

GCE

Mathematics

Unit 4733: Probability and Statistics 2

Advanced GCE

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2018

4733

Annotations

Annotation in scoris	Meaning	
√and ×		
BOD	Benefit of doubt	
FT	Follow through	
ISW	Ignore subsequent working	
M0, M1	Method mark awarded 0, 1	
A0, A1	Accuracy mark awarded 0, 1	
B0, B1	Independent mark awarded 0, 1	
SC	Special case	
^	Omission sign	
MR	Misread	
Highlighting		
Other abbreviations in		
mark scheme		
E1	Mark for explaining	
U1	Mark for correct units	
G1	Mark for a correct feature on a graph	
M1 dep*	Method mark dependent on a previous mark, indicated by *	
сао	Correct answer only	
oe	Or equivalent	
rot	Rounded or truncated	
soi	Seen or implied	
www	Without wrong working	

Mark Scheme

Question		Answer/Indicative content	Marks	Guidance	
1		$\hat{\mu} = \overline{w} = \frac{555}{15} = 37$	B1	37 only, must be stated separately, not isw	
			M1	If single formula used, give M1 for divisor 14 anywhere. 18.2 seen gets M1	
		$\frac{20808}{15} - \overline{w}^2 [=18.2]$	M1	Multiply by 15/14	
		$\times \frac{15}{14};$ = 19.5	A1	Answer, 19.5 or exact equivalent, no working needed	
		14	[4]		
2	(i)	Produces unbiased sample <i>or</i> allows theoretical calculations to be performed	B1	Or equivalent. Not <i>just</i> "sample is representative" or "quicker/cheaper" but do not penalise these if included as well. No wrong reasons.	
		-	[1]		
	(ii)	Unbiased method described AND applied to given numbers to obtain at least 1 letter, e.g. 2 digits at a time, first or last 2 digits, ×26 and round Five letters obtained, no repeats	M1 A1	SC1: Random numbers not used consecutively or sequentially:M1A0SC2: Biased method, e.g. digits combined, e.g. $1^{st} + 3^{rd}$:M0SC3: Multiply by number other than 26 or 100 and then correct:M1A0SC4:Systematic:M1A1 if random number used for starting point, else	
			[2]	M0 SC5: Unbiased method but not clearly explained, 5 different letters: B1	
3	(i)	$1 - P(\le 4) = 0.1371$	M1 A1 [2]	For $1 - P(\le 4)$ or $1 - P(\le 5)$ from Po(2.7, 2.6 or 2.8). Not 0.8629. Or 0.137. $1 - P(\le 5) = 0.0567$, also 0.1226, 0.1523, 0.0490, 0.0651: M1A0	
	(ii)	B(4, 0.1371): ${}^{4}C_{2} \times 0.1371^{2} \times 0.8629^{2}$ = 0.084(0)	M1 M1 A1 [3]	Use B(4, their answer to (i)) ${}^{4}C_{2} \times p^{2} \times (1-p)^{2}$, any <i>p</i> , can be implied, independent of first M1 awrt 0.0840, <i>allow</i> from B(4, 0.8629), <i>withhold if</i> > 6 DP in final answer	
	(iii)	$e^{-10.8} \frac{10.8^{12}}{12!} = 0.107(24)$	M1 A1	Correct Poisson formula, their attempt at 4×2.7 or $4^3 \times 2.7$ Answer, a.r.t. 0.107Answer only is 0	
			[2]		

Question		Answer/Indicative content	Marks	Guidance	
4	(i) (ii)	$E(Y) = \sum y P(Y = y) [= 1.1]$ Var(Y) = $\sum y^2 P(Y = y) - 1.1^2 = 2.3 - 1.1^2 = 1.09$ Normal, mean their 1.1 variance their $\sigma^2/50 = 0.0218$ 1.4, 1.42, 1.44, 1.46, 1.48, 1.5	M1 A1 M1 A1ft B1ft [5] B1	Allow if $\Sigma p(Y = y)$ wrongly evaluated. <i>Not</i> for 1.1/50 if this is used to find var Exact only, can be implied Expect to see N(1.1, 0.0218) FT on their E(Y), numerical value needed FT on their Var(Y), numerical value needed as final answer, but allow "1.09/50". Not from binomial unless explicitly "variance" These only, but allow omission of 1.4 and 1.5	
5	(i)	H ₀ : $\lambda = 6$, H ₁ : $\lambda \neq 6$ R ~ Po(6) where <i>R</i> is the number of mistakes α : P($R \ge 10$) = 1 - 0.9161 = 0.0839 > 0.025	[1] B2 M1 A1 A1	One error (e.g. >, wrong or no letter) B1, but r, x etc: B0Po(6) stated or implied, e.g. N(6, 6) [but if Normal used, no more marks] $P(\ge 10) = 0.0839$, or $P(< 10) = 0.9161$ Not $P(\ge 10) + P(\le 2)$ Compare $P(\ge 10)$ with 0.025 or $P(< 10)$ with 0.975	
		β: CR is ≥ 12 [and ≤ 1] and 10 < 12 p = 0.0201 [+ 0.0174 = 0.0375]	A1 A1	Correct CR stated, explicit comparison with 10 (if both tails used, must be $$) This probability seen, a.r.t. 0.020. Award if 0.9799 seen and CR is correct. If CR not clearly stated or implied (e.g. by 10 < 12), cannot get last M1A1. See <i>exemplars</i> . SC 1-tailed: CR \ge 11 and 10 < 11: A0A1	
		Do not reject H_0 . There is insufficient evidence that the average number of mistakes has changed.	M1 A1 [7]	Correct first conclusion, $CR \ge x$ from Po(6), <i>not</i> P(> 10) [= 0.0426] or P(≤ 10) [= 0.9574] or P(= 10) [= 0.0413]. Allow from 0.9161 < 0.975 Interpreted, in context, acknowledge uncertainty, double negative. SC: Normal: max B2 M1 SC: Mix of methods: max B2 M1. Also for both unless both correct	
	(ii)(a)	Mistakes must occur at constant average rate	B1 [1]	Must be contextualised (not "they occur", "events occur") Allow "uniform rate" but not "constant rate" nor "average constant rate". Not "equally probable at any time". No extras but ignore "singly"	
	(ii)(b)	Teacher may become tired	B1 [1]	Any sensible reason for different average rate at different times, <i>not</i> in different sessions. <i>Not</i> e.g. "some reports are harder to write". Do not award if anything actually wrong seen. Ignore "singly".	
	(ii)(c)	More information needed on whether/how the mean changes in the second hour/over a longer time interval	B1 [1]	Reason why answer to (ii)(b) means that more information is needed. E.g. "mean not proportional to the length of time". <i>Not just</i> statement of assumptions. Not just an answer to (ii)(a) or (ii)(b).	

4733

Mark Scheme

Question		Answer/Indicative content	Marks	Guidance	
6	(i)	$T_0 = L$	B1 [1]	$T_0 = L$, or $T_0 \ge L$, stated or clearly implied. Not <i>just</i> "close to <i>L</i> ", but "just above" is B1. No wrong extras such as "less than <i>t</i> " or "> 0". <i>Not</i> " <i>t</i> = <i>L</i> "	
	(ii)	$\int_{L}^{\infty} kt^{-4} dt = \left[-\frac{k}{3t^{3}} \right]_{L}^{\infty} = \frac{k}{3L^{3}}$ $= 1 \text{ so } k = 3L^{3}$	M1 B1 A1 [3]	Attempt $\int f(t) dt$ and equate to 1, limits L and ∞ seen somewhere (if upper limit not given as ∞ , must use different letter [<i>not t</i>] and state "take limit") Correct indefinite integral, allow $-\frac{1}{3}kt^{-3}$ Correctly obtain given answer. $\int_{0}^{L} kt^{-4} dt \rightarrow 3L^{3}$ is max B1 only	
	(iii)	$\int_{L}^{\infty} t \times 3L^{3} t^{-4} dt = \left[-\frac{3L^{3}}{2t^{2}} \right]_{L}^{\infty} = \frac{3L}{2}$ $\int_{L}^{\infty} t^{2} \times 3L^{3} t^{-4} dt = \left[-\frac{3L^{3}}{t} \right]_{L}^{\infty} = 3L^{2}$ Hence Var(T) = $3L^{2} - \left(\frac{3}{2}L\right)^{2} = \frac{3}{4}L^{2}$	M1 A1 M1 B1 M1 A1	Attempt $\int tf(t) dt$, limits dealt with correctly somewhere $\frac{3L}{2}$ or $\frac{1}{2}kL^{-2}$ seen or implied, www Attempt $\int t^2 f(t) dt$, limits dealt with correctly <i>or</i> same limits as in mean Correct indefinite integral, allow $-\frac{k}{t}$ Subtract $[E(T)]^2$ Www, <i>not</i> from [0, L], allow $0.75L^2$ [k not substituted: can get 5/6]	
	(iv)	No as graph not symmetrical	[6] B1 B1 [2]	Starting to right of y-axis, clear attempt to be asymptotic to right but must be truncation not asymptote to left, labels not needed No with valid reason [not referring to CLT], e.g. "skewed". Ignore positive/ negative (skew). Needs roughly correct graph, no wrong reason seen. Allow "No as it is not bell-shaped". Any implied properties of normal (e.g. mean vs mode) must be justified	

Question	Answer/Indicative content	Marks	Guidance
7 (i)	$\frac{58-\mu}{\sigma}=1; \frac{40-\mu}{\sigma}=-0.5$ or exact equivalent	M1dep* A1	Standardise once and equate to Φ^{-1} , allow wrong sign, σ^2 , 1–, cc etc, no " <i>n</i> " Both equations fully correct apart possibly from value of Φ^{-1}
	$\sigma = 12$	B1 *M1	Both correct z values correct to 3 sf, allow +/– errors, can be implied Solve to find μ or σ , correct choice of add/subtract, dependent on first M1
	$\mu = 46$	A1 A1	σ correct, allow within ±0.05, <i>not</i> from σ^2 μ correct, allow within ±0.05, <i>allow</i> from σ^2
(**)		[6]	E.g.: $40 - \mu = +0.5\sigma \rightarrow \mu = 22, \sigma = 36$: M1A0B1M1A0A0, total 3/6
(ii) (a)	H ₀ : $\mu' = 56$ H ₁ : $\mu' < 56$ where μ' is the (population) mean MER of the new brand	B2ft B1	Or H ₀ : $\mu \ge 56$; ft on their numerical 10+ μ . Their 46, or words used: B0B0(B1) One error, e.g. H ₁ : $\mu \ne 56$ or H ₁ : $\mu > 56$: B1. Any symbol is OK apart from <i>p</i> (max B1B0B1) and <i>x</i> , <i>x</i> bar, <i>t</i> , <i>t</i> bar: B0B0(B1) Independent. Allow their symbol other than <i>x</i> , \overline{x} etc, but must have "mean" or
		[3]	"expected value" and MER or equivalent, allow "hubs". Not old brand. Not sample mean. Expect to see μ
(b)	$z = \frac{(\mu + 8.8) - (\mu + 10)}{\sqrt{12^2 / 200}} = -1.414 \qquad [p =$	M1 A1	Standardise with $\sqrt{200}$, allow $\sqrt{200}$ errors, allow cc, allow $10 - 8.8$ z in range [-1.41, -1.42], or p in range [0.078, 0.079], allow 0.9213 only if
α:	0.0787]	A1	compared with 0.9 (or 0.95 etc). Correct value implies M1 Compare with -1.282 , or <i>p</i> with 0.1 [if $p < 0.5$] or 0.9 [if $p > 0.5$]
	< -1.282 [p < 0.10]		
β:	$< -1.282 [p < 0.10]$ $10 - 1.282 \sqrt{\frac{12^2}{200}} \text{ or } 56 - 1.282 \sqrt{\frac{12^2}{200}} = 8.91 \text{ or } 54.91$	M1 A1	$(\mu +) 10 - z\sigma/\sqrt{50}$, any recognisable z, allow $\sqrt{\text{errors etc, ignore } 10 +, not 8.8}$ z = 1.282 and correct $\sqrt{\text{etc}}$
(CV)	8.8 < 8.91 or 54.8 < 54.91	A1ft	Compare $(\mu +)$ 8.91 (or better) with $(\mu +)$ 8.8, ignore $(\mu +)$ 10 + SC: 2-tailed, 8.6 (54.6) gets M1A0A1ft M1A1
	Reject H ₀ .	M1	Consistent, needs $\sqrt{200}$, like-with-like comparison, hypotheses <i>not</i> 8.8/54.8
	Significant evidence that mean MER of new brand is not (at least) 10 m more than that of long- established brand	A1ft	Contextualised, acknowledge uncertainty, their <i>z</i> , conclusion must be correct way round even if H ₁ is wrong – independent of hypotheses SC1: 2-tailed: can get (B1B0B1) M1A1B0 M1A1 max 2/3 + 4/5
	[e.g. "less than 56 m" or "manufacturer's claim is invalid"]	[5]	SC2: \bar{x} and μ confused consistently: max (B0B0B1) M1A1 A1 M0 SC3: N(22, 36): $z = -0.4714$, $p = 0.3187$, CV 6.736: (B3) M1A0A1 M1A1 <i>Can't</i> get final M1A1 if: 54.8 in H ₀ ; 200 omitted; not like-with-like, including
			e.g. $(54.8 - 46)/(12/\sqrt{200})$ <i>Can</i> get final M1A1 if: wrong σ , two-tailed, $$ or cc errors
(iii)	No as (told to assume that) the parent distribution is	B1	"No" stated and reason given. No wrong extras!
	normal		"No as the sample is large and the parent distribution is normal": B0
		[1]	"No as the parent distribution is normal": B1
			"No as the distribution is normal" B1 (BOD)

4733

Question	Answer/Indicative content	Marks	Guidance
8 (i)	B(60, 0.04) \approx Po(2.4) np < 5 or "p small" n > 50 or "n large" P(≤ 4) = 0.9041 so P(≥ 5) = 0.0959 P(≤ 5) = 0.9643 so P(≥ 6) = 0.0357 Hence CR is $R \geq 6$	M1 B1 B1 M1 A1 A1* *A1dep [7]	State or imply Poisson, their 60×0.04 One criterion. Numerical values not needed in (i) Second, consistent, criterion. " $n >$ (number not 50)" is B0. Allow 2 of one type <i>and</i> 1 of the other type Find at least one cumulative Poisson probability > 0.5, can be implied At least one of 0.9041, 0.9643, 0.0959, 0.0357 State "critical region is ≥ 6 " [<i>not</i> just "critical value is 6"], any or no letter Both relevant probabilities clearly seen, <i>dep</i> on clear statement of correct CR SC Normal N(2.4, 2.304): 0 SC Exact binomial 0.0917 (0.9083) and 0.0325 (0.9675): 0
(ii)	100×0.0357 [= 3.57]	M1 [1]	$100 \times$ their upper-tail (and < 0.5) probability, allow "= 3.57 therefore 4", can be implied, e.g. by "Sig level 3.57% therefore expect 4". Not 100×0.04 , or 4 without working
(iii)	B(60, 0.15) \approx N(9, 7.65) <i>n</i> large <i>or</i> $np > 5$ <i>p</i> close to $\frac{1}{2}$ <i>or</i> $nq = 51 > 5$	M1 A1 B1 B1 M1ft	Normal, their 60×0.15 Don't FT on their calculation if ≤ 5 SC: 100×0.15 : ($np = 15$, $npq = 12.75$) can get M1A0B1B1M1A1A0 Variance 7.65 stated or implied, allow SD = 7.65 One condition Second condition consistent with the first. No others or wrong. Not npq Each numerical condition needs <u>value</u> of np , nq visible somewhere. [Allow B2 if n or p wrong provided " np " is > 5] Ignore " $n > 30$ " but max B1B0 if any other criteria (e.g. npq) given
	P(≤ 5) = $\Phi\left(\frac{5.5-9}{\sqrt{7.65}}\right) = \Phi(-1.265)$ = 0.1029 SC Misread $p = 0.4$ in (i):	A1ft A1 [7]	Standardise their CV if 5, 6 or 7, <u>final</u> answer < 0.5, <i>np</i> , <i>npq</i> , allow $$ errors Their 5.5 and $$ both correct <u>Final</u> answer, awrt 0.103, cwo, do <i>not</i> isw if 0.103 seen but final answer > 0.5 Wrong/no CC: 0.183, 0.139. CV 5: 0.0741, 0.0519, CV 7: 0.183, 0.235, 0.294 SC: Po(9) [0.1157] or exact binomial [0.0968]: M0B0 B3 max 3/7
	SCMisread $p = 0.4$ in (i):8(i)N(24, 14.4), 24+1.645 $\sqrt{14.4}$ = 30.24, CR $R \ge 31$ M1B1B1 M1A1A0 (MR) A1 (6/7)8(ii)100×0.05M1 (1/1)8(iii)N(9. 7.65), $z = 7.77, p = 1$ M0A0B0B0 M1A1A1 (3/7)		

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

