

GCE

Physics A

Advanced GCE G484

The Newtonian World

Mark Scheme for June 2010

Oxford Cambridge and RSA Examinations

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Question	Expected Answers	Marks	Additional guidance
1 (a)	The magnitude of the impulse on each object is the same	B1	For 3 or 4 ticks mark and deduct
	Total energy is conserved	B1	1 mark for each error.
(b) (i)	Correct use of ¹ / ₂ mv ²	C1	0.27 J scores 1 st mark
	Loss of KE = 0.03(144-81) = 1.9 (or 1.89) J	A1	Do not allow 1.8
(b) (ii)	Change in momentum = (0.06x12)+(0.06x9) = 1.26 (Ns)	C1	Award 1 mark for 1.2 N
	Average force=rate of change of momentum = 1.26/0.15 = 8.4 (or 8) N	A1	ignore minus signs
(b) (iii)	8.4 N (or - 8.4)	B1	Allow ecf from (ii)
(c) (i)	ANY 3 of the following		Allow
	particles move with <u>rapid, random</u> motion (WTTE)	B1	" gravitational force on
	elastic collisions	B1	molecules is negligible"
	negligible (or zero) volume of atoms (compared with volume of container)	B1	Do not allow a bare
	no intermolecular forces (except during collisions)/all internal energy is KE		"large number of particles".
	collision time negligible (compared to time between collision).		
(c) (ii)	molecules make collisions with walls/surface (WTTE)	B1	Do not allow a bare "molecules
	(hence) exerts a force on the wall (or each collision has a change of		collide with each other"
	momentum)	B1	
	Pressure = force/area	B1	
	Total	13	

Question	Expected Answers	Marks	Additional guidance
2 (a) (i)	Horizontal <u>component</u> of L provides the centripetal force (WTTE)	B1	
	Vertical <u>component</u> of L balances the weight (WTTE)	B1	
(a) (ii)	$F = mv^2/r$ correct rearranged into $v = \sqrt{(Fr/m)}$	C1	Allow correct substitution of
	$v = \sqrt{(1.8 \times 10^6 \times 2000/1.2 \times 10^5)} = 173 \text{ m s}^{-1} \text{ (or } 170)$	A1	values into $F = mv^2/r$ for C1 mark
(b)	$mv^2/r = GMm/r^2$	B1	Do not allow a bare $v^2 = GM/r$ for
	$T = 2\pi r/v \qquad \qquad \Lambda_{\pi^2} r^3$	M1	the first mark – we need to see
	Correct manipulation of equations to give $T^2 = \frac{4\pi T}{GM}$	A1	where this has come from.
(c) (i)	Equatorial orbit (WTTE) (QWC mark)	B1	QWC equatorial or equator must
	Period is 24h/1day/same as Earth OR moves from West to East (WTTE)	B1	be spelled correctly
(c) (ii)	Correct rearrangement of $T^2 = (4\pi^2 r^3/GM)$ to give $r^3 = T^2GM/4\pi^2$	C1	$(1 \text{ day} = 8.64 \text{ x}10^4 \text{ s is given on})$
	correct sub. $r^3 = \{6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times (8.64 \times 10^4)^2\}/4\pi^2 = 7.57 \times 10^{22}$	C1	the data sheet).
	$r = 4.23 \times 10^7 \text{ m}$ (or 4.2 or 4.3 x 10 ⁷)	A1	For those who use $g = GM/r^2$
			with $g = 9.81$ award 1 mark
			for r= 6.4×10^6 m.
	Total	12	

Question	Expected Answers	Marks	Additional guidance
3 (a)	Acceleration is (directly) proportional to the	B1	Allow "fixed point" or "point"
	displacement/distance (from the equilibrium position/central pt)		Allow acc. is in opposite direction to
		B1	displacement (WTTE)
	Acceleration is always directed towards the equilibrium		If formula is used: allow a ∞ -x for 1 st mark
	position/central point.		and 2 nd mark if x is stated as displacement.
(b) (i)	Curve symmetrical about energy axis with maximum at 18	B1	Ignore points where graphs cross
	zero at +0.04 and – 0.04	B1	Give bod if not labelled K but correct
(b) (ii)	Horizontal straight line passing 18	B1	Give bod if not labelled T but correct
(c) (i)	0.04 m	B1	
(c) (ii)	$\frac{1}{2}m(v_{max})^2 = 0.018$	C1	Many will use 18 instead of 0.018. This
	$v_{max} = \sqrt{(2x0.018/0.12)} = 0.55 \text{ ms}^{-1} (0.548)$	A1	results in 17.3 and scores 1 mark.
			Allow ecf for cand's value of max KE.
			Do not allow 0.54 for second mark.
(c) (iii)	correct use of $v_{max} = 2\pi fA$	C1	Allow ecf for cand's values from (c)(i)
			and/or (c) (ii). E.g for 17.3 f = 68.8 Hz. This
	f = (0.55/0.04x2π) = 2.2 (or 2.19 or 2.18)Hz	A1	scores 2 marks e.c.f.
			Do not allow 2.1
(d)	Award first mark for stating the ' driver ' of the oscillations	B1	No marks to be awarded for a bare
	and the second mark for stating what is 'driven' i.e. oscillating	B1	statement of the example e.g MRI.
	useful applications: e.g.		
	Cooking: <u>micro waves</u> cause <u>water molecules</u> to resonate		Please allow any other valid examples.
	Woodwind: <u>reed</u> causes <u>air column</u> to resonate		
	Brass: IIps cause air column to resonate		
	MRI: <u>radio waves</u> (in a magnetic field) cause <u>nuclei/proton</u> to		
	Residence realize waves equips electrons/ourrent to reconstance		
	Radios. <u>Tadio waves</u> cause <u>electrons/current</u> to resonate		
	resonate		
	resonate		
	problem:	B1	
	Bridges: wind/walkers causes bridge to resonate	B1	
	Vehicles: engine vibrations cause panels/mirrors to		
	resonate Earthquakes: ground vibrating causes buildings to		
	resonate		
	Total	14	

G484	Mark Scheme	June 2010	
Question	Expected Answers	Marks	Additional guidance
4 (a) (i)	Brownian (motion) (QWC mark)	B1	QWC Brownian spelled correctly
(a) (ii)	ANY two from the following three:		Answers that refer to smoke particles only
	air molecules are moving in different directions/randomly	B1	cannot score the marks.
	with different speeds	B1	
	mass/size of air molecules is smaller than smoke particles		
(b) (i)	$vol = (4/3) \pi r^3 = 5.58 \times 10^{-3}$	C1	Allow ecf for wrong volume
	correct sub into $pV = nRT$ i.e. with T as 290K	C1	Allow use of $pV = NkT$ and $n = N/N_A$
	$n = (2.6 \times 10^5 \times 5.58 \times 10^{-3})/8.31 \times 290 = 0.602$ moles	A1	Allow ecf for cand's value for n
	mass = n x $0.028 = 0.0169$ kg (0.016856)	A1	If 17° C used allow maximum of 2 marks
	3 ()		for n = 10.3 moles and m = 0.29 kg
(b) (ii) 1	no net heat flow between objects (WTTE)	B1	Allow "they are at the same temp."
(b) (ii) 2	correct use of P/T = constant: e.g. P = $(273/290) \times 2.6 \times 10^5$	C1	Allow correct use of pV=nRT
	$P = 2.45 \times 10^5$ (or 2.4 x 10 ⁵ or 2.5 x 10 ⁵)Pa	A1	
	Total	10	

Question	Expected Answers	Marks	Additional guidance
5 (a) (i)	Initial KE of car = $0.5 \times 970 \times 27^2 = 3.5 \times 10^5 \text{ J} (353565 \text{ J})$	B1	
(a) (ii)	Work done = Av Force x distance moved	C1	If $v^2 = u^2 + 2as$ is used. accept
	Av Force = 3.5 x 10 ⁵ J/40 = 8.8 x 10³ N (or 8750 N)	A1	$a = 0.27^{2}/(2x40) = 9.113 \text{ ms}^{-2} \text{ C1}$
	(or 353565/40 = 8836.7 N)		$F = ma = 970x9.11 = 8.84 \times 10^3 N A1$
	Assumption: no air resistance	B1	Allow air friction or drag
(b) (i)	correct use of E = mc $\Delta\theta$: 3.5 x 10 ⁵ /4 = 1.2x520x $\Delta\theta$	C1	If cand. forgets to divide by 4 allow any value
	$\Delta \theta = 140^{\circ}C$ (if 353565 is used $\Delta \theta = 142^{\circ}C$)	A1	between 560 and 570 for 1 mark.
(b) (ii)	Air resistance will be acting (slowing down the car)	M1	Do not allow sound since only a tiny
	(hence) reducing the KE of the car (WTTE)	A1	proportion of energy is lost in this way.
			Allow other valid comments as alternative
	The discs are hotter than the surroundings	B1	ways of scoring one or both of the 'B' marks:
	(hence) <u>energy/heat will be lost from discs/brakes</u> (WTTE)	B1	e.g. 'hot spots' on discs; discs are different.
			Try to credit a well argued case based upon
			correct physics- e.g. wheels locking.
(b) (iii)	Any valid suggestion: e.g. use a material with a higher s.h.c		Confusion between shc and heat capacity
	use a disc with a higher heat capacity	B1	should not be penalised.
	Use discs of greater mass		
	put holes in the discs (to increase air flow)		
	Total	11	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010

