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ADVANCED GCE

MATHEMATICS (MEI)� 4777
Numerical Computation

INSTRUCTIONS TO CANDIDATES

•	 Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces 
provided on the Answer Booklet.

•	 Use black ink. Pencil may be used for graphs and diagrams only.
•	 Read each question carefully and make sure that you know what you have to do before starting your answer.
•	 Answer any three questions.
•	 Do not write in the bar codes.
•	 Additional sheets, including computer print-outs, should be fastened securely to the Answer Booklet.

COMPUTING RESOURCES

•	 Candidates will require access to a computer with a spreadsheet program and suitable printing facilities 
throughout the examination.

INFORMATION FOR CANDIDATES

•	 The number of marks is given in brackets [  ] at the end of each question or part question.
•	 In each of the questions you are required to write spreadsheet routines to carry out various numerical 

analysis processes.
•	 You will not receive credit for using any numerical analysis functions which are provided within the 

spreadsheet. For example, many spreadsheets provide a solver routine; you will not receive credit for using 
this routine when asked to write your own procedure for solving an equation.

	 You may use the following built-in mathematical functions: square root, sin, cos, tan, arcsin, arccos, arctan, 
ln, exp.

•	 For each question you attempt, you should submit print-outs showing the spreadsheet routine you have 
written and the output it generates. It will be necessary to print out the formulae in the cells as well as the 
values in the cells.

	 You are not expected to print out and submit everything your routine produces, but you are required to 
submit sufficient evidence to convince the examiner that a correct procedure has been used.

•	 You are advised that an answer may receive no marks unless you show sufficient detail of the working to 
indicate that a correct method is being used.

•	 The total number of marks for this paper is 72.
•	 This document consists of 4 pages. Any blank pages are indicated.
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1	 (i)	 The equation x = g(x) has a root x = α. State a condition on the derivative of g(x) that will ensure 
convergence of the iteration xr + 1 = g(xr) provided x0 is close enough to α.

		  Obtain the relaxed iteration xr + 1 = l g(xr) + (1 – l) xr. Show that, for fastest convergence, 

		�  l = 1
1 – g9(α) .

		  State how a value for l would be chosen in practice.� [7]

	 (ii)	 Use a spreadsheet to show graphically that the equation 

		�  x = 3 sin x – 0.5 

		  (where x is in radians) has two roots in the interval (0, 3). Use your graph to give approximate 
values for these roots.

		  Show that the iteration

�		  xr + 1 = 3 sin xr – 0.5

		  does not converge to either root. You should try several values of x0 in each case.

		  Use the method of relaxation to find each root correct to 6 decimal places.� [17]

2	 The Gaussian 3-point integration formula has the form

			   h

–h
f(x) dx = a f(–α) + b f(0) + a f(α).

	 (i)	 By considering f(x) = 1, x, x2, x3, x4, obtain the three equations that determine a, b and α. Verify 
that these equations are satisfied by

� 		  α = 
   

3
5 h,

�		  a = 5
9  h,

�		  b = 8
9  h.� [8]

	 (ii)	 Taking h = p8 initially, use the Gaussian 3-point rule to estimate the value of

�		
p
4

0
1+ tan x x d .

		  Repeat the process, halving h as necessary, in order to establish the value of the integral correct to 
6 decimal places.� [12]

	 (iii)	 Determine, correct to 3 decimal places, the value of k such that

�		
p
4

0
1+ k x xtan  d = 1.� [4]
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3	 The second order differential equation

			   d2y
dx2 +   x  dy

dx  + xy = 1

	 with initial conditions x = 0, y = 0, dy
dx  = a, is to be solved for various values of a using finite difference 

methods.

	 (i)	 Consider first the case a = 1.

		  Show that, in the usual notation, 

yr + 1 = 
2 2 2 2

2

2
1

2( ) ( )− + − +

+
−h x y h x y h

h x
r r r r

r

 
,

		  and that
					     y1 = h + 1

2  h2.          (*)� [8]

	 (ii)	 Obtain a solution from x = 0 to x = 5 with h = 0.1. Use your spreadsheet to produce a graph of this 
solution.� [9]

	 (iii)	 Modify (*) to allow different values of a to be used. 

		  Still using h = 0.1, find, correct to 1 decimal place, a negative value of a for which the graph of the 
solution curve crosses the axis very close to x = 2.� [7]

4	 The system of linear equations with augmented matrix

a 1 b 1 1
1 a 1 b 0
b 1 a 1 0
1 b 1 a 0

	 is to be solved, using the Gauss-Seidel method, for various values of a and b. 

	 (i)	 Explain the condition of diagonal dominance. State a condition on a and b that will ensure 
convergence.� [3]

	 (ii)	 Set up a spreadsheet implementing the Gauss-Seidel method and allowing the user to vary the 
values of a and b. 

		  Show that convergence does occur in the case a = 4, b = 2, and does not occur in the case a = 2, 
b = 4.� [12]

	 (iii)	 Investigate the case a = 2, b = 0. What do your results indicate about diagonal dominance?� [4]

	 (iv)	 By modifying your spreadsheet find the inverse of the following matrix.

4 1 2 1
1 4 1 2
2 1 4 1
1 2 1 4

� [5]



4

4777 Jun09© OCR 2009

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials.  OCR has attempted to identify and contact all copyright holders 
whose work is used in this paper.  To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright 
Acknowledgements Booklet.  This is produced for each series of examinations, is given to all schools that receive assessment material and is freely available to download from our public 
website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible 
opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1PB. 

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a 
department of the University of Cambridge.


