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Section A (54 marks)

1 (a) The polar equation of a curve is sin cosr a 2i i=  for 0 2
1G Gi r.

  (i) Find the value of i for which the curve has the maximum x-coordinate. [3]

  (ii) Prove that the maximum y-coordinate on the curve is a16
3 3  and state the value of i at which this 

is attained. [4]

 (b) (i) Sketch the graph of arcsiny x=  for x1 1G G- . [1]

  (ii) Prove that ( )arcsinx x
x1

1
d
d

2=
-

. [4]

  (iii) Using integration by parts and a suitable substitution, show that 

    arcsinx x x 18
3 4d2

0

1 r
=

-y . [6]

2 (a) (i) Use de Moivre’s theorem to prove that

    
( )

cot
tan tan

tan tan4
4 1

1 6
2

2 4
i

i i

i i
=

-

- + . [5]

  (ii) Hence express the roots of the equation

 x x x x4 6 4 1 04 3 2+ - - + =

   in exact trigonometrical form. [4]

 (b) The vertices of a square with sides of length 1 unit lie on the axes of an Argand diagram. The vertices 
represent the complex numbers z1, z2, z3 and z4 and the midpoints of the sides of the square represent 
the complex numbers z5, z6, z7 and z8.

  (i) Express z5, z6, z7 and z8 in modulus-argument form, and hence determine a polynomial equation 
of degree 4, with integer coefficients, whose roots are z5, z6, z7 and z8. [4]

  Let P(z) = 0 be a polynomial equation of degree 8, with integer coefficients, whose roots are 
z1, z2, z3, z4, z5, z6, z7 and z8.

  (ii) Explain why P(z) cannot be of the form az8 + b where a and b are integers. [1]

  (iii) Find P(z). [4]
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3 (i) Find the inverse of the matrix 
k

k
1
1

3
2
1

2

6
-

J

L

K
KK

N

P

O
OO
. [5]

 The matrix M has eigenvalues 1, 2 and 3. The corresponding eigenvectors are 
2
0
6

J

L

K
KK

N

P

O
OO
, 

3
2
1

J

L

K
KK

N

P

O
OO
 and 

1
1
0
-

J

L

K
KK

N

P

O
OO
 respectively.

 (ii) Write down the matrix P such that M = PDP–1 where D
3
0
0

0
2
0

0
0
1

=

J

L

K
KK

N

P

O
OO
. [2]

 (iii) Hence find M. [5]

 (iv) Find constants a, b and c such that M–1 = aM2 + bM + cI. [6]

Section B (18 marks)

4 (i) Prove, using definitions in terms of exponential functions, that 

    cosh sinhA A2 1 2 2= + . [3]

 (ii) Find sinh x xd2y . [3]

 (iii) Let z = arsinh(1). Form an equation involving z and solve it to find the exact value of arsinh(1) in 
logarithmic form. [4]

 (iv) Using a substitution of the form sinhax b u= , find the exact value of 

x
x x

4 9
d2

23
2

+0

c

e
dd ,

  giving your answer in the form ( )lnp q r- , where p, q and r are constants. [8]

END OF QUESTION PAPER
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