

GCE

Chemistry A

Advanced GCE

Unit F325: Equilibria, Energetics and Elements

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

G	Quest	ion	Answer	Mark	Guidance
1	(a)		(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound ✓		IGNORE 'Energy needed' OR 'energy required'
			from its gaseous ions ✓ (under standard conditions)	2	ALLOW as alternative for compound: lattice, crystal, substance, solid Note: 1st mark requires 1 mole
					2nd mark requires gaseous ions IF candidate response has '1 mole of gaseous ions', award 2nd mark but NOT 1st mark
					IGNORE : $Mg^{2+}(g) + 2CI^{-}(g) \longrightarrow MgCl_{2}(s)$ (question asks for words)
	(b)	(i)	Hydration involves bond forming OR bonds are made ✓	1	ALLOW statement of any type of bond being formed ALLOW (chloride) ions attract water (molecules)
					ALLOW a response in terms of hydrogen bonds breaking AND bond making
					DO NOT ALLOW response stating that energy is required DO NOT ALLOW response that refers to ions in H_2O , eg H^+
		(ii)			Correct species AND state symbols required for both marks Mark each marking point independently
			<u> Mg²⁺(aq) + 2Cl⁻(g)</u> ✓		ALLOW response on upper line: $Mg^{2+}(g) + 2CI^{-}(aq)$ (ie CI^{-} hydrated before Mg^{2+})
			Mg ²⁺ (aq) + 2Cl⁻(aq) ✓	2	ALLOW MgCl ₂ (aq)

Question	Answer	Mark	Guidance
1 (b) (iii) FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -1921 (kJ mol ⁻¹) award 2 marks $(-2493) + (-154) = (2 \times -363) + \Delta H_{hvd}(Mg^{2^+}) \checkmark$	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors
	$\Delta H_{hyd}(Mg^{2+}) = (-2493) + (-154) - (2 \times -363)$ = -1921 (kJ mol ⁻¹) \checkmark	2	ALLOW for 1 mark: -2284 use of Cl ⁻ rather than 2 x Cl ⁻ (+)1921 signs all reversed OR lack of 2 for 363 -1613 sign wrong for 154(+)3065 sign wrong for 2493 -3373 sign wrong for 2 x 363
(c)	Magnesium ion OR Mg ²⁺ is smaller OR Mg ²⁺ has greater charge density ✓		 ORA: Calcium ion OR Ca²⁺ is larger OR Ca²⁺ has smaller charge density IGNORE idea of close packing of ions IGNORE 'atomic' and 'atoms' and assume that Mg or Ca refer to ions, ie ALLOW Mg has a smaller (atomic) radius
	Mg^{2*} has a stronger attraction to H_2O \textbf{OR} Mg^{2*} has a stronger bonding with H_2O \checkmark	2	 ALLOW Mg has a stronger attraction to H₂O ORA: e.g. Ca²⁺ has less attraction to H₂O DO NOT ALLOW Mg atoms have a stronger attraction to H₂O DO NOT ALLOW stronger attraction/bonding between ions Note: Response must refer to attraction/bonding with H₂O or this must be implied from the whole response
	Tota	1 9	

Q	luesti	ion	Answer	Mark	Guidance
2	(a)		Temperature: (Forward) reaction is exothermic OR gives out heat OR reverse reaction is endothermic OR takes in heat ✓ Pressure: Right-hand side has fewer number of (gaseous) moles ✓ ORA Equilibrium Lower temperature/cooling AND increasing pressure shifts (equilibrium position) to the right ✓	3	 ANNOTATE WITH TICKS AND CROSSES, etc ALLOW K_c increases at lower temperatures 3rd mark is for stating that BOTH low temperature and high pressure shift equilibrium to the right (Could be separate statements) Note: ALLOW suitable alternatives for 'to right', e.g.: towards NO₂ OR towards products OR in forward direction OR increases yield of NO₂/products ALLOW 'favours the right', as alternative for 'shifts equilibrium to right' IGNORE responses in terms of rate
	(b)		$4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O \checkmark$ $2NO_2 + H_2O \longrightarrow HNO_3 + HNO_2 \checkmark$	2	ALLOW multiples, e.g. $2NH_3 + 2\frac{1}{2}O_2 \longrightarrow 2NO + 3H_2O$ ALLOW \rightleftharpoons OR \rightarrow in equations
	(c)	(i)	$(K_{c} =) \frac{[NO_{2}]^{2}}{[NO]^{2} [O_{2}]} \checkmark$	1	Square brackets are essential

Q	Question		Answer		Guidance
2	(c)		Answer FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 45 dm ³ mol ⁻¹ , award 5 marks IF answer = 45 with incorrect units, award 4 marks Equilibrium moles 0.60 mol NO ₂ \checkmark 0.20 mol NO AND 0.40 mol O ₂ \checkmark Equilibrium concentrations (equilibrium moles ÷ 2) [NO ₂] = 0.30 mol dm ⁻³ AND [NO] = 0.10 mol dm ⁻³ AND [NO] = 0.10 mol dm ⁻³ \land Calculation of K_c and units $K_c = \frac{0.30^2}{0.10^2 \times 0.20} = 45 \checkmark dm^3 mol^{-1} \checkmark$	Mark 5	IF there is an alternative answer, check to see if there is any ECF credit possible using working below ANNOTATE WITH TICKS AND CROSSES, etc ALLOW ECF throughout Alternative route if concs NO and O ₂ calculated at start: initial concentrations: 0.40 mol dm ⁻³ NO AND 0.35 mol dm ⁻³ O ₂ ✓ Equilibrium concentrations: [NO ₂] = 0.30 mol dm ⁻³ ✓ [NO ₂] = 0.10 mol dm ⁻³ ✓ For units, ALLOW mol ⁻¹ dm ³ ALLOW ECF using any incorrect values for concentrations OR moles of NO, O ₂ AND NO ₂ For ECF, ALLOW 2 significant figures up to calculator value correctly rounded ALLOW ECF from incorrect K _c expression for both calculation and units Common ECFs worth less than 5 marks: 22.5 not +2 3 marks + unit mark 1.61 0.6 for NO ₂ but 0.8 for NO and 0.7 for O ₂ No mark for moles NO and O ₂ 3 marks + unit mark 0.804 As above but also no +2
					No mark for moles NO and O_2 AND ÷2 2 marks + unit mark
			Total	11	

Question	Answer	Mark	Guidance
Question 3	Answer Evidence of at least two half-lives measured on graph OR within text (would need evidence of two half-lives) \checkmark Any half-life value stated in range 180–220 s OR constant half-life \checkmark 1st order \checkmark Note: This is only correct response for order (ie no ECF). If not stated separately, this mark can be awarded from a rate equation, e.g. <i>rate</i> = $k[Br_2]^1$ OR <i>rate</i> = $k[Br_2]$ Evidence of tangent on graph drawn to line at $t = 0$ s \checkmark e.g.	Mark	Guidance ANNOTATE ALL Q3 WITH TICKS AND CROSSES, etc MARK ON GRAPH OR IN TEXT LOOK FOR STATEMENT ON GRAPH OR WITHIN TEXT ALLOW almost constant half-life Note: Response may use an alternative approach from half-life for the 1st two marks based on gradients of tangents: 1st mark would be awarded for evidence of two tangents drawn on graph 2nd mark would be awarded for stating that ratio of concentrations = ratio of rates, e.g. gradient of tangent at 0.010 mol dm ⁻³ has twice the value of gradient of tangent at 0.005 mol dm ⁻³
	0.668 0.007 0.008 0.008 0.008 0.008 0.008 0.009 0.00000000	4	MARK TANGENTS ON GRAPH ALLOW some leeway but tangent must coincide with part of curve that is 'straight' (ie between [Br ₂] = 0.010–0.009 and MUST NOT cross the curve

Question	Answer	Mark	Guidance
3	$rate = \frac{0.010}{250} = 0.000040 \text{ OR } 4.0 \times 10^{-5} \checkmark$ units: mol dm ⁻³ s ⁻¹ \checkmark	2	ALLOW values from 1 SF (0.00004 OR 4 x 10 ⁻⁵) up to calculator value, correctly rounded ALLOW range ~ $\frac{0.010}{160}$ to $\frac{0.010}{300}$: i.e. ALLOW a calculated gradient in the range 6 x 10 ⁻⁵ – 3 x 10 ⁻⁵ from a tangent drawn at <i>t</i> = 0 IF tangent is drawn on graph at a different time or incorrectly (e.g. crossing curve), then mark rate calculation by ECF using the gradient of the tangent drawn by the candidate (<i>ie</i> not the range above). IF no tangent is drawn ALLOW a value in the range above ONLY Credit only attempts at tangents, not just a random straight line IGNORE a '- sign'
	$rate = k[Br_2] \text{ OR } k = \frac{rate}{[Br_2]} \checkmark$ $k = \text{ calculated result from } \frac{\text{calculated value for rate}}{0.010} \checkmark$ $units: s^{-1} \checkmark$	3	DO NOT ALLOW <i>rate</i> = <i>k</i> [Br], <i>ie</i> Br instead of Br ₂ DO NOT ALLOW just <i>k</i> [Br ₂], <i>ie</i> ' <i>rate</i> =' OR ' <i>r</i> =' must be present Calculation of <i>k</i> is from candidate's calculated initial rate From 0.00004, $k = \frac{0.000040}{0.010} = 4 \times 10^{-3}$ s Note: IF order with respect to Br ₂ has been shown as 2nd order, then mark this part by ECF , e.g. if Br ₂ shown to be 2nd order, rate = <i>k</i> [Br ₂] ² <i>k</i> = calculated result from $\frac{\text{calculated value for rate}}{0.010^2}$ units : dm ³ mol ⁻¹ s ⁻¹ OR mol ⁻¹ dm ³ s ⁻¹ Note: Units mark must correspond to the candidate's stated rate equation, NOT an incorrectly rearranged <i>k</i> expression
	Total	9	

(Question		Answer	Mark	Guidance
4	(a)	(i)	proton donor 🗸	1	ALLOW H ⁺ donor
		(ii)	(the proportion of) dissociation \checkmark		ALLOW a weak acid partly dissociates ALLOW a strong acid totally dissociates ALLOW ionisation for dissociation ALLOW the ability to donate a proton
			Correct equation for any of the four $C_6H_5COOH \Rightarrow H^+ + C_6H_5COO^-$ OR $CH_3COOH \Rightarrow H^+ + CH_3COO^-$ OR $CH_3COCOOH \Rightarrow H^+ + CH_3COCO^-$ OR $CH_3CHOHCOOH \Rightarrow H^+ + CH_3CHOHCOOH \Rightarrow H^+ + CH_3CHO + CH_3CHOHCOOH \Rightarrow H^+ + CH_3CHOHCOOH \Rightarrow H^+ + CH_3CHOHCOOHCOUH \Rightarrow H^+ + CH_3CHOHCOOHCOUHCAU + CH_3CHOHCOUHCAU + CH_3CHOHCAU + CH_3CHUU + CH_3CHUU$	00-	Equilibrium sign required ALLOW equilibria involving H ₂ O and H ₃ O ⁺ e.g. C ₆ H ₅ COOH + H ₂ O \Rightarrow H ₃ O ⁺ + C ₆ H ₅ COO ⁻ , etc DO NOT ALLOW HA \Rightarrow H ⁺ + A ⁻
		(iii)	C ₆ H ₅ COOH b CH₃CHOHCOOH la	acetic acid penzoic acid actic acid pyruvic acid 1	ALLOW correct order using any identifier from the table, <i>ie</i> , common name, systematic name, structural formula OR p <i>K</i> _a value
		(iv)	C ₆ H ₅ COOH ₂ ⁺ + CH ₃ CHOHCOO ⁻ ✓	1	BOTH products AND correct charges required for mark Mark ECF from incorrect order in (iii) See response from (iii) below response to (iv)

(Quest	ion	Answer	Mark	Guidance
4	(b)	(i)	$2CH_3COCOOH + Ca(OH)_2 \rightarrow (CH_3COCOO)_2Ca + 2H_2O\checkmark$ Note: pyruvic acid must have been used here and formula of pyruvic acid and pyruvate must be correct	1	All species AND balancing required for the mark ALLOW $(CH_3COCOO^-)_2Ca^{2+}$ ALLOW equation showing $2CH_3COCOO^- + Ca^{2+}$ IF charges shown, charges must balance, e.g. DO NOT ALLOW $(CH_3COCOO^-)_2Ca$ IGNORE state symbols if shown ALLOW multiples ALLOW equilibrium sign
		(ii)	$H^+ + OH^- \longrightarrow H_2O$	1	ALLOW multiples but not same species on both sides ALLOW equilibrium sign IGNORE state symbols if shown ALLOW $H_3O^+ + OH^- \longrightarrow 2H_2O$ ALLOW $CH_3COCOOH + OH^- \longrightarrow CH_3COCOO^- + H_2O$
	(c)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.11, award 4 marks		IF there is an alternative answer, check to see if there is any ECF credit possible using working below
			$K_{a} = 10^{-pKa}$ $= 10^{-2.39} \text{ OR } 0.00407 \checkmark$ $K_{a} = \frac{[H^{+}] [CH_{3}COCOO^{-}]}{[CH_{3}COCOOH]} \text{ (ALLOW use of HA,H^{+} and A^{-})}$ $OR [H^{+}] = \sqrt{(K_{a} \times [HA])}$ $OR [H^{+}] = \sqrt{0.00407 \times 0.0150} \checkmark$ (subsumes 1st marking point) [H^{+}] = 0.00782 \text{ (mol dm}^{-3}) \checkmark $pH = -\log 0.00782 = 2.11 \checkmark$	4	 IF ECF, ANNOTATE WITH TICKS AND CROSSES, etc ALLOW 0.0041 to calculator value: 0.004073802 IF the pK_a of a different weak acid has been used use ECF from 2nd marking point ALLOW 0.0078 to calculator value (depending on previous rounding) ALLOW ONLY 2.11 (This is to take into account poor previous rounding) IF candidate has used 0.0150 mol dm⁻³ (<i>ie</i> assumes strong acid) ALLOW final mark ONLY by ECF for a pH of 1.82 IF no square root used, pH = 4.21 3 marks

F32	F325			Mark Scheme	June 2011	
(Question		Answer	Mark	Guidance	
4	(d)	(i)	0 H—0 0 H √	1	ALLOW correct structural OR displayed OR skeletal formula OR recognisable mixture of formulae DO NOT ALLOW molecular formula but ALLOW (COOH) ₂ OR (CO ₂ H) ₂	
		(ii)	$C_{2}H_{2}O_{4} \rightleftharpoons H^{+} + C_{2}HO_{4}^{-} \checkmark$ $C_{2}HO_{4}^{-} \rightleftharpoons H^{+} + C_{2}O_{4}^{2-} \checkmark$	2	ALLOW in either order ALLOW arrow instead of equilibrium sign ALLOW molecular formulae for this part ALLOW equilibria involving H ₂ O and H ₃ O ⁺ ALLOW equations using structures	

Question	Answer	Mark	Guidance
4 (e)	Chemicals (1 mark) lactic acid / CH ₃ CHOHCOOH AND (sodium) lactate / CH ₃ CHOHCOO ⁻ (Na ⁺) ✓		ANNOTATE WITH TICKS AND CROSSES, etc ALLOW any lactate salt ALLOW lactic acid AND NaOH OR lactic acid AND OH ⁻
	Concentrations (4 marks)		FOR ALTERNATIVE using Henderson–Hasselbalch equation, SEE PAGE 11
			If another weak acid has been selected and salt has been selected, allow ECF for remainder of question SEE PAGE 12
	EITHER [H ⁺ (aq)] = $10^{-3.55}$ OR 2.8 x 10^{-4} OR 2.82 x 10^{-4} (mol dm ⁻³) ✓ separate marking point		ALLOW 2.8 x 10^{-4} up to calculator value of 2.81838 x 10^{-4} ALLOW 0.00028, etc
	$K_{\rm a}$ = 10 ^{-3.86} OR 1.4 x 10 ⁻⁴ OR 1.38 x 10 ⁻⁴ (mol dm ⁻³)		ALLOW 1.4 x 10^{-4} up to calculator value of 1.38038 x 10^{-4} ALLOW 0.00014, etc
	separate marking point		ALLOW use of CH ₃ CHOHCOOH AND CH ₃ CHOHCOO ⁻ (Na ⁺) ALLOW use of acid AND salt
	$\frac{[HA]}{[A^-]} = \frac{[H^+]}{K_a} OR \qquad \frac{[A^-]}{[HA]} = \frac{K_a}{[H^+]} \checkmark$		ALLOW value from $\frac{\text{calculated value of }[\text{H}^{\dagger}]}{\text{calculated value of }\mathcal{K}_{a}}$
	$\frac{[\text{HA}]}{[\text{A}^-]} = \frac{2.8 \times 10^{-4}}{1.4 \times 10^{-4}} \text{ OR } \frac{2}{1} \text{ OR } 2 \text{ OR } \frac{[\text{A}^-]}{[\text{HA}]} = \frac{0.5}{1} \text{ OR}$ 0.5 \scrimel{eq:1}		ALLOW 2SF up to calculator value of 2.041742129 correctly rounded but ALLOW 2 if 2.8 x 10^{-4} and 1.4 x 10^{-4} used ALLOW 2 mol dm ⁻³ HA AND 1 mol dm ⁻³ A ⁻ OR any concentration ratio of 2(acid) : 1(salt)
	This marking point subsumes previous marking point ONLY		ALLOW 2SF up to calculator value of 0.489778819 correctly
	<i>Comment (1 mark)</i> Magic tang/taste could come from other chemicals/substances in the sweet OR	6	rounded but ALLOW 0.5 if 2.8 x 10^{-4} and 1.4 x 10^{-4} used
	The buffer would have the same taste/tang as the magic tang ✓		

Question	Answer	Mark	Guidance
	ALTERNATIVE approach for concentrations using Henderson–Hasselbalch equation (4 marks) $pH = pK_a + \log \frac{[A^-]}{[HA]}$ $OR - \log K_a + \log \frac{[A^-]}{[HA]}$		ALLOW use of CH ₃ CHOHCOOH AND CH ₃ CHOHCOO ⁻ (Na ⁺) ALLOW use of acid AND salt ALLOW pH = $pK_a - \log \frac{[HA]}{[A^-]}$ OR $-\log K_a - \log \frac{[HA]}{[A^-]}$
	$\log \frac{[A^{-}]}{[HA]} = 3.55 - 3.86 \checkmark \text{ (subsumes previous mark)}$ $\log \frac{[A^{-}]}{[HA]} = -0.31 \checkmark \text{ (subsumes previous mark)}$ $\frac{[A^{-}]}{[HA]} = 10^{-0.31} = \frac{0.490}{1} \text{ OR } 0.490 \checkmark$		ALLOW $\log \frac{[HA]}{[A^-]} = 3.86 - 3.55$ (subsumes previous mark) ALLOW $\log \frac{[HA]}{[A^-]} = 0.31$ (subsumes previous mark) ALLOW $\frac{[HA]}{[A^-]} = 10^{0.31} = \frac{2.04}{1}$ OR $\frac{2}{1}$ OR 2 For $\frac{[A^-]}{[HA]}$, ALLOW 2 SF up to calculator value of 0.48978819
			[HA] For $\frac{[HA]}{[A^-]}$, ALLOW 2 SF up to calculator value of 2.041737945 but ALLOW 2 if 10 ^{-0.31} used

Mark Scheme

June 2011

Question	Answer		Mark Guidar	ice					
(e)	SUMMARY OF 4(e) MARKING POINTS FOR EACH POSSIBLE ACID CHOSEN FIRST, CHECK THE ANSWER ON ANSWER LINE: IF answer is correct for weak acid chosen, award MP2–MP5 IF there is an alternative answer, check to see if there is any ECF credit possible using working below								
		lactic	pyruvic	acetic	benzoic				
	р <i>К</i> а	3.86	2.39	4.76	4.19				
	MP1	lactic AND lactate OR lactic acid AND OH⁻	No mark	No mark	No mark				
	MP2: [H⁺]	$10^{-3.55}$ OR 2.82 x 10^{-4} (calc: 2.81838 x 10^{-4})							
	MP3: <i>K</i> a	10 ^{-3.86} OR 1.38 x 10 ⁻⁴	10 ^{-2.39} OR 4.07 x 10 ⁻³	10 ^{-4.76} OR 1.74 x 10 ⁻⁵	10 ^{-4.19} OR 6.46 x 10 ⁻⁵				
	calc:	1.380384265 x 10 ⁻⁴	4.073802778 x 10 ⁻³	1.737800829 x 10 ⁻⁵	6.45654229 x 10 ⁻⁵				
	MP4: ratio expression	$\frac{[HA]}{[A^-]} = \frac{[H^+]}{K_a} \text{OR} \frac{[A^-]}{[HA]} = \frac{K_a}{[H^+]}$							
	MP5: [HA] [A ⁻]	$\frac{2.82 \times 10^{-4}}{1.38 \times 10^{-4}} \text{ OR } 2.04$	$\frac{2.82 \times 10^{-4}}{4.07 \times 10^{-3}} \text{ OR } 0.0693$	$\frac{2.82 \times 10^{-4}}{1.74 \times 10^{-5}} \text{ OR } 16.2$	$\frac{2.82 \times 10^{-4}}{6.46 \times 10^{-5}} \text{ OR } 4.37$				
	calc:	2.041737945	calc: 0.069183097	calc: 16.21810097	calc: 4.365158322				
	OR $\frac{[A^-]}{[HA]}$	$\frac{1.38 \times 10^{-4}}{2.82 \times 10^{-4}} \text{ OR } 0.489$	$\frac{4.07 \times 10^{-3}}{2.82 \times 10^{-4}} \text{ OR } 14.4$	$\frac{1.74 \times 10^{-5}}{2.82 \times 10^{-4}} \text{ OR } 0.0617$	$\frac{6.46 \times 10^{-5}}{2.82 \times 10^{-4}} \text{ OR } 0.229$				
	calc:	0.489778819	14.45439771	0.0616595	0.229086765				
	TAKE CARE: Calc values are completely unrounded and may differ between brands of calculator Use actual candidate values at each stage using rounding to 2 or more SF. MP5: calculated using 3 SF from MP2 and MP3 calc values for MP5 are completely unrounded (using calculator values from MP2 and MP3) Be slightly flexible as candidates may have written down rounded values but carried on with calculator values – This approach is ACCEPTABLE								
			Total 20						

C	Questi	ion	Answer	Mark	Guidance		
5	(a)		$\begin{array}{ll} \mbox{process} & \mbox{increase decrease} \\ C_2H_5OH(I) \rightarrow C_2H_5OH(g) & \checkmark \\ \label{eq:c2H2} \\ C_2H_2(g) + 2H_2(g) \rightarrow C_2H_6(g) & \checkmark \\ \mbox{NH}_4Cl(s) + aq \rightarrow NH_4Cl(aq) & \checkmark \\ \mbox{4Na}(s) + O_2(g) \rightarrow 2Na_2O(s) & \checkmark \\ \mbox{2CH}_3OH(I) + 3O_2(g) \rightarrow 2CO_2(g) + 4H_2O(I) & \checkmark \\ \mbox{All 5 correct} & \longrightarrow 2 \mbox{ marks} \\ \mbox{4 correct} & \longrightarrow 1 \mbox{ mark} \end{array}$	2			
	(b)		 Δ<i>H</i>: + AND bonds broken ✓ Δ<i>S</i>: + AND more random/more disorder/more ways of arranging energy ✓ 	2	Sign and reason required for each mark ALLOW forces of attraction/hydrogen bonds are overcome DO NOT ALLOW response in terms of bonds breaking AND bond making (for melting bonds are just broken) DO NOT ALLOW responses implying that bonds within H ₂ O molecules are broken IGNORE comments related to ΔG IGNORE comments related to ΔG		
	(c)	(i)	$\Delta S = (3 \times 131 + 198) - (186 + 189) \checkmark$ $\Delta S = (+)216 (J \text{ K}^{-1} \text{ mol}^{-1}) \checkmark$	2	ALLOW 1 mark for –216 (wrong sign) ALLOW 1 mark for –46 (131 instead of 3 x 131) ALLOW 1 mark for 594 (sign of 189)		

Mark Scheme

June 2011

Que	stion	Answer	Mark	Guidance
5 (c) (ii)	 Two from points below: 1. fuel OR fuel cells 2. manufacture of margarine OR hydrogenation of alkenes/unsaturated fats 3. manufacture of ammonia OR 'Haber process' ✓ 4. manufacture of HCl/hydrochloric acid 5. reduction of metal ores/metal oxides 	1	2 uses for one mark IGNORE hydrogenation of margarine
(d)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -109 , award first 3 marks for calculation At 298 K, 91.2 = $176 - T\Delta S \checkmark$		IF there is an alternative answer, check to see if there is any ECF credit possible using working below
		$\Delta S (= \frac{176 - 91.2}{298}) = 0.285 \text{ (kJ K}^{-1} \text{ mol}^{-1})$ OR $\Delta S (= \frac{176000 - 91200}{298}) = 285 \text{ (J K}^{-1} \text{ mol}^{-1}) \checkmark$ <i>subsumes 1st marking point</i> At 1000 K, $\Delta G = 176 - 1000 \times 0.285$ $= -109 \text{ (kJ mol}^{-1}) \checkmark$		ALLOW 0.285 (3 SF) up to calculator value of 0.284563758 ALLOW 285 (3 SF) up to calculator value of 284.563758 ALLOW –109 up to calculator value correctly rounded, i.e. – 108.6, –108.56, etc ALLOW ECF from incorrect ΔS , <i>ie</i> calculated value of ΔG from
		Reaction does take place (spontaneously) because $\Delta G < 0$ OR ΔG is -ve \checkmark Note : If no value of ΔG , this mark cannot be awarded.	4	ΔG = 176 – 1000 x calculated value of ΔS Answer and reason BOTH needed for mark ALLOW reaction is feasible for 'reaction does take place' Note : If candidate has a + ΔG value, mark ECF , ie reaction does not take place because ΔG > 0 OR ΔG is +ve
		Total	11	

C	Quest	ion	Answer	Mark	Guidance
6	(a)		Ni $1s^22s^22p^63s^23p^63d^84s^2 \checkmark$ d block: (Ni:) 'd' is highest energy sub-shell/orbital \checkmark		ANNOTATE WITH TICKS AND CROSSES, etc Note: Examples must be for Ni, not other d block elements ALLOW 4s before 3d, ie 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁸ ALLOW [Ar]4s ² 3d ⁸ OR [Ar]3d ⁸ 4s ² ALLOW upper case D, etc and subscripts, e.g. [Ar]4S ₂ 3D ₈ DO NOT ALLOW highest energy shell is 'd' OR 'd is the outer sub-shell' (4s as well)
			 Ni²⁺: 1s²2s²2p⁶3s²3p⁶3d⁸ ✓ Transition element: has an ion with an incomplete/partially-filled d sub-shell/orbital ✓ A ligand donates an electron pair to Ni²⁺ OR metal ion OR metal ✓ 	4	 ALLOW [Ar]3d⁸ ALLOW electron configurations with 4s⁰ ALLOW for example Ni³⁺ 1s²2s²2p⁶3s²3p⁶3d⁷ OR [Ar]3d⁷ No other Ni ions are acceptable ALLOW lone pair forms a coordinate bond to Ni²⁺ (which will also collect the coordinate bond mark)
			A complex ion is an ion bonded to ligand(s)/surrounded by ligands ✓ Coordinate bond/dative covalent mentioned at least	3	ALLOW diagram of [Ni(H ₂ O) ₆] ²⁺ complex ion for 2nd marking point
	(b)	(i)	once in the right context \checkmark $\begin{bmatrix} H_2 O_{III_1} & H_2 & 00^{\circ} \\ H_2 O_{III_1} & H_2 & 0H_2 \\ H_2 & 0H_2 \end{bmatrix}^{2+}$ 3D diagram \checkmark 90° bond angle \checkmark	2	Must contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge': $\begin{bmatrix} H_2 O_{H_2} & 0H_2 \\ H_2 O_{H_2} & 0H_2 \\ 0H_2 & 0H_2 \end{bmatrix}^{2+}$ ALLOW dotted line OR unfilled wedge as alternatives for dotted wedge Accept bonds to H_2O (does not need to go to 'O') Accept 90 ° written by diagram. Charge NOT needed. Square brackets NOT needed

C	Questi	ion	Answer	Mark	Guidance
6	(b)	(ii)	A: NiCl₄ ^{2−} ✓		ALLOW $[NiCl_4]^{2-}$ DO NOT ALLOW $Ni(Cl^-)_4^{2-}$
			B: Ni(OH)₂ ✓	2	ALLOW Ni(OH) ₂ (H ₂ O) ₄ OR [Ni(OH) ₂ (H ₂ O) ₄]
		(iii)	C : [Ni(NH ₃) ₆] ²⁺ ✓	1	Square brackets essential 2+ charge must be outside square brackets ALLOW [Ni(OH) ₆] ^{4–}
		(iv)			1 mark for each side of equation
			$[\operatorname{Ni}(\operatorname{H}_2\operatorname{O})_6]^{2^+} + 6\operatorname{NH}_3 \longrightarrow [\operatorname{Ni}(\operatorname{NH}_3)_6]^{2^+} + 6\operatorname{H}_2\operatorname{O}$	2	ALLOW equilibrium sign ALLOW ECF from (iii) for the following: $[Ni(NH_3)_4]^{2^+}$ (wrong number of NH ₃) Any 6 coordinate Ni ²⁺ complex with NH ₃ and H ₂ O ligands, e.g. $[Ni(NH_3)_4(H_2O)_2]^{2^+}$, $[Ni(NH_3)_5(H_2O)]^{2^+}$, etc
					ALLOW from $[Ni(OH)_6]^{4-}$, $[Ni(H_2O)_6]^{2^+} + 6OH^- \longrightarrow [Ni(OH)_6]^{4-} + 6H_2O$ OR $[Ni(H_2O)_6]^{2^+} + 6NH_3 \longrightarrow [Ni(OH)_6]^{4-} + 6NH_4^+$
	(c)	(i)	$C_{10}H_8N_2 \checkmark$	1	ALLOW atoms in any order
		(ii)	4 ✓	1	
		(iii)	One mark for each structure 2nd structure must be correct mirror image of 1st structure	2	Charge and N atom labels NOT needed ALLOW any attempt to show bipy. Bottom line is the diagram on the left. 1 mark for 3D diagram with ligands attached for ONE stereoisomer. Must contain 2 out wedges, 2 in wedges and 2 lines in plane of paper: ALLOW structures with Ni in centre

G	luesti	ion	Answer	Mark	Guidance
6	(c)	(iv)	3 marks available 1st mark Correct 4,4'-bipy structure shown separately or within attempted structure with Ni ²⁺ \checkmark		ALLOW aromatic rings
			2 marks The remaining 2 marks are available for a section of the polymer with repeat unit identified as follows:		
			IF Ni is bonded to 4 H_2Os (bond to O) with a bond to N end of two 4,4'-bipy structure		
			OR		
			IF each N of 4,4'-bipy is bonded to a Ni bonded to 4 H_2Os (bond to O), award 1 mark \checkmark	3	H_2O Ni Ni H_2O Ni H_2O Ni H_2O Ni H_2O Ni H_2O OH_2 OH_2 OH_2 OH_2
			IF correct repeat unit is shown, award 2 marks \checkmark		Charge NOT needed. Square brackets NOT needed
			$\begin{bmatrix} H_2O_1 & OH_2 \\ \hline \end{array} \end{bmatrix} \xrightarrow{2+} $		Bonds around Ni do NOT need to be shown 3D Accept bonds to H_2O (does NOT need to go to 'O')
					ALLOW the following structure for repeat unit for all 2nd and 3rd marks:
					$ \begin{array}{c c} H_2O & OH_2 \\ \hline H_2O & Ni \\ H_2O & OH_2 \\ \hline H_2O & OH_2 \\ \hline \end{array} $
			Total	21	

G	luesti	on	Answer	Mark	Guidance
7	(a)		 Definition The e.m.f. (of a half-cell) compared with a standard hydrogen half-cell/standard hydrogen electrode ✓ Standard conditions Temperature of 298 K / 25°C AND (solution) concentrations of 1 mol dm⁻³ AND pressure of 101 kPa OR 100 kPa ✓ 	2	 ALLOW voltage OR potential difference OR p.d. OR electrode potential OR reduction potential OR redox potential as alternative for e.m.f. IGNORE S.H.E. (as abbreviation for standard hydrogen electrode) ALLOW 1 atmosphere/1 atm OR 10⁵ Pa OR 1 bar
	(b)		1.25 (V) ✓	1	IGNORE any sign
	(c)	(i)	Cd + 2NiO(OH) + 2H ₂ O \longrightarrow Cd(OH) ₂ + 2Ni(OH) ₂ LHS: correct species and correctly balanced \checkmark RHS: correct species and correctly balanced \checkmark	2	2 marks for correct equation ALLOW NiOOH OR NiO2HALLOW \rightleftharpoons sign for equation (<i>ie</i> assume reaction goes from left to right) ALLOW 1 mark for correctly balanced equation with e ⁻ and/or OH ⁻ shown e.g.: Cd + 2NiO(OH) + 2H ₂ O + 2OH ⁻ + 2e ⁻ \longrightarrow Cd(OH) ₂ + 2Ni(OH) ₂ + 2OH ⁻ + 2e ⁻ ALLOW 1 mark for balanced correct reverse equation with
		(ii)	oxidation: Cd from 0 to $+2 \checkmark$ '+' sign not required reduction: Ni from +3 to $+2 \checkmark$ '+' sign not required	2	ALLOW $Cd^0 \rightarrow Cd^{2+}$ (shows 0 and 2+)ALLOW $Ni^{3+} \rightarrow Ni^{2+}$ (shows 3+ and 2+)ALLOW ECF from (c)(i) equation written 'wrong way around'.
	(d)	(i)	reverse reactions to charging OR $Cd(OH)_2 + 2e^- \longrightarrow Cd + 2OH^-$ $Ni(OH)_2 + OH^- \longrightarrow NiO(OH) + H_2O + e^-$ OR reaction that is reverse to reaction given in c(i) : $Cd(OH)_2 + 2Ni(OH)_2 \longrightarrow Cd + 2NiO(OH) + 2H_2O \checkmark$	1	If half-equations are given, then BOTH equations required ALLOW \rightleftharpoons sign for equation (<i>ie</i> assume reaction goes from left to right)

Mark Scheme

June 2011

C	Question		Answer	Mark	Guidance
7	(d)		$\begin{array}{rcl} 4OH^{-} & \longrightarrow & O_{2} + 2H_{2}O + 4e^{-}\checkmark \\ 2H_{2}O + 2e^{-} & \longrightarrow & H_{2} + 2OH^{-}\checkmark \end{array}$	2	ALLOW multiples; ALLOW ≓ sign for each equation Note: These are the only correct responses
			Total	10	

Question	Answer	Mark	Guidance
8	step 1 $Cu + 4HNO_3 \longrightarrow Cu^{2+} 2NO_3^- + 2NO_2 + 2H_2O$ $OR Cu + 2H^+ + 2HNO_3 \longrightarrow Cu^{2+} 2NO_2 + 2H_2O$ $OR Cu + 4H^+ + 2NO_3^- \longrightarrow Cu^{2+} 2NO_2 + 2H_2O \checkmark$ step 2 2 equations with 1 mark for each $Cu^{2+} + CO_3^{2-} \longrightarrow CuCO_3 \checkmark$ $2H^+ + CO_3^{2-} \longrightarrow H_2O + CO_2 \checkmark$ step 4 $2Cu^{2+} + 4I^- \longrightarrow 2CuI + I_2 \checkmark$	4	ANNOTATE ALL Q8 WITH TICKS AND CROSSES, etc ALLOW multiples throughout IGNORE state symbols throughout ALLOW Cu(NO ₃) ₂ for Cu ²⁺ + 2NO ₃ ⁻ AWARD 2 MARKS for a combined equation: Cu ²⁺ + 2H ⁺ + 2CO ₃ ²⁻ \longrightarrow CuCO ₃ + H ₂ O + CO ₂ \checkmark \checkmark DO NOT ALLOW 2H ⁺ + CO ₃ ²⁻ \longrightarrow H ₂ CO ₃ ALLOW 2Cu ²⁺ + 4KI \longrightarrow 2CuI + I ₂ + 4K ⁺ ALLOW Cu ²⁺ + I ⁻ \longrightarrow Cu ⁺ + 1/ ₂ I ₂

Question	Answer	Mark	Guidance
8	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 67.6%, award 5 marks. Ignore any attempted equation in step 4 IF answer = 33.8% AND IF Cu^{2+}/I_2 in step 4 equation shown with 1:1 molar ratio, award 5 marks for ECF 		IF there is an alternative answer, check to see if there is any ECF credit possible using working below Working must be to 3 SF throughout until final % mark BUT ignore trailing zeroes, ie for 0.490 allow 0.49
	amount $I_2 = 1.49 \times 10^{-3} \text{ mol}$ OR amount $Cu^{2+} = 2.98 \times 10^{-3} \text{ mol} \checkmark$ amount Cu^{2+} in original 250 cm ³ = 10 x 2.98 x 10 ⁻³ = 2.98 x 10 ⁻² mol \checkmark Mass of Cu/Cu ²⁺ in brass = 63.5 x 2.98 x 10 ⁻² g = 1.8923 g \checkmark percentage Cu in brass = $\frac{1.8923}{2.80} \times 100$ = 67.6% \checkmark MUST be to one decimal place (in the question)	5	ECF answer above ECF 10 x answer above ECF 63.5 x answer above ALLOW 1.88 g ECF $\frac{\text{answer above}}{2.80} \times 100$ Answer must be to one decimal place ALLOW % Cu = 67.5 % IF mass of Cu has been rounded to 1.89 g in previous step Common ECFs: 6.76% x10 missing 3/5 marks for calculation 2 d.p. MS states 1 d.p. 33.8% IF Cu ²⁺ /l ₂ in step 4 equation with 2:1 ratio OR not attempted, response, 4/5 marks for calculation (moles Cu ²⁺ incorrect)
	Total	9	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

