                                                                 | [2]       | 4 (2.2. 2.2. 2.2. 2.2. 2.2. 2.2. 2.2. 2.                                                                                                                                              |                                                                                                                                                                                              |
|      | i   | b | $(1 - 0.2)^4$ or $(\frac{4}{5})^4$ alone                                                                                        | M1        | $\begin{array}{l} 1 - (0.2 + 0.8 \times 0.2 + 0.8^{2} \times 0.2 + 0.8^{3} \times 0.2) \\ \text{or } 1 - (0.2 + 0.8 \times 0.2 + 0.8^{2} \times 0.2 + (i)(a)) \text{ oe} \end{array}$ | eg 1 - $\left(\frac{4}{5}\right)^4$ = 0.590 M0A0                                                                                                                                             |
|      |     |   | $=\frac{256}{625}$ or 0.410 (3 sf)                                                                                              | A1        | allow 0.41                                                                                                                                                                            |                                                                                                                                                                                              |
|      | İ   | İ |                                                                                                                                 | [2]       |                                                                                                                                                                                       |                                                                                                                                                                                              |

| 4732 |                                                                                                                      | L   | Mark Scheme                                                                                                                         | June 2017                                              |                                                 |
|------|----------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|
|      |                                                                                                                      |     |                                                                                                                                     |                                                        |                                                 |
| ii   | Binomial with $n = 9$ or 10 and $r > 1$                                                                              | M1  | eg by ${}^{9 \text{ or } 10}C_r$ ( $r > 1$ )<br>or $p^a \times (1 - p)^b$ ( $a + b = 9$ or 10 and $a, b > 1$ )                      | or use of bin table for <i>n</i> = eg 0.9936 or 0.9672 | 9 or 10                                         |
|      | ${}^{9}C_{4} \times (1 - 0.2)^{5} \times 0.2^{4}$ or 0.06606<br>or 0.9804 - 0.9144 or 0.066                          | M1  | or attempt P(4 vouchers in 9) × 0.2<br>eg 0.8 <sup>5</sup> ×0.2 <sup>4</sup> ×0.2<br>or 0.8×0.8×0.8×0.8×0.8×0.2×0.2×0.2×0.2×0.2×0.2 | but_NOT just 0.8⁵×0.2⁵                                 |                                                 |
|      | ${}^{9}C_{4} \times (1 - 0.2)^{5} \times 0.2^{4} \times 0.2$<br>or ${}^{9}C_{4} \times (1 - 0.2)^{5} \times 0.2^{5}$ | M1  | Fully correct method                                                                                                                | 0.8×0.8×0.8×0.8×0.8×0.2×0.2×                           | M1M1A0A0<br>0.2×0.2×0.2<br>M1M1A0A0<br>M1M1A0A0 |
|      | or (0.9804 – 0.9144) × 0.2                                                                                           |     |                                                                                                                                     |                                                        | M1M0M0A0                                        |
|      | $= 0.0132 (3 \text{ sf})$ or $\frac{129024}{9765625}$                                                                | A1  |                                                                                                                                     | 0.9936 – 0.9672                                        | M1M0M0A0                                        |
|      | Total 72 m                                                                                                           | [4] |                                                                                                                                     | 0.8 <sup>5</sup> ×0.2 <sup>5</sup>                     | M1M0M0A0                                        |

Total 72 marks

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

**OCR Customer Contact Centre** 

### **Education and Learning**

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

#### www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553





© OCR 2017