These resources are a sample from Integral's online resources for AS/A level Mathematics and Further Mathematics. Visit integralmaths.org to find out more.

Section 2: Matrices and transformations

Solutions to Exercise level 2

1. (i) The image of $P(4,2)$ is $P^{\prime}(-2,-1)$

The image of $Q(4,4)$ is $Q^{\prime}(-2,-2)$
The image of $R(0,4)$ is $R^{\prime}(0,-2)$

The transformation is an enlargement, scale factor -0.5 , centre the origin.
(ii) The image of $P(-6,8)$ is $P^{\prime}(-8,6)$

The image of $Q(-2,8)$ is $Q^{\prime}(-8,2)$
The image of $R(-2,6)$ is $R^{\prime}(-6,2)$

MEI AS FM Matrices 2 Exercise solutions

The transformation is a reflection in the line $y=-x$.
2. The image of the quadrilateral is $A^{\prime}(-6,-8), B^{\prime}(-8,0), C^{\prime}(-6,-2), D^{\prime}(0,0)$.

The transformation is an enlargement, scale factor -2 , centre the origin.

The area of the object $=16-6-2-2=6$.
The area of the image $=64-24-8-8=24$.
The ratio of the image area to the object area is $4: 1$.
3. The image of $A(3,1)$ is $A^{\prime}(3,-5)$

The image of $B(3,3)$ is $B^{\prime}(3,-3)$
The image of $C(6,3)$ is $C^{\prime}(6,-9)$
The image of $D(6,1)$ is $D^{\prime}(6,-11)$.

MEI AS FM Matrices 2 Exercise solutions

The transformation is a shear with the y-axis fixed.
4. The matrix for an anticlockwise rotation through angle θ is

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

so $R=\left(\begin{array}{cc}\cos 60^{\circ} & -\sin 60^{\circ} \\ \sin 60^{\circ} & \cos 60^{\circ}\end{array}\right)=\left(\begin{array}{cc}\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)$
5. (i) $\left(\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
(ii) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$
6. (i) comparing $\left(\begin{array}{cc}-\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2}\end{array}\right)$ with $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
gives $\cos \theta=-\frac{\sqrt{3}}{2}$ and $\sin \theta=-\frac{1}{2}$
Since both are negative, θ must be in the $3^{\text {rd }}$ quadrant
so $\theta=180^{\circ}+30^{\circ}=210^{\circ}$
Rotation through 210° anticlockwise (or 150° clockwise)
(ii) comparing $\left(\begin{array}{cc}-0.8 & -0.6 \\ 0.6 & -0.8\end{array}\right)$ with $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
gives $\cos \theta=-0.8$ and $\sin \theta=0.6$
since \cos is negative and \sin positive, θ must be in the $2^{\text {nd }}$ quadrant so $\theta=180^{\circ}-36.9^{\circ}=143.1^{\circ}$
Rotation through 143.1° anticlockwise.
7. Under P, the point $(1,0)$ is mapped to the point $(-1,0)$ and the point $(0,1)$ is unchanged.
SO P is represented by $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$.
Under Q, the point $(1,0)$ is mapped to the point $(0,-1)$ and the point $(0,1)$ is mapped to the point $(1,0)$.
So Q is represented by $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.

MEI AS FM Matrices 2 Exercise solutions

The single matrix is $Q P=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
This transformation is a reflection in the line $y=x$.
8. $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right)=\left(\begin{array}{cccc}0 & 0 & 1 & 1 \\ 0 & -1 & -1 & 0\end{array}\right)$

R is a rotation clockwise about the origin through 90°.

$$
\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)=\left(\begin{array}{llll}
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

s is a shear parallel to the x-axis.

$$
R S=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right)
$$

MEI AS FM Matrices 2 Exercise solutions

$S R=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)=\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right)$

9. (i), (ii) $\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)\left(\begin{array}{lll}2 & 7 & 2 \\ 1 & 1 & 4\end{array}\right)=\left(\begin{array}{lll}1 & 6 & -2 \\ 3 & 8 & 6\end{array}\right)$

(iii) Rotation anticlockwise through θ is represented by $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$

Enlargement scale factor k is represented by $\left(\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right)$
Rotation followed by enlargement is represented by

$$
\left(\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)=\left(\begin{array}{cc}
k \cos \theta & -k \sin \theta \\
k \sin \theta & k \cos \theta
\end{array}\right)
$$

comparing this with $\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$ gives:
$k \cos \theta=1$
$k \sin \theta=1 \Rightarrow \tan \theta=1 \Rightarrow \theta=45^{\circ}$
$\cos \theta=\frac{1}{\sqrt{2}} \Rightarrow k=\sqrt{2}$

MEI AS FM Matrices 2 Exercise solutions

The angle of rotation is 45° anticlockwise and the scale factor of the enlargement is $\sqrt{2}$.
10. (i) $s=\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)$
(ii) Tis a shear with the x-axis fixed, with the point $(0,1)$ mapped to $(2,1)$.
(iii) $M=T S=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}3 & 2 \\ 0 & 1\end{array}\right)$

