GCE

Physics A

Advanced GCE H558

Mark Scheme for the Units

June 2009

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2009
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Physics A (H558)

Advanced Subsidiary GCE Physics (H158)

MARK SCHEMES FOR THE UNITS

Unit/Content Page
G481 Mechanics 1
G482 Electrons, Waves and Photons 9
Grade Thresholds 17

G481 Mechanics

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent Amarks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the C -mark is given.

A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

SIGNIFICANT FIGURES

In general, there is no penalty when the candidate's answer is more than the sf of the data given in the question.
For example, in a question where the data is given to 2 sf, the answer can be 2 sf or more. An answer given to 1 sf may be penalised.

Question			Expected Answers	Marks	Additional Guidance
1	(a)	(i)	Both measured in metre/m	B1	Allow: Both have the same unit/Both have 'magnitude' Not: Both are distance/length
		(ii)	Distance is a scalar/does not have direction or Displacement is a vector/has direction	B1	Not: One is a vector and the other a scalar
	(b)	(i)	$\begin{aligned} & \text { time }=\frac{3.6 \times 10^{5}}{170} \\ & \text { time }=2.1(18) \times 10^{3}(\mathrm{~s}) \text { or } 2.1 \times 10^{3}(\mathrm{~s}) \end{aligned}$	B1	Note: Answer to 2sf or more is required
		(ii)	Correct vector triangle Eg: $\begin{aligned} & s^{2}=360^{2}+100^{2} \quad / \quad s=\sqrt{\left(360^{2}+100^{2}\right)} \\ & s=373.6(\mathrm{~km}) / 370(\mathrm{~km}) \end{aligned}$	B1 C1 A1	The vector triangle must have at least two labels (360, 100 and s - allow x or d for s). The 'orientation' of the triangle must be as shown. Ignore the direction of the arrows. Allow: Full credit can be given for a scale drawing 2 marks if answer in the range ($370-380$) 1 mark if answer in the range ($360-370$) or ($380-390$) Note: Bald answer to 2sf or more and no diagram scores $2 / 3$ marks.
			Total	6	

Question			Expected Answers	Marks	Additional Guidance
4	(a)		$\begin{aligned} & \text { work done }=\text { force } \times \text { distance moved } \\ & \text { in the direction of the force } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow: 'displacement' instead of 'distance' Allow: 1 mark for 'force \times distance in the direction of the force' Not: work done $=$ energy transfer
	(b)		$\begin{aligned} & \text { power = work (done)/time or power = } \\ & \text { energy/time } \\ & \text { or power = rate of work done } \end{aligned}$	B1	Not: Mixture of quantities and units, e.g: 'energy per second'
	(c)		This is because of heat/thermal energy/friction	B1	Not: sound/vibrations
	(d)	(i)	$\begin{aligned} & E_{\mathrm{k}}=\frac{1}{2} m v^{2}, E_{\mathrm{k}}=\frac{1}{2} \times 810 \times 30^{2} \\ & E_{\mathrm{k}}=3.645 \times 10^{5}(\mathrm{~J}) \text { or } 3.65 \times 10^{5}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: Bald answer $3.645 \times 10^{5}(\mathrm{~J})$ or $3.6 \times 10^{5}(\mathrm{~J})$ scores $2 / 2$ marks Allow: 1 mark for wrongly rounded answer of $3.7 \times 10^{5}(\mathrm{~J})$
		(ii)	$\begin{aligned} & \text { power }=\frac{3.65 \times 10^{5}}{12} \\ & \text { power }=3.04 \times 10^{4}(\mathrm{~W}) \approx 3.0 \times 10^{4}(\mathrm{~W}) \end{aligned}$	B1	Possible ecf
		(iii) 1. 2.		$\begin{gathered} \text { B1 } \\ --\quad \text { C1 } \end{gathered}$ C1 A1	Allow: 'input energy' $=18 \times 46 \times 10^{6}\left(=8.28 \times 10^{8} \mathrm{~J}\right)$ This C1 mark can also be scored using: 'distance $=2.07 \times 10^{8} / 500$ ' Possible ecf from iii 1. Allow: Bald $4.1 \times 10^{5}(\mathrm{~m})$ scores $3 / 3$ $2 / 3$ for $1.66 \times 10^{6} \mathrm{~m}$ if 25% efficiency is not used $2 / 3$ if 30 kW from ii is used; answer 2.0 or $2.1 \times 10^{5}(\mathrm{~m})$
			Total	11	

Question			Expected Answers	Marks	Additional Guidance
5	(a)	(i)	N is normal to the ramp (judged by eye) F is parallel and up the ramp	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow marks even if the labels N and F are omitted
		(ii)	$F=W \sin \theta$	B1	
	(b)	(i)	Expected answer: 'For equilibrium of an object the sum of clockwise moments about a point = sum of anticlockwise moments about the same point.' clockwise moment(s) = anticlockwise moment(s) Reference to one of the moments taken about a point/'equilibrium'/sum (or total or net or Σ) mentioned once	M1 A1	Note: The term 'clockwise' to be included and spelled correctly to gain the M1 mark Note: 'net moment $=0$ ' is equivalent to the M1 mark Note: If M1 is lost for incorrect spelling of 'clockwise', then allow this A1 mark
		(ii)	$\begin{aligned} & 200 \times 12=F \times 75 \\ & F=32(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \hline \text { C1 } \\ & \text { A1 } \end{aligned}$	Note: Bald answer of $32(\mathrm{~N})$ scores $2 / 2$ marks
		(iii)	$\begin{aligned} & p=\frac{32}{6.0 \times 10^{-5}} \\ & \text { pressure }=5.3 \times 10^{5}(\mathrm{~Pa}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf Note: Bald answer of $5.3 \times 10^{5}(\mathrm{~Pa})$ scores $2 / 2$ marks
		(iv)	(Pressure is) greater because the force/F is larger (to provide the same moment)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
			Total	11	

Question			Expected Answers	Marks	Additional Guidance
7	(a)		Straight line through origin (judge by eye) Correct shape of curve in the plastic region	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
	(b)		Copper	B1	
	(c)		Maximum stress material can withstand (before fracture)	B1	Allow: UTS = breaking stress Allow: UTS = breaking force /(cross-sectional) area
	(d)		extension (or compression) \propto force (as long as elastic limit is not exceeded)	B1	Allow: 'load' instead of force Not: $x \propto F$, unless the labels are defined
	(e)	(i)	$\begin{aligned} & \text { force }=75 \times 0.085 \\ & F=6.38(\mathrm{~N}) \approx 6.4(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
		(ii)	$\begin{aligned} & \text { acceleration }=\frac{6.38}{2.5 \times 10^{-3}} \\ & \text { acceleration }=2550\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	B1	Note: $a=\frac{k x-m g}{m}$ gives $2540\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ Possible ecf
		(iii)	$\begin{aligned} & \text { Correct selection of equation: } \mathrm{mgh} / \frac{1}{2} \mathrm{kx}^{2} / \frac{1}{2} \mathrm{Fx} \\ & 0.0025 \times 9.81 \times h=\frac{1}{2} \times 75 \times 0.085^{2} \\ & \text { height }=11(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: Bald answer of 11 (m) scores $3 / 3$ marks
			Total	11	

G482 Electrons, Waves and Photons

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent Amarks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the \mathbf{C}-mark is given.

A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

Question			Expected Answers	Marks	Additional Guidance
1	(a)		resistance = p.d./current	B1	accept voltage instead of p.d.; ratio of voltage to current; voltage per (unit) current not $\mathrm{R}=\mathrm{V} / \mathrm{I}$ or $\mathrm{p} . \mathrm{d}$. $=$ current x resistance or p.d. per amp or answer in units or voltage over current
	(b)	(i)	6 V	B1	
		(ii)	$\begin{aligned} \mathrm{R} & =\mathrm{V} / \mathrm{I}=6 / 0.25 \\ & =24 \quad(\Omega) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	ecf (b)(i) 240 V gives 960Ω award $0.024 \Omega 1$ mark only (POT error)
	(c)	(i)	```6 V supply with potential divider 'input' across it and lamp across p.d. 'output' ammeter in series with lamp voltmeter across lamp```	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	accept $0-6 \mathrm{~V}$ variable supply with lamp across it not variable R in series with supply circuit with no battery present can only score voltmeter mark
		(ii)	non-zero intercept line indicating increasing value of R with current	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	curve must reach y-axis accept straight line or upward curve
		(iii)	resistivity/resistance of filament wire increases with temperature the temperature of the lamp increases with current/voltage increase more frequent electron-ion/atom collisions/AW increased ion vibrations	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	accept any two of the four statements accept AW, e.g the lamp heats up because of the current
	(d)	(i)	lamps do not light	B1	ignore reasons unless too contrary
			remaining lamps are lit with qualification	B1	qualification could be more dimly or sensible explanation
		(ii)	using resistors in parallel formula to obtain a value of R per unit R per unit $=19.4 \Omega$ or R total $=774 \Omega$ $\mathrm{I}=6 / 19.4$ or $240 / 774=0.31 \mathrm{~A}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	eg takes R of bulb $=10 \Omega$ giving R per unit $=9.1 \Omega$ gains first mark only ecf (b)(i)(ii) accept R of resistors $=4000 \Omega$; current in chain $=0.06 \mathrm{~A}$; total current $=0.06+0.25=0.31 \mathrm{~A}$ 0.3 A is SF error so gains 2 marks only apply SF error only once in paper
			Total question 1	16	

Question			Expected Answers	Marks	Additional Guidance
2	(a)		$E=I(R+r)$	B1	
	(b)	$\text { (i) } \begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.80 \Omega \\ & 6.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
		(ii)	(sum of) e.m.f.s = sum /total of p.d.s/sum of voltages (in a loop)	B1	
		(iii)	$\begin{aligned} & 6.4=0.80 \mathrm{I} \\ & \mathrm{I}=8.0 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { can be } 2 \text { ecf from (b)(i), eg 21.6/0.8 } \\ & =27 \mathrm{~A}(1 \mathrm{ecf}) \text { or } 21.8 / 0.68=31.8 \mathrm{~A}(2 \mathrm{ecf}) \end{aligned}$
	(c)	(i)	$\begin{aligned} Q & =\text { It }=2.5 \times 6 \times 60 \times 60 \\ & =54000(C) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	allow 1 mark if forgets one or two 60's giving 900 C or 15 C
		(ii)	$\begin{aligned} \text { energy } & =\text { QE }=54000 \times 14 \\ & =756000(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	allow (use of 12 V gives) 648000 J for 1 mark
		(iii)	$\begin{aligned} & \text { energy loss }=I 2 \mathrm{Rt}=\mathrm{VIt}=2 \times 2.5 \times 6.0 \times 60 \times 60=108000 \mathrm{~J} \\ & \text { percentage }=(108000 / 756000) \times 100=14 \% \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \hline \text { accept } \mathrm{Q} \Delta \mathrm{~V}=54000 \times 2.0=108000 \mathrm{~J} \\ & \text { accept } \mathrm{Q} \Delta \mathrm{~V} / \mathrm{QE}=2.0 / 14.0=14 \% \\ & \text { not } 756000 / 54000=14 \% \end{aligned}$
			Total question 2	12	

Question			Expected Answers	Marks	Additional Guidance
3	(a)	(i)	$\begin{aligned} & I=V / R=8.0 / 200 \\ & I=0.040(A) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
		(ii)	$\mathrm{V}=24-8=16(\mathrm{~V})$	B1	
		(iii)	$\begin{aligned} & R=16 / 0.04 \text { giving } \\ & R=400(\Omega) \end{aligned}$	$\begin{aligned} & \hline \text { C1 } \\ & \text { A1 } \end{aligned}$	accept ratio of p.d.s to ratio of Rs ecf from (i) \& (ii) ie (a)(ii)/(a)(i)
		(iv)	$\begin{aligned} & P=V I=I^{2} R=V^{2} / R \\ & P=0.640(W) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	ecf from (i) \& (ii) accept 640 mW
	(b)	(i)	the thermistor has heated up/ its temperature has increased so its resistance has dropped so the ratio of the voltages across the potential divider changes/AW	$\begin{aligned} & \mathrm{B} 1 \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	accept so the current increases accept so IR of fixed resistor increases
		(ii)	voltages are equal so resistances are equal	B1	
	(c)	(ii)	straight line through origin labelled R passing through 0.06,12	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \end{aligned}$	allow correct lines with no labels
		(ii)	upward curve below straight line through origin labelled T passing through 0.06,12	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \end{aligned}$	
			Total question 3	15	

Question			Expected Answers	Marks	Additional Guidance
4	(a)	(i) (ii)	diffraction or refraction or superposition or interference only transverse waves can be polarised	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \end{aligned}$	accept any two from the four listed accept sound is a longitudinal wave or e-m waves are transverse
		(iii)	place transmitter and receiver facing each other rotate either transmitter or receiver through 90° about axis joining aerials or use two polarising filters and rotate from parallel to crossed observe signal fall to zero/minimum from initial high value on meter monitoring output of receiver explanation of observations/link between observations and polarisation	B1 B1 B1 B1	accept from diagram allow (metal) grille/polarising filter to polarise microwaves accept place (metal) grille/polarising filter [not Polaroid] between transmitter and receiver and rotate through 90° QWC mark
	(b)	(i) 1	0.3 (mm)	B1	tolerance $\pm 0.02 \mathrm{~mm}$ ie $0.28-0.32$ (mm)
		2	$\begin{aligned} & \mathrm{T}=4.0 \mathrm{~ms} \\ & \mathrm{~F}=1 / \mathrm{T}=250(\mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	allow 0.25 Hz or any other POT error for 1 mark
		(ii)	realisation that intensity is proportional to (amplitude) ${ }^{2}$ giving amplitude increase by $\sqrt{ } 2$, ie4(.2) mm sine wave of same frequency with any increased amplitude	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
		(iii)	microphone (to transfer mechanical motion to electrical signal/voltage) oscilloscope to display oscillation/wave for measurement (of period)/AW	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \end{aligned}$	accept computer/datalogger/frequency meter with qualification as for oscilloscope
			Total question 4	15	

Question			Expected Answers	Marks	Additional Guidance
5	(a)	(i) (ii)	node occurs where the amplitude/displacement is (always) zero antinode occurs where the amplitude (of the standing wave) takes the maximum (possible) value	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	accept displacement for amplitude for (i) only
	(b)	(i)	wave travels to end and is reflected reflected wave interferes/superposes with incident wave always destructively at certain points to produce nodes or always constructively at certain points to produce antinodes	B1 B1 B1	accept 2 waves of same f travelling in opposite directions interfere with no reference to reflection
		(ii)	A and N points labelled correctly	B1	
		(iii)	3	B1	
		(iv)	$\begin{aligned} & 30 \mathrm{~cm}=\lambda / 2 \text { or } \lambda=60 \mathrm{~cm} \\ & v=\mathrm{f} \lambda=120 \times 0.6 \\ & v=72\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	allow 1 mark for correct calculation using $v=f \lambda$ with wrong wavelength if method/reasoning clear
	(c)		$v=2 k \text { becomes } v=3 k \quad(k=36)$ wavelength increases by $3 / 2$ (as frequency unchanged) 2 half wavelengths fit on the string so standing wave is set up/AW	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	accept v increases by $3 / 2$ or $v=108 \mathrm{~m} \mathrm{~s}^{-1}$ accept wavelength becomes 90 cm allow ecf correct conclusion with wrong λ
			Total question 5	13	

Question			Expected Answers	Marks	Additional Guidance
7	a		A (clean) zinc plate mounted on the cap of a gold-leaf electroscope. Plate initially charged negatively A u-v lamp shining on plate The gold leaf collapses as the charge leaks away from the plate (when ultra-violet light is incident on the zinc plate) so experiment indicates the emission of negative charge/electrons	$\begin{aligned} & \hline \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \hline \end{aligned}$	first 3 marks can be awarded from diagram or description QWC mark
		Or	A simple photocell, eg two plates in a vacuum envelope $\mathrm{A}(12 \mathrm{~V}$) dc supply is connected to the photocell and (nano)ammeter. A suitable frequency/u-v lamp shining on one plate The presence of $u-v / b l u e ~ l i g h t ~ c a u s e s ~ a ~ c u r r e n t ~ i n ~ t h e ~ c i r c u i t . ~$ so experiment indicates the emission of negative charge/electrons	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \hline \end{aligned}$	accept photocell made of clean magnesium ribbon surrounded by fine copper gauze first 3 marks can be awarded from diagram or description ignore polarity of supply QWC mark
		Or	A (potassium) photocell connected across a (high impedance) voltmeter. Incident light of different frequencies; produced either by white light source and colour filters of known spectral range or by using a diffraction grating or prism to produce a first order spectrum. Different p.d.s are set up across the electrodes of the photocell (when the photocathode is illuminated with light of different frequencies). so experiment indicates the emission of negative charge	B1 B1 B1 B1 B1	first 3 marks can be awarded from diagram or description QWC mark
	b		Individual photons are absorbed by individual electrons in the metal surface. These electrons must have absorbed sufficient energy to overcome the work function energy of the metal/to reach the minimum energy to release an electron from the surface or only photons with energies above the work function energy will cause photoelectron emission Concept of instantaneous emission Number of electrons emitted also depends on light intensity Einstein's photoelectric energy equation in symbols with symbols explained, ie (energy of photon) $=$ (work function of metal) + (maximum possible kinetic energy of emitted electron)	B1 B1 B1 B1 B1 B1	stop marking after the first five marking points, ie ticks and crosses not photons are absorbed by electrons; 1 to 1 relationship must be implied accept definition of work function energy accept shorter $\lambda /$ higher f photon causes higher (kinetic) energy electron accept full word equation without symbols for 2 marks maximum 5 marks
			Total question 7	10	

Grade Thresholds

Advanced GCE Physics H158 H558

June 2009 Examination Series
Unit Threshold Marks

Unit		Maximum Mark	A	B	C	D	E	U
G481	Raw	60	44	39	34	29	25	0
	UMS	90	72	63	54	45	36	0
G482	Raw	100	64	56	49	42	35	0
	UMS	150	120	105	90	75	60	0
G483	Raw	40	32	29	26	23	21	0
	UMS	60	48	42	36	30	24	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
H158	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{H 1 5 8}$	18.5	34.0	50.4	66.3	80.1	100	7588

7588 candidates aggregated this series
For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

