

GCE

Mathematics (MEI)

Unit 4751: Introduction to Advanced Mathematics (C1)

Advanced Subsidiary GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

Annotations and abbreviations

Annotation in scoris	Meaning
PD	Blank Page – this annotation must be used on all blank pages within an answer booklet (structured or unstructured) and
DF	on each page of an additional object where there is no candidate response.
√and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
^	Omission sign
MR	Misread
Highlighting	
Other abbreviations	Meaning
in mark scheme	
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
сао	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working

Subject-specific Marking Instructions for GCE Mathematics (MEI) Pure strand

a Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.

b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct *solutions* leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Е

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

- f Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.
- g Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

h For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Q	Juestion	Answer	Marks	Guidance		
1		correct ruled line of intercept $(0, 1)$ and gradient -2 drawn on grid, extending at least from $(-1.5, 4)$ to $(2, -3)$, as per the circles on the overlay, tol. 1mm horizontally (ie half a square on the grid)	2	M1 for correct line but eg not extending into 4th quadrant or M1 for line with correct gradient but wrong intercept or M1 for line with correct intercept and gradient negative but not -2 or M1 for correct plots but line not ruled	NB page 12 shown in this image must be annotated as BP if blank. Highlight (to indicate seen) in q1 image of page 12 if just rough work crossed out. If a qn number is shown and relevant work seen, highlight the qn no in the q1 image then use full response view to link page 12 to relevant question; also put a highlight by the image in the correct qn space to remind you there is extra work to look at.	
2	(i)	$\frac{3}{4}$ oe	3	B2 for $\frac{3}{a}$ or $\frac{c}{4}$ or $\pm \frac{3}{4}$ or M2 for $\left(\frac{4}{3}\right)^{-1}$ or $\left(\frac{9}{16}\right)^{\frac{1}{2}}$ or $\sqrt{\frac{9}{16}}$ or M1 for $\frac{1}{\left(1\frac{7}{9}\right)^{\frac{1}{2}}}$ or $\left(\frac{16}{9}\right)^{-\frac{1}{2}}$ or $\frac{4}{3}$	isw wrong conversion to decimals	
2	(ii)	$12x^{15}y^{-4}$ or $\frac{12x^{15}}{y^4}$	[2]	B1 for two elements correct if B0, allow M1 for expanded numerator = $6^3 x^{15} y^6$ or $216 x^{15} y^6$		
3		6 - x > 5x - 15	M1		the first two Ms may be earned with an equation or wrong inequality	

4751

Question		n Answer	Marks	Guidance		
		21 > 6x or -6x > -21 oe or ft	M1	for correctly collecting <i>x</i> terms on one side and number terms on the other and simplifying	ft wrong first step	
		$x < \frac{21}{6}$ or $\frac{21}{6} > x$ oe isw or ft	M1	ft their <i>ax</i> [inequality] <i>b</i> , where $b \neq 0$ and $a \neq 0$ or ± 1	award 3 marks only if correct answer obtained after equations or inequalities are used with no errors	
			[3]			
4		2(4+2y) + 5y = 5 oe in x or $2x - 4y = 8$ oe	M1	for subst to eliminate one variable; condone one error; or for multn or divn of one or both eqns to get a pair of coeffts the same, condoning one error		
		9y = -3 or 9x = 30 oe	M1	for collecting terms and simplifying; condoning one error ft or for appropriate addn or subtn to eliminate a variable, condoning an error in one term; if subtracting, condone eg x instead of 0 if no other errors		
		$\left(\frac{30}{9}, -\frac{3}{9}\right)$ oe isw	A2	or $x = 30/9$, $y = -3/9$ oe isw eg $x = 10/3$, $y = -1/3$ allow A1 for each coordinate		
			[4]			
5	(i)	[centre] $(-2, 3)$ [radius] $\sqrt{5}$	B1 B1 [2]	B0 for $\pm\sqrt{5}$		
5	(ii)	5x + y = -7 or y = -5x -7 or $5x + y + 7 = 0$	[2]	M1 for $5x + y = k$, $k \neq 4$ or for gradient of parallel line $= -5$ or for answer -5x -7	if wrong centre in 5(i), can earn just M1	

Question		n	Answer	Marks	Guidance		
6			V		each M1 is for a correct, constructive step following through correctly from previous step		
			$r^2 = \frac{v}{a+b}$	M1	for squaring both sides		
			$r^{2}(a+b) = V$ or $r^{2}a + r^{2}b = V$	M1	for multiplying both sides by denominator for this and all subsequent Ms, ft for equiv difficulty	allow candidates to combine two or three stages in one working statement eg award first two Ms for $r^2(a+b)=V$ seen as first step	
			$r^{2}b = V - r^{2}a$ or $a + b = \frac{V}{r^{2}}$	M1	for getting <i>b</i> term on one side, other terms on other side	3 rd and 4 th M1s may be earned in opposite order, as in second answer for these M1s	
			$b = \frac{V - r^2 a}{r^2}$ or $b = \frac{V}{r^2} - a$ as final answer	M1	for dividing by coefficient of <i>b</i> award 4 marks only if working is fully correct, with at least one interim step. allow SC2 if there is no working, just the correct answer	where rhs has two terms in the numerator, the division line must clearly extend under both terms	
7	(i)		$\frac{29-11\sqrt{7}}{2}$ isw	3	B1 for each element; condone written as two separate fractions if 0, allow M1 for three terms correct in $15-5\sqrt{7}-6\sqrt{7}+14$ or for attempt to multiply both denominator and numerator by $3-\sqrt{7}$		
7	(ii)		13√2	[2]	M1 for $\frac{12}{\sqrt{2}} = 6\sqrt{2}$ soi or for $\sqrt{98} = 7\sqrt{2}$ soi or for $\frac{12+14}{\sqrt{2}}$ oe		

Questio	on	Answer	Marks	Guidan	ce
8		$a^5 = 32$	B1	must have evidence that they have considered	NB examiners must use annotation in
				the constant term	this part; a tick where each mark is
					earned is sufficient
		<i>a</i> = 2	B1	B0 for $a = \pm 2$, but allow them to gain all marks for <i>b</i> if earned	
		$10a^2b^3$ [= -1080]	B1	may include x^3 on both sides, or $(bx)^3$ on left and x^3 on right; may have subst their a^2 ; condone poor notation with inconsistent <i>xs</i> .	B0 for eg $10a^2bx^3 = -1080x^3$
		$4b^3 = -108$ oe	B 1	for subst $a = 2$ in $10a^2b^3 = -1080$ oe	B0 for $4b^3 = -108x^3$ etc
		<i>b</i> = -3	B1	if 0 in qn, allow B1 for 1 5 10 10 5 1 row of Pascal's triangle seen or for ${}^{5}C_{3} = 10$	those trialling factors of -108 : Allow up to 3 marks (B0,B1,B1 if earned,B0,B1) for reaching $a = 2$ and b = -3 with trialling unless explicit reference to 32 in checking, in which case award up to full marks (in effect explicit reference showing their solution fits both constraints triggers 1 st and 4 th B1s)
			[5]		

9		n $n+1$ $n+2$ soi	B1	may be earned later	
		$\left(n+2\right)^2 - n^2 \operatorname{soi}$	M1	allow ft for next three marks for other general consecutive integers eg $n-1$ n $n+1$	allow $n^2 - (n+2)^2$ for M1 then A0 for negative answer; may still earn last B1
				for other integers in terms of n (eg 2 n , 2 n + 1, 2 n + 2 or 2 n + 1, 2 n + 3, 2 n + 5) allow ft for this M1 only	
		4n + 4 obtained with at least one interim step	A1		
		shown 4(n+1) or $\frac{4n+4}{4} = n+1$	B1	may be obtained independently	B0 for $n+1 \times 4$
			[4]		
10	(i)	$AB^2 = 5^2 + 5^2 = 50$	B1	oe with AB; may go straight from correct unsimplified form to 50 with no interim working (applies to both marks), but for 2 marks any interim working must be correct	for 2 marks to be awarded, notation used must be fully correct. Penalise only one mark if squares and square roots eg 50 and $\sqrt{50}$ confused, or brackets used incorrectly or AB and BC missing, etc, but working is otherwise correct
		$BC^2 = 7^2 + 1^2 = 50$	B1	oe with BC	
			[2]		

Mark Scheme

10	(ii)	grad AC = $\frac{-1-3}{5-3} [=-2]$ oe isw	B1	or midpt F of AC = $\left(\frac{5+3}{2}, \frac{3-1}{2}\right)$	
		grad perp = $\frac{1}{2}$ or ft from their grad AC or finding gradient of their BF	M1	may be seen in eqn of perp	
		$y + 2 = their \frac{1}{2}(x+2)$	M1	or using coords of their F; no ft for using their grad AC for this	must be a changed gradient related to grad AC, or be their grad BF, to score this M1
		or $-2 = their \frac{1}{2}(-2) + c$ oe		allow both M1s for eqn of line through B and their F	
		$y = \frac{1}{2}x - 1$ is w	A1		
			[4]		
10	(iii)	(10, 4)	2	B1 for each coordinate	
				or M1 for use of $\overline{AD} = \overline{BC}$, $\overline{CD} = \overline{BA}$ or	
				$\overrightarrow{BF} = \overrightarrow{FD}$ or for correct method for	
				intersection of (ii) line and line through A	
				parallel to BC [$y = 3 + \frac{1}{7}(x-3)$ oe or	
				$y = \frac{1}{7}x + \frac{18}{7}$ oe if correct] or line through C	NB more complicated methods exist using simultaneous equations and eg
				parallel to BA [$y = x - 6$ if correct]	grad $BD = \frac{1}{2}$ and $AD^2 = BC^2$
				allow SC1 for $(-4, 2)$ for ADBC found, or $(0, -6)$ for ABDC found [both parallelograms	
				not rhombi]	
			[2]		

Mark Scheme

				-	
10	(iv)	grad AD = $\frac{4-3}{10-3}$ or $\frac{1}{7}$ or ft relevant D from attempt at ABCD	M1	however, if $D = (0, -6)$, or $(-4, 2)$ or other attempt at ABDC or ADBC in (iii), or other attempt where one or both coords of D are less than the corresponding coords of (8, 3.8) award only SC1 in (iv) for showing by diagram or coordinates that E is obviously outside the rhombus ABDC eg since its <i>x</i> - coordinate is greater than the <i>x</i> -coordinate of all the vertices (or similarly <i>y</i> -coordinates)	some are working with CD only, not AD. Give M0 but allow SC1 for showing that CD is $y = x - 6$ and then finding on CD when $y = 3.8$, $x = 9.8$ or when $x = 8$, $y = 2$; allow ft from wrong but relevant D – see 'however' in previous column
		so when $x = 8$, y-coord. on AD = $3 + \frac{1}{2} \times (8 - 3)$ or ft	M1	or use of $y-3 = \frac{1}{7}(8-3)$ oe	may use coords of their D not A in eqn
		7 ((0)) or R		or M1 for $3.8-3 = \frac{1}{7}(x-3)$ oe, after correct method for finding eqn of AD using coords of A and D – need not be simplified [AD is $y = 3 + \frac{1}{7}(x-3)$ oe or $y = \frac{1}{7}x + \frac{18}{7}$ oe if correct]	i.e. M1 for substituting one coord of E in their equation for AD after correct method seen for AD, or AD correct; condone substituting both coords of E
		$=3\frac{5}{7}$ or 3.7	A1	or on AD when $y = 3.8$, $x = 8.6$	
				no ft from wrong D	
		conclusion E is outside rhombus, with $3\frac{5}{7}$	A1	no ft from wrong D	
		shown to be less than 3.8 if not seen earlier, if y used			
		or	or		

Mark Scheme

	grad AD = $\frac{4-3}{10-3} \left[= \frac{1}{7} \right]$ or ft their D	M1		similarly may find line through E parallel to AD (M1 for gradient of AD as in first method and M1 for eqn
				$y = \frac{1}{7}x + (3.8 - \frac{8}{7})$ oe and compare
				with eqn of AD $y=3+\frac{1}{7}(x-3)$ oe: A1
				for showing $3.8 - \frac{8}{7} > \frac{18}{7}$, A1 for
				conclusion E is outside rhombus
	grad AE = $\frac{0.8}{5}$ [=0.16]	M1	or allow M1, for DE used, dep on first M1, for grad DE = $\frac{0.2}{2}$ [= 0.1], no ft from wrong	the SC for working with CD rather than AD is also available if they use gradients – allow SC1 if they find grad CD = 1, and grad CE = $4.8/3$ or 1.6 or
				grad DE $\frac{0.2}{2}$ [= 0.1]
	grad. AE shown to be greater than grad AD eg $0.16 > 0.14$ or grad DE shown to be less than grad AD eg $0.1 < 0.014$	A1	no ft from wrong D;	
	conclusion E is outside rhombus	A1 [4]	no ft from wrong D	

11	(i)	graph of cubic correct way up	B1	B0 if stops at <i>x</i> -axis	must not have any ruled sections; no curving back; condone slight 'flicking out' at ends but not approaching a turning point; allow max on y-axis or in 1 st or 2nd quadrants; condone some 'doubling' or 'feathering' (deleted work still may show in scans)
		crossing <i>x</i> -axis at -5 , 1.5 and 2	B1	on graph or nearby; may be in coordinate form mark intent for intersections with both axes	allow if no graph, but marked on <i>x</i> -axis condone intercepts for <i>x</i> and / or <i>y</i> given as reversed coordinates
		crossing y-axis at 30	B1	or $x = 0$, $y = 30$ seen if consistent with graph drawn	allow if no graph, but eg B0 for graph with intn on <i>y</i> -axis nowhere near their indicated 30

11	(ii)		roots of $g(x) = 0$ are $-8, -1.5, -1$	M1	or $[g(x) =] (x + 1)(2x + 3)(x + 8)$ oe,	NB examiners must use annotation in
					condoning error in one bracket	earned is sufficient
			correct expansion of two of their two-term factors	M1	dep on attempt on $f(x \pm 3)$ attempted; may be 3 or 4 terms	condone lack of brackets if correct expansions as if they were there
						[for reference re ft: if correct, $f(x - 3) = (x + 2)(2x - 9)(x - 5)$; allow ft if two of these brackets correct]
			correct expansion and completion to given answer, $2x^3 + 21x^2 + 43x + 24$	A1	must be working for this step before given answer	or for direct expansion of all three correct factors, allow M1 for $2x^3 + 16x^2 + 2x^2 + 3x^2 + 24x + 16x + 3x$ + 30, condoning an error in one term, and A1 if no error for completion by then stating given answer
					backwards working: allow M1 for obtaining a correct linear \times a quadratic factor of given g(x) and M1 for obtaining all 3 linear factors and A1 for justifying that these are the correct factors from using the translated roots	
		or	finding $f(x) = 2x^3 + 3x^2 - 29x + 30$ and substituting $(x + 3)$ or $(x - 3)$ for x	or M1	condoning one error; condone omission of $f(x) = 0$ or $y = 0$	f(x) may appear in (i) but no credit unless result is used in (ii)
			correct expansion for $(x + 3)^3$ and $(x + 3)^2$	M1		
			correct expansion and completion to given answer, $2x^3 + 21x^2 + 43x + 24$	A1		
				[3]		

Mark Scheme

-					
11	(iii)	-16 + 84 - 86 + 24 = 6	B1	or B1 for the correct division of $g(x) - 6$ by (x	NB examiners must use annotation in
		or $-16 + 84 - 86 + 24 - 6 = 0$		+2) or for the quadratic factor found by	this part; a tick where each mark is
				inspection, <u>and</u> , for either of these, the	earned is sufficient
				conclusion that no remainder means that	
				g(-2) = 6 oe	
				or B1 for correct division of $g(x)$ by $(x + 2)$	
				with remainder 6 and the conclusion that	
				g(-2) = 6 oe	
			D1		
		need roots of $2x^{2} + 21x + 43x + 18 = 0$ sol	BI	or clear working with $g(x)$ and remainder of 6	
				Tound when divided by $(x + 2)$	
				or $g(x) = (x + 2)(2x^2 + 17x + 0) + 6$ clearly stated	
				g(x) = (x + 2)(2x + 17x + 9) + 0 clearly stated at some point	
		attempt at division by $(x + 2)$ as far as	M1	or inspection with at least two terms of three-	allow working with $g(x) = 0$ for this
		$2x^3 + 4x^2$ in working		term quadratic factor correct;	M1
		correctly obtaining $2x^2 + 17x + 9$	A1	if working with $g(x) = 0$ must show remainder	
				of 6 eg in working	
		$-17\pm\sqrt{17^2-4\times2\times9}$	M1	condone one error in quadratic formula or	
		<u>2×2</u>		completing square; M0 for incorrect quadratic	
		2/2		factor	
			Δ1		
		$\frac{-1/\pm\sqrt{21}}{}$ oe isw			
		4			
			[6]		

12	(i)	$\left(x+\frac{1}{2}\right)^2+2\frac{3}{4}$ oe	3	B1 for $m = \frac{1}{2}$ oe	Ignore '=0'
				B2 for $p = 2\frac{3}{4}$ or M1 for 3 – their m^2	M0 if <i>m</i> = 0
		min $y = 2\frac{3}{4}$ oe or ft, isw	B1	ft their <i>p</i> , provided $p > 0$; ignore <i>x</i> value of min pt stated, even if wrong ft	B0 if explanation not 'hence' eg using $b^2 - 4ac$ on $x^2 + x + 3 = 0$
		or showing that if $y = 0$, their $\left(x + \frac{1}{2}\right)$ is negative, so no real roots [or no solution]		B0 if only say tp rather than min, though need not justify min	condone B1 for min pt = $2\frac{3}{4}$
			[4]		
12	(ii)	$x^2 - 4x - 12[=0]$	M1	condone one error; for equating and simplifying to solvable form	rearranging to zero not required if they go on to complete the square
		(x-6)(x+2)[=0]	M1	for factors giving at least two terms correct, ft, or for subst in formula with at most one error ft	similarly for attempt at completing square
		x = 6 or -2	A1	allow A1 for coords with x values 6 and -2 but wrong y values	
		<i>y</i> = 45 or 5	A1 [4]	or A1 each for (6, 45) and (-2, 5)	

12	(iii)	$x^{2}-4x-(9+k)=0$	M1	condone one error, but must include k	Eg allow M1 for
					$y = x^2 - 4x - (9 + k)$ or for
					$x^2 - 4x(-9-k)[=0]$
				M0 if not all on one side of equation, unless completing the square	for completing the square method:
					eg $(x-2)^2 - 4 = 9 + k$ earns M1 and
					the second A1, which is likely to be earned before the first A1
		$b^2 - 4ac < 0$ oe soi	A1	may be earned near end with correct inequality sign used there	allow $b^2 - 4ac$ is negative' oe; 0 for just 'discriminant < 0' unless implied by later work; A0 for $\sqrt{b^2 - 4ac} < 0$;
					for completing the square, allow A1 for $4+9+k < 0$ oe
		$16 + 4 \times (9 + k) (< 0)$ oe or ft	A1	for correct substitution ft into $b^2 - 4ac$; brackets / signs must be correct; allow recovery from eg wrong bracket earlier	can be earned with equality or wrong inequality, or in formula (ignore rest of formula);
				error(s)	for completing the square method, will see $4 + 9 + k$ oe, or on opposite sides of an inequality/ equation eg $9 + k < -4$
					M0 for trials of values of k in $b^2 - 4ac$
		k < -13 www	A1 [4]	A0 for just $k < -52/4$	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

