GCE

Mathematics

Unit 4733: Probability and Statistics 2
Advanced GCE

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2018

Annotations

Annotation in scoris	Meaning
\checkmark and \boldsymbol{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0,1
A0, A1	Accuracy mark awarded 0,1
B0, B1	Independent mark awarded 0,1
SC	Special case
\wedge	Omission sign
MR	Misread
Highlighting	
Other abbreviations in	Meaning
mark scheme	Mark for explaining
E1	Mark for correct units
U1	Mark for a correct feature on a graph
G1	Method mark dependent on a previous mark, indicated by *
M1 dep*	Correct answer only
cao	Or equivalent
oe	Rounded or truncated
rot	Seen or implied
soi	Without wrong working
www	

Question		Answer/Indicative content	Marks	Guidance
1		$\begin{array}{ll} \hat{\mu}=\bar{w}=\frac{555}{15} & =\mathbf{3 7} \\ \frac{20808}{15}-\bar{w}^{2} \quad[=18.2] & \\ \times \frac{15}{14} ; & =\mathbf{1 9 .} \end{array}$	B1 M1 M1 A1 [4]	37 only, must be stated separately, not isw If single formula used, give M1 for divisor 14 anywhere. 18.2 seen gets M1 Multiply by $15 / 14$ Answer, 19.5 or exact equivalent, no working needed
2	(i)	Produces unbiased sample or allows theoretical calculations to be performed	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	Or equivalent. Not just "sample is representative" or "quicker/cheaper" but do not penalise these if included as well. No wrong reasons.
	(ii)	Unbiased method described AND applied to given numbers to obtain at least 1 letter, e.g. 2 digits at a time, first or last 2 digits, $\times 26$ and round Five letters obtained, no repeats	M1 A1 [2]	SC1: Random numbers not used consecutively or sequentially: M1A0 SC2: Biased method, e.g. digits combined, e.g. $1^{\text {st }}+3^{\text {rd }}: \quad$ M0 SC3: Multiply by number other than 26 or 100 and then correct: M1A0 SC4: \quad Systematic: M1A1 if random number used for starting point, else M0 SC5: Unbiased method but not clearly explained, 5 different letters: B1
3	(i)	$1-\mathrm{P}(\leq 4) \quad=\mathbf{0 . 1 3 7 1}$	M1 A1 [2]	For $1-\mathrm{P}(\leq 4)$ or $1-\mathrm{P}(\leq 5)$ from $\operatorname{Po}(2.7,2.6$ or 2.8$)$. Not 0.8629. Or 0.137. $1-\mathrm{P}(\leq 5)=0.0567, \text { also } 0.1226,0.1523,0.0490,0.0651: \text { M1A0 }$
	(ii)	$\begin{aligned} \mathrm{B}(4,0.1371): & \\ { }^{4} C_{2} \times & 0.1371^{2} \times 0.8629^{2} \\ & =\mathbf{0 . 0 8 4}(\mathbf{0}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Use B(4, their answer to (i)) ${ }^{4} C_{2} \times p^{2} \times(1-p)^{2}$, any p, can be implied, independent of first M1 awrt 0.0840, allow from $\mathrm{B}(4,0.8629)$, withhold if > $\mathbf{6}$ DP in final answer
	(iii)	$e^{-10.8} \frac{10.8^{12}}{12!} \quad=\mathbf{0 . 1 0 7 (2 4)}$	M1 A1 [2]	Correct Poisson formula, their attempt at 4×2.7 or $4^{3} \times 2.7$ Answer, a.r.t. 0.107 Answer only is 0

Question		Answer/Indicative content	Marks	Guidance
4	(i)	$\begin{aligned} & \mathrm{E}(Y)=\Sigma y \mathrm{P}(Y=y)[=1.1] \\ & \operatorname{Var}(Y)=\Sigma y^{2} \mathrm{P}(Y=y)-1.1^{2}=2.3-1.1^{2}=1.09 \end{aligned}$ Normal, mean their 1.1 variance their $\sigma^{2} / 50=0.0218$	M1 A1 M1 A1ft B1ft [5]	Allow if $\Sigma p(Y=y)$ wrongly evaluated. Not for $1.1 / 50$ if this is used to find var Exact only, can be implied Expect to see $\mathrm{N}(1.1,0.0218)$ FT on their $\mathrm{E}(Y)$, numerical value needed FT on their $\operatorname{Var}(Y)$, numerical value needed as final answer, but allow " $1.09 / 50$ ". Not from binomial unless explicitly "variance"
	(ii)	1.4, 1.42, 1.44, 1.46, 1.48, 1.5	$\begin{aligned} & \mathrm{B} 1 \\ & {[1]} \end{aligned}$	These only, but allow omission of 1.4 and 1.5
5	(i)	$\mathrm{H}_{0}: \lambda=6, \mathrm{H}_{1}: \lambda \neq 6$ $\mathrm{R} \sim \operatorname{Po}(6)$ where R is the number of mistakes $\begin{gathered} \alpha: \quad \mathrm{P}(R \geq 10)=1-0.9161=0.0839 \\ \quad>0.025 \end{gathered}$	$\begin{array}{\|l} \hline \mathrm{B} 2 \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$	One error (e.g. >, wrong or no letter) B1, but r, x etc: B0 $\mathrm{Po}(6)$ stated or implied, e.g. $\mathrm{N}(6,6)$ [but if Normal used, no more marks] $\mathrm{P}(\geq 10)=0.0839, \text { or } \mathrm{P}(<10)=0.9161 \quad \text { Not } \mathrm{P}(\geq 10)+\mathrm{P}(\leq 2)$ Compare $\mathrm{P}(\geq 10)$ with 0.025 or $\mathrm{P}(<10)$ with 0.975
		$\begin{array}{ll} \beta: & \mathrm{CR} \text { is } \geq 12[\text { and } \leq 1] \text { and } 10<12 \\ & p=0.0201[+0.0174=0.0375] \end{array}$	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Correct CR stated, explicit comparison with 10 (if both tails used, must be $\sqrt{ }$) This probability seen, a.r.t. 0.020 . Award if 0.9799 seen and CR is correct. If CR not clearly stated or implied (e.g. by $10<12$), cannot get last M1A1. See exemplars. SC 1-tailed: $\mathrm{CR} \geq 11$ and $10<11$: A0A1
		Do not reject H_{0}. There is insufficient evidence that the average number of mistakes has changed.	M1 A1 [7]	Correct first conclusion, $\mathrm{CR} \geq x$ from $\mathrm{Po}(6)$, not $\mathrm{P}(>10)[=0.0426]$ or $\mathrm{P}(\leq 10)[=0.9574]$ or $\mathrm{P}(=10)[=0.0413]$. Allow from $0.9161<0.975$ Interpreted, in context, acknowledge uncertainty, double negative. SC: Normal: max B2 M1 SC: Mix of methods: max B2 M1. Also for both unless both correct
	(ii)(a)	Mistakes must occur at constant average rate	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	Must be contextualised (not "they occur", "events occur") Allow "uniform rate" but not "constant rate" nor "average constant rate". Not "equally probable at any time". No extras but ignore "singly"
	(ii)(b)	Teacher may become tired	$\begin{array}{\|l\|} \hline \text { B1 } \\ {[1]} \end{array}$	Any sensible reason for different average rate at different times, not in different sessions. Not e.g. "some reports are harder to write". Do not award if anything actually wrong seen. Ignore "singly".
	(ii)(c)	More information needed on whether/how the mean changes in the second hour/over a longer time interval	$\begin{array}{\|l\|} \hline \text { B1 } \\ {[1]} \end{array}$	Reason why answer to (ii)(b) means that more information is needed. E.g. "mean not proportional to the length of time". Not just statement of assumptions. Not just an answer to (ii)(a) or (ii)(b).

Question		Answer/Indicative content	Marks	Guidance
6	(i)	$T_{0}=L$	$\begin{array}{\|l\|} \hline \text { B1 } \\ {[1]} \\ \hline \end{array}$	$T_{0}=L$, or $T_{0} \geq L$, stated or clearly implied. Not just "close to L ", but "just above" is B1. No wrong extras such as "less than t " or " >0 ". Not " $t=L$ "
	(ii)	$\begin{aligned} & \int_{L}^{\infty} k t^{-4} \mathrm{~d} t=\left[-\frac{k}{3 t^{3}}\right]_{L}^{\infty}=\frac{k}{3 L^{3}} \\ & =1 \text { so } k=3 L^{3} \end{aligned}$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { B1 } \\ \text { A1 } \\ {[3]} \end{array}$	Attempt $\int \mathrm{f}(t) \mathrm{d} t$ and equate to 1 , limits L and ∞ seen somewhere (if upper limit not given as ∞, must use different letter [not $t]$ and state "take limit") Correct indefinite integral, allow $-1 / 3 k t^{-3}$ Correctly obtain given answer. $\int_{0}^{L} k t^{-4} d t \rightarrow 3 L^{3}$ is max B 1 only
	(iii)	$\begin{aligned} & \int_{L}^{\infty} t \times 3 L^{3} t^{-4} \mathrm{~d} t=\left[-\frac{3 L^{3}}{2 t^{2}}\right]_{L}^{\infty}=\frac{3 L}{2} \\ & \int_{L}^{\infty} t^{2} \times 3 L^{3} t^{-4} \mathrm{~d} t=\left[-\frac{3 L^{3}}{t}\right]_{L}^{\infty}=3 L^{2} \\ & \text { Hence } \operatorname{Var}(T)=3 L^{2}-\left(\frac{3}{2} L\right)^{2}=\frac{3}{4} L^{2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[6]} \\ & \hline \end{aligned}$	Attempt $\int_{t \mathrm{f}}(t) \mathrm{d} t$, limits dealt with correctly somewhere $\frac{3 L}{2}$ or $1 / 2 k L^{-2}$ seen or implied, www Attempt $\int t^{2} \mathrm{f}(t) \mathrm{d} t$, limits dealt with correctly or same limits as in mean Correct indefinite integral, allow $-k / t$ Subtract $[\mathrm{E}(T)]^{2}$ Www, not from [0, L], allow $0.75 L^{2} \quad[k$ not substituted: can get 5/6]
	(iv)	No as graph not symmetrical	B1 B1 [2]	Starting to right of y-axis, clear attempt to be asymptotic to right but must be truncation not asymptote to left, labels not needed No with valid reason [not referring to CLT], e.g. "skewed". Ignore positive/ negative (skew). Needs roughly correct graph, no wrong reason seen. Allow "No as it is not bell-shaped". Any implied properties of normal (e.g. mean vs mode) must be justified

Question		Answer/Indicative content	Marks	Guidance
7	(i)	$\frac{58-\mu}{\sigma}=1 ; \frac{40-\mu}{\sigma}=-0.5 \quad$ or exact equivalent $\begin{aligned} & \sigma=\mathbf{1 2} \\ & \mu=\mathbf{4 6} \end{aligned}$	$\begin{aligned} & \text { M1dep* } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { *M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[6]} \end{aligned}$	Standardise once and equate to Φ^{-1}, allow wrong sign, $\sigma^{2}, 1-$, cc etc, no " n " Both equations fully correct apart possibly from value of Φ^{-1} Both correct z values correct to 3 sf , allow +/- errors, can be implied Solve to find μ or σ, correct choice of add/subtract, dependent on first M1 σ correct, allow within ± 0.05, not from σ^{2} μ correct, allow within ± 0.05, allow from σ^{2} E.g.: $40-\mu=+0.5 \sigma \rightarrow \mu=22, \sigma=36$: M1A0B1M1A0A0, total 3/6
	(ii) (a)	$\begin{aligned} & \mathrm{H}_{0}: \mu^{\prime}=56 \\ & \mathrm{H}_{1}: \mu^{\prime}<56 \end{aligned}$ where μ^{\prime} is the (population) mean MER of the new brand	B2ft B1 [3]	Or $\mathrm{H}_{0}: \mu \geq 56$; ft on their numerical $10+\mu$. Their 46 , or words used: $\mathrm{B} 0 \mathrm{~B} 0(\mathrm{~B} 1)$ One error, e.g. $\mathrm{H}_{1}: \mu \neq 56$ or $\mathrm{H}_{1}: \mu>56$: B1. Any symbol is OK apart from p (max B1B0B1) and x, x bar, $t, t \mathrm{bar}$: B0B0(B1) Independent. Allow their symbol other than x, \bar{x} etc, but must have "mean" or "expected value" and MER or equivalent, allow "hubs". Not old brand. Not sample mean. Expect to see μ
	(b) α :	$\begin{aligned} & z=\frac{(\mu+8.8)-(\mu+10)}{\sqrt{12^{2} / 200}}=-1.414 \quad[p= \\ & 0.0787] \\ & \qquad<-1.282 \quad[p<0.10] \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Standardise with $\sqrt{ } 200$, allow $\sqrt{ }$ errors, allow cc, allow $10-8.8$ z in range $[-1.41,-1.42$], or p in range [$0.078,0.079$], allow 0.9213 only if compared with 0.9 (or 0.95 etc). Correct value implies M1 Compare with -1.282 , or p with 0.1 [if $p<0.5$] or 0.9 [if $p>0.5$]
	β : (CV)	$\begin{aligned} & 10-1.282 \sqrt{\frac{12^{2}}{200}} \text { or } 56-1.282 \sqrt{\frac{12^{2}}{200}}=8.91 \text { or } 54.91 \\ & 8.8<8.91 \text { or } 54.8<54.91 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1ft } \end{aligned}$	$(\mu+) 10-z \sigma / \sqrt{ } 50$, any recognisable z, allow $\sqrt{ }$ errors etc, ignore $10+$, not 8.8 $z=1.282$ and correct $\sqrt{ }$ etc Compare $(\mu+) 8.91$ (or better) with $(\mu+) 8.8$, ignore $(\mu+) 10+\ldots$ SC: 2-tailed, 8.6 (54.6) gets M1A0A1ft M1A1
		Reject H_{0}. Significant evidence that mean MER of new brand is not (at least) 10 m more than that of longestablished brand [e.g. "less than 56 m " or "manufacturer's claim is invalid"]	M1 A1ft [5]	Consistent, needs $\sqrt{2} 200$, like-with-like comparison, hypotheses not $8.8 / 54.8$ Contextualised, acknowledge uncertainty, their z, conclusion must be correct way round even if H_{1} is wrong - independent of hypotheses SC1: 2-tailed: can get (B1B0B1) M1A1B0 M1A1 max $2 / 3+4 / 5$ SC2: \bar{x} and μ confused consistently: max (B0B0B1) M1A1 A1 M0 SC3: $\mathrm{N}(22,36): z=-0.4714, p=0.3187, \mathrm{CV} 6.736$: (B3) M1A0A1 M1A1 Can't get final M1A1 if: 54.8 in $\mathrm{H}_{0} ; 200$ omitted; not like-with-like, including $\text { e.g. }(54.8-46) /(12 / \sqrt{ } 200)$ Can get final M1A1 if: wrong σ, two-tailed, $\sqrt{ }$ or cc errors
	(iii)	No as (told to assume that) the parent distribution is normal	B1 [1]	"No" stated and reason given. No wrong extras! "No as the sample is large and the parent distribution is normal": B0 "No as the parent distribution is normal": B1 "No as the distribution is normal" B1 (BOD)

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

