## These resources are a sample from Integral's online resources for AS/A level Mathematics and Further Mathematics. Visit integralmaths.org to find out more.

## Section 1: Introduction to impulse and momentum

## Section test

1. The velocity of a particle of mass 5 kg increases from $5 \mathrm{~ms}^{-1}$ to $8 \mathrm{~ms}^{-1}$. Find the change in momentum of the particle.
2. A particle of mass 4 kg lies on a smooth horizontal surface. A force of 5 N acts on the particle for 6 seconds. What is its speed after this time?
3. A body of mass 5 kg is moving west with a velocity of $7 \mathrm{~ms}^{-1}$. A force of 10 N acts on the particle for $t$ seconds. After this time the body has a velocity of $13 \mathrm{~ms}^{-1,}$ still in a westerly direction. Find the value of $t$.
4. A body of mass 4 kg , initially at rest on a smooth horizontal surface, is subject to a force of $5 \mathbf{i}+12 \mathbf{j} \mathrm{~N}$ for 2 seconds. Find the final speed of the particle.
5. A body of mass 6 kg is initially moving with a constant velocity of $9 \mathbf{i} \mathrm{~ms}^{-1}$. A force of $a \mathbf{i} \mathrm{~N}$ acts on the mass for 9 seconds. After this time the velocity of the mass is $-3 \mathbf{i} \mathrm{~ms}^{-1}$. Find the value of $a$.
6. A bullet of mass 25 g is fired from a gun of mass 2.5 kg . The bullet leaves the gun with a speed of $500 \mathrm{~ms}^{-1}$.
Find the initial recoil speed of the gun.
Find the increase in the kinetic energy of the system.
7. A particle A of mass 300 g lies at rest on a smooth horizontal surface. A second particle B of mass 200 g is fired at A with a velocity of $6 \mathrm{~ms}^{-1}$ and collides with it directly. After the collision B is stationary. What is the velocity of A after the collision?
8. Three balls, A, B and C, are all moving in the same direction along a straight groove. A is moving towards B and B is moving towards C . A and C each have a mass of 500 g and $B$ has a mass of 1 kg . Initially the masses $A, B$ and $C$ are moving with speeds of $7 \mathrm{~ms}^{-1}, 3 \mathrm{~ms}^{-1}$ and $3 \mathrm{~ms}^{-1}$ respectively.

After A has collided with B, B has a speed of $5 \mathrm{~ms}^{-1}$ in the same direction as before. Find the speed of A after the collision.

After B has collided with C, B has a speed of $4 \mathrm{~ms}^{-1}$ in the same direction as before. Find the speed of C after this collision.

## MEI FM Momentum 1 section test solutions

## Solutions to section test

1) change in momentum $=m(v-u)$

$$
\begin{aligned}
& =5(8-5) \\
& =15 \mathrm{Ns}
\end{aligned}
$$

2) impulse $=$ change in momentum

Ft $=m(v-u)$
$5 \times 6=4(v-0)$
$30=4 v$
$v=7.5$
The speed after this time is $7.5 \mathrm{~ms}^{-1}$.
3) impulse $=$ change in momentum
$F t=m(v-u)$
$10 t=5(13-7)$
$10 t=30$
$t=3$
4) impulse $=$ change in momentum

Ft $=m(v-u)$
$2(5 \underline{i}+12 \underline{j})=4(v-0)$
$v=\frac{1}{2}(5 \underline{i}+12 \underline{j})$
$|v|=\frac{1}{2} \sqrt{5^{2}+12^{2}}=6.5$
The final speed of the particle is $6.5 \mathrm{~ms}^{-1}$.
5) impulse $=$ change in momentum
$F t=m(v-u)$
$a \underline{i} \times g=6(-3 \underline{i}-g \underline{i})$
$9 a \underline{i}=-72 \underline{i}$
$a=-8$
6) Initially gun and bullet have speed zero.

After firing:


## MEI FM Momentum 1 section test solutions

By conservation of momentum: $0=-2.5 v+0.025 \times 500$

$$
\begin{aligned}
& 2.5 v=12.5 \\
& v=5
\end{aligned}
$$

The recoil speed of the gun is $5 \mathrm{~ms}^{-1}$.
inítial K.E. of system is zero.
K.E. after firing $=\frac{1}{2} \times 2.5 \times 5^{2}+\frac{1}{2} \times 0.025 \times 500^{2}$

$$
=3156.25 \mathrm{~J}
$$

The increase in kinetic energy $=3156$ ) (4 s.f.)
7)

Initially
Finally

0.2 kg

0.3 kg

0.2 kg

0.3 kg

By conservation of momentum: $0.2 \times 6+0=0+0.3 \mathrm{v}$

$$
\begin{aligned}
& 1.2=0.3 v \\
& v=4
\end{aligned}
$$

The velocity of $A$ after the collision is $4 \mathrm{~ms}^{-1}$.
8)

Initially
Finally


By conservation of momentum:
$(0.5 \times 7)+(1 \times 3)=0.5 v+(1 \times 5)$
$3.5+3=0.5 v+5$
$0.5 v=1.5$
$v=3$
The speed of $A$ after the collision is $3 \mathrm{~ms}^{-1}$.
initially


Finally


1 kg
0.5 kg

## MEI FM Momentum 1 section test solutions

By conservation of momentum:

$$
\begin{aligned}
& (1 \times 5)+(0.5 \times 3)=(1 \times 4)+0.5 v \\
& 5+1.5=4+0.5 v \\
& 0.5 v=2.5 \\
& v=5
\end{aligned}
$$

The speed of $C$ is $5 \mathrm{~ms}^{-1}$.

