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• Read each question carefully and make sure you know what you have to do before starting
your answer.

• Answer all the questions.

• Give non-exact numerical answers correct to 3 significant figures unless a different degree of
accuracy is specified in the question or is clearly appropriate.

• You are permitted to use a graphical calculator in this paper.
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1 It is given that f(x) = ln(1 + cos x).
(i) Find the exact values of f(0), f ′(0) and f ′′(0). [4]

(ii) Hence find the first two non-zero terms of the Maclaurin series for f(x). [2]
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The diagram shows parts of the curves with equations y = cos−1 x and y = 1
2

sin−1 x, and their point of
intersection P.

(i) Verify that the coordinates of P are (1
2

√
3, 1

6
π). [2]

(ii) Find the gradient of each curve at P. [3]
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The diagram shows the curve with equation y = √
1 + x3, for 2 ≤ x ≤ 3. The region under the curve

between these limits has area A.

(i) Explain why 3 < A < √
28. [2]

(ii) The region is divided into 5 strips, each of width 0.2. By using suitable rectangles, find improved
lower and upper bounds between which A lies. Give your answers correct to 3 significant figures.

[4]
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4 The equation of a curve, in polar coordinates, is

r = 1 + 2 sec θ , for − 1
2
π < θ < 1

2
π.

(i) Find the exact area of the region bounded by the curve and the lines θ = 0 and θ = 1
6
π. [5]

[The result � sec θ dθ = ln | sec θ + tan θ | may be assumed.]

(ii) Show that a cartesian equation of the curve is (x − 2)√x2 + y2 = x. [3]
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The diagram shows the curve with equation y = xe−x + 1. The curve crosses the x-axis at x = α.

(i) Use differentiation to show that the x-coordinate of the stationary point is 1. [2]

α is to be found using the Newton-Raphson method, with f(x) = xe−x + 1.

(ii) Explain why this method will not converge to α if an initial approximation x1 is chosen such that
x1 > 1. [2]

(iii) Use this method, with a first approximation x1 = 0, to find the next three approximations x2, x3
and x4. Find α , correct to 3 decimal places. [5]

6 The equation of a curve is y = 2x2 − 11x − 6
x − 1

.

(i) Find the equations of the asymptotes of the curve. [3]

(ii) Show that y takes all real values. [5]
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7 It is given that, for integers n ≥ 1,

In = � 1

0

1(1 + x2)n dx.

(i) Use integration by parts to show that In = 2−n + 2n� 1

0

x2

(1 + x2)n+1
dx. [3]

(ii) Show that 2nI
n+1

= 2−n + (2n − 1)I
n
. [3]

(iii) Find I2 in terms of π. [3]

8 (i) By using the definition of sinh x in terms of ex and e−x, show that

sinh3 x = 1
4

sinh 3x − 3
4

sinh x. [4]
(ii) Find the range of values of the constant k for which the equation

sinh 3x = k sinh x

has real solutions other than x = 0. [3]

(iii) Given that k = 4, solve the equation in part (ii), giving the non-zero answers in logarithmic form.
[3]

9 (i) Prove that
d
dx

(cosh−1 x) = 1√
x2 − 1

. [3]

(ii) Hence, or otherwise, find � 1√
4x2 − 1

dx. [2]

(iii) By means of a suitable substitution, find � √
4x2 − 1 dx. [6]
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