Oxford Cambridge and RSA

GCE

Mathematics (MEI)

Unit 4751: Introduction to Advanced Mathematics (C1)
Advanced Subsidiary GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations and abbreviations

Annotation in scoris	Meaning
BP	Blank Page - this annotation must be used on all blank pages within an answer booklet (structured or unstructured) and on each page of an additional object where there is no candidate response.
\checkmark and \boldsymbol{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0,1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
\wedge	Omission sign
MR	Misread
Highlighting	
Other abbreviations in mark scheme	Meaning
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working

Subject-specific Marking Instructions for GCE Mathematics (MEI) Pure strand

a
Annotations should be used whenever appropriate during your marking.
The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

The following types of marks are available.
M
A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified

A

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B

Mark for a correct result or statement independent of Method marks.

E

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.

The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

Rules for replaced work
If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error

Question		Answer	Marks	Guidance	
1		correct ruled line of intercept $(0,1)$ and gradient -2 drawn on grid, extending at least from $(-1.5,4)$ to $(2,-3)$, as per the circles on the overlay, tol. 1 mm horizontally (ie half a square on the grid)	2 [2]	M1 for correct line but eg not extending into 4th quadrant or M1 for line with correct gradient but wrong intercept or M1 for line with correct intercept and gradient negative but not -2 or M1 for correct plots but line not ruled	NB page 12 shown in this image must be annotated as BP if blank. Highlight (to indicate seen) in q1 image of page 12 if just rough work crossed out. If a qn number is shown and relevant work seen, highlight the qn no in the q1 image then use full response view to link page 12 to relevant question; also put a highlight by the image in the correct qn space to remind you there is extra work to look at.
2	(i)	$\frac{3}{4} \text { oe }$	3 [3]	B2 for $\frac{3}{a}$ or $\frac{c}{4}$ or $\pm \frac{3}{4}$ or M2 for $\left(\frac{4}{3}\right)^{-1}$ or $\left(\frac{9}{16}\right)^{\frac{1}{2}}$ or $\sqrt{\frac{9}{16}}$ or M1 for $\frac{1}{\left(1 \frac{7}{9}\right)^{\frac{1}{2}}}$ or $\left(\frac{16}{9}\right)^{-\frac{1}{2}}$ or $\frac{4}{3}$	isw wrong conversion to decimals
2	(ii)	$12 x^{15} y^{-4}$ or $\frac{12 x^{15}}{y^{4}}$	2 [2]	B1 for two elements correct if B0, allow $\mathbf{M 1}$ for expanded numerator $=$ $6^{3} x^{15} y^{6}$ or $216 x^{15} y^{6}$	
3		$6-x>5 x-15$	M1		the first two Ms may be earned with an equation or wrong inequality

Question		Answer	Marks	Guidance	
		$21>6 x$ or $-6 x>-21$ oe or ft $x<\frac{21}{6}$ or $\frac{21}{6}>x$ oe isw or ft	M1 M1 [3]	for correctly collecting x terms on one side and number terms on the other and simplifying ft their $a x$ [inequality] b, where $b \neq 0$ and $a \neq 0$ or ± 1	ft wrong first step award 3 marks only if correct answer obtained after equations or inequalities are used with no errors
4		$2(4+2 y)+5 y=5$ oe in x or $2 x-4 y=8$ oe $9 y=-3 \text { or } 9 x=30 \text { oe }$ $\left(\frac{30}{9},-\frac{3}{9}\right)$ oe isw	M1 M1 A2 [4]	for subst to eliminate one variable; condone one error; or for multn or divn of one or both eqns to get a pair of coeffts the same, condoning one error for collecting terms and simplifying; condoning one error ft or for appropriate addn or subtn to eliminate a variable, condoning an error in one term; if subtracting, condone eg x instead of 0 if no other errors or $x=30 / 9, y=-3 / 9$ oe isw eg $x=10 / 3, y=-1 / 3$ allow A1 for each coordinate	
5	(i)	[centre] $(-2,3)$ [radius] $\sqrt{5}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \\ & \hline \end{aligned}$	B0 for $\pm \sqrt{5}$	
5	(ii)	$\begin{aligned} & 5 x+y=-7 \text { or } y=-5 x-7 \\ & \text { or } 5 x+y+7=0 \end{aligned}$	2 [2]	M1 for $5 x+y=k, k \neq 4$ or for gradient of parallel line $=-5$ or for answer $-5 x-7$	if wrong centre in 5(i), can earn just M1

Question		Answer	Marks	Guidance	
6		$\begin{aligned} & r^{2}=\frac{V}{a+b} \\ & r^{2}(a+b)=V \text { or } r^{2} a+r^{2} b=V \end{aligned}$ $r^{2} b=V-r^{2} a$ or $a+b=\frac{V}{r^{2}}$ $b=\frac{V-r^{2} a}{r^{2}}$ or $b=\frac{V}{r^{2}}-a$ as final answer	M1 M1 M1 M1 [4]	each M1 is for a correct, constructive step following through correctly from previous step for squaring both sides for multiplying both sides by denominator for this and all subsequent Ms , ft for equiv difficulty for getting b term on one side, other terms on other side for dividing by coefficient of b award 4 marks only if working is fully correct, with at least one interim step. allow SC2 if there is no working, just the correct answer	allow candidates to combine two or three stages in one working statement eg award first two Ms for $r^{2}(a+b)=V$ seen as first step $3^{\text {rd }}$ and $4^{\text {th }}$ M1s may be earned in opposite order, as in second answer for these M1s where rhs has two terms in the numerator, the division line must clearly extend under both terms
7	(i)	$\frac{29-11 \sqrt{7}}{2} \text { isw }$	3 [3]	B1 for each element; condone written as two separate fractions if 0 , allow $\mathbf{M 1}$ for three terms correct in $15-5 \sqrt{7}-6 \sqrt{7}+14$ or for attempt to multiply both denominator and numerator by $3-\sqrt{7}$	
7	(ii)	$13 \sqrt{2}$	2 [2]	M1 for $\frac{12}{\sqrt{2}}=6 \sqrt{2}$ soi or for $\sqrt{98}=7 \sqrt{2}$ soi or for $\frac{12+14}{\sqrt{2}}$ oe	

10	(iv)		$\operatorname{grad} \mathrm{AD}=\frac{4-3}{10-3}$ or $\frac{1}{7}$ or ft relevant D from attempt at ABCD so when $x=8, y$-coord. on $\mathrm{AD}=$ $3+\frac{1}{7} \times(8-3)$ or ft
			$=3 \frac{5}{7} \text { or } 3.7 \ldots$ conclusion E is outside rhombus, with $3 \frac{5}{7}$ shown to be less than 3.8 if not seen earlier, if y used

or use of $y-3=\frac{1}{7}(8-3)$ oe
or M1 for $3.8-3=\frac{1}{7}(x-3)$ oe, after correct method for finding eqn of AD using coords of A and D - need not be simplified [AD
is $y=3+\frac{1}{7}(x-3)$ oe or $y=\frac{1}{7} x+\frac{18}{7}$ oe if correct]

A1 or on AD when $y=3.8, x=8.6$
no ft from wrong D
no ft from wrong D
some are working with CD only, not AD. Give M0 but allow SC1 for showing that CD is $y=x-6$ and then finding on CD when $y=3.8, x=9.8$ or when $x=8, y=2$; allow ft from wrong but relevant $\mathrm{D}-$ see 'however' in previous column
may use coords of their D not A in eqn
i.e. M1 for substituting one coord of E in their equation for AD after correct method seen for AD , or AD correct; condone substituting both coords of E

	(iii)	$-16+84-86+24=6$ or $-16+84-86+24-6=0$
need roots of] $2 x^{3}+21 x^{2}+43 x+18=0$ soi		
attempt at division by $(x+2)$ as far as		
$2 x^{3}+4 x^{2}$ in working		
correctly obtaining $2 x^{2}+17 x+9$		
$\frac{-17 \pm \sqrt{17^{2}-4 \times 2 \times 9}}{2 \times 2}$		
$\frac{-17 \pm \sqrt{217}}{4}$ oe isw		

B1 or B1 for the correct division of $\mathrm{g}(x)-6$ by $(x$
+2) or for the quadratic factor found by
inspection, and, for either of these, the
conclusion that no remainder means that $\mathrm{g}(-2)=6$ oe
or B1 for correct division of $\mathrm{g}(x)$ by $(x+2)$
with remainder 6 and the conclusion that
$g(-2)=6$ oe
B1 or clear working with $\mathrm{g}(x)$ and remainder of 6 found when divided by $(x+2)$
or
$\mathrm{g}(x)=(x+2)\left(2 x^{2}+17 x+9\right)+6$ clearly stated at some point

M1 or inspection with at least two terms of threeterm quadratic factor correct;

A1 if working with $\mathrm{g}(x)=0$ must show remainder of 6 eg in working

M1 condone one error in quadratic formula or completing square; M0 for incorrect quadratic 'factor'

NB examiners must use annotation in this part; a tick where each mark is earned is sufficient
allow working with $\mathrm{g}(x)=0$ for this M1

12	(i)	$\left(x+\frac{1}{2}\right)^{2}+2 \frac{3}{4}$ oe $\min y=2 \underset{4}{-3}$ oe or ft , isw or showing that if $y=0$, their $\left(x+\frac{1}{2}\right)^{2}$ is negative, so no real roots [or no solution]	3 B1 [4]	B1 for $m=1 / 2$ oe B2 for $p=2 \frac{3}{4}$ oe or M1 for $3-$ their m^{2} ft their p, provided $p>0$; ignore x value of min pt stated, even if wrong ft B0 if only say tp rather than min, though need not justify min	Ignore ' $=0$ ' M0 if $m=0$ B0 if explanation not 'hence' eg using $b^{2}-4 a c$ on $x^{2}+x+3=0$ condone B 1 for $\min \mathrm{pt}=2 \frac{3}{4}$
12	(ii)	$\begin{aligned} & x^{2}-4 x-12[=0] \\ & (x-6)(x+2)[=0] \\ & x=6 \text { or }-2 \\ & y=45 \text { or } 5 \end{aligned}$	M1 M1 A1 A1 [4]	condone one error; for equating and simplifying to solvable form for factors giving at least two terms correct, ft , or for subst in formula with at most one error ft allow A1 for coords with x values 6 and -2 but wrong y values or A1 each for $(6,45)$ and $(-2,5)$	rearranging to zero not required if they go on to complete the square similarly for attempt at completing square

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
GROUP
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

