Chemistry A

Mark Schemes for the Units

January 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Chemistry A (H434)
 Advanced Subsidiary GCE Chemistry A (H034)

MARK SCHEME FOR THE UNITS

Unit/Content Page
F321 Atoms, Bonds and Groups 1
F322 Chains, Energy and Resources 13
F324 Rings, Polymers and Analysis 33
Grade Thresholds 45

F321 Atoms, Bonds and Groups

Question		Expected Answers	Marks	Additional Guidance
1	(a)	Mass of the isotope compared to 1/12th OR mass of the atom compared to $1 / 12$ th \checkmark (the mass of a) carbon-12 OR ${ }^{12} \mathrm{C}$ (atom) \checkmark	2	IGNORE Reference to average OR weighted mean (i.e. correct definition of relative atomic mass will score both marks) ALLOW mass of a mole of the isotope/atom with $1 / 12$ th the mass of a mole OR 12 g of carbon- 12 for two marks. ALLOW 2 marks for: 'Mass of the isotope OR mass of the atom compared to ${ }^{12} \mathrm{C}$ atom given a mass of 12.0 i.e. 'given a mass of 12 ' OR C12 is 12 communicates the same idea as $1 / 12$ th.' ALLOW 12C OR C12 ALLOW 2 marks for: mass of the isotope mass of 1/12th mass of carbon-12 i.e. fraction is equivalent to 'compared to' ALLOW 1 mark for a mix of mass of atom and mass of mole of atoms, i.e. 'mass of the isotope/mass of an atom compared with 1/12th the mass of a mole OR 12 g of carbon-12.' DO NOT ALLOW mass of 'ions' OR mass of element
	(b)	$\begin{aligned} & \frac{(151 \times 47.77)+(153 \times 52.23)}{100} \\ & \text { OR } \\ & 72.1327+79.9119 \\ & \text { OR } \\ & 152.0446(\text { calculator value }) \checkmark \\ & A_{r}=152.04 \checkmark \\ & \hline \end{aligned}$	2	ALLOW Correct answer for two marks ALLOW One mark for ECF from transcription error in first sum provided final answer is to 2 decimal points and is to between 151 and 153 and is a correct calculation of the transcription

| Question | | Expected Answers | Marks | Additional Guidance |
| :--- | :--- | :--- | :--- | :---: | :--- |
| | (c) | (i) | ${ }^{153}$ Eu has (2) more neutrons
 OR
 ${ }^{153}$ Eu has 90 neutrons AND ${ }^{151}$ Eu has 88 neutrons \checkmark | ALLOW There are a different number of neutrons
 IGNORE Correct references to protons/electrons
 DO NOT ALLOW Incorrect references to protons / electrons |
| | (ii) | (It has the) same number of protons AND electrons
 OR
 Both have 63 protons and 63 electrons \checkmark | $\mathbf{1}$ | ALLOW Same number of protons AND same electron configuration
 DO NOT ALLOW 'Same number of protons' without reference to
 electrons (and vice versa) |

Question	Expected Answers	Marks	Additional Guidance
(d)	Xe has a bigger atomic radius OR Xe has more shells \checkmark Xe has more shielding The nuclear attraction decreases OR Outermost electrons of Xe experience less attraction (to nucleus) OR Increased shielding / distance outweighs the increased nuclear charge ORA throughout	3	ALLOW Xe has more energy levels ALLOW Xe has electrons in higher energy level ALLOW Xe has electrons further from nucleus IGNORE Xe has more orbitals OR more sub-shells DO NOT ALLOW 'different shell' or 'new shell' ALLOW More screening There must be a clear comparison ie more shielding OR increased shielding. i.e. DO NOT ALLOW Xe 'has shielding' ALLOW Xe has more electron repulsion from inner shells ALLOW Xe has less nuclear pull IGNORE Xe has less effective nuclear charge DO NOT ALLOW nuclear charge for nuclear attraction
	Total	9	

Question			Expected Answers	Marks	Additional Guidance
2	(a)	(i)	The H^{+}ion in an (nitric) acid has been replaced by a metal ion OR by a Ca^{2+} ion \checkmark	1	DO NOT ALLOW it has been produced by the reaction of an acid and a base as this is stated in the question. IGNORE references to replacement by $\mathrm{NH}_{4}{ }^{+}$ions or positive ions. ALLOW H OR Hydrogen for H^{+}; DO NOT ALLOW Hydrogen atoms ALLOW Ca OR Calcium for Ca^{2+}. DO NOT ALLOW Calcium atoms ALLOW 'metal' for 'metal ion
		(ii)	$\begin{aligned} & 2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\ & \text { Formulae } \checkmark \\ & \text { Balance AND states } \checkmark \end{aligned}$	2	ALLOW multiples ALLOW (aq) OR (s) for $\mathrm{Ca}(\mathrm{OH})_{2}$
		(iii)	Accepts a proton OR accepts $\mathbf{H}^{+} \checkmark$	1	ALLOW H ${ }^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$ ALLOW OH^{-}reacts with $\mathbf{H}^{+} \mathrm{OR} \mathrm{OH}^{-}$takes \mathbf{H}^{+} ALLOW OH^{-}'attracts' \mathbf{H}^{+}if 'to form water' is seen DO NOT ALLOW OH^{-}neutralises H^{+}('neutralises' is in the question)
	(b)	(i)	Calculates correctly $\frac{0.0880 \times 25.0}{1000}=2.20 \times 10^{-3} \mathrm{~mol}$ OR 0.00220 mol	1	ALLOW 0.0022 OR $2.2 \times 10^{-3} \mathrm{~mol}$
		(ii)	Calculates correctly $\frac{0.00220}{2}=1.10 \times 10^{-3} \mathrm{~mol}$ OR 0.00110 mol	1	ALLOW 0.0011 OR $1.1 \times 10^{-3} \mathrm{~mol}$ ALLOW ECF for answer (i)/2 as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes
		(iii)	$\begin{aligned} & \frac{0.00110 \times 1000}{17.60}=0.0625 \mathrm{~mol} \mathrm{dm}^{-3} \\ & \text { OR } 6.25 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3} \checkmark \end{aligned}$	1	ALLOW 0.063 OR $6.3 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ ALLOW ECF for answer (ii) $\times 1000 / 17.60$ OR ECF from (i) for answer (i)/2 $\times 1000 / 17.60$ as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes

(c)	(i)	(The number of) Water(s) of crystallisation \checkmark	1	IGNORE hydrated OR hydrous
	(ii)	142.1 $x=\left(\frac{(322.1-142.1)}{18.0}=10 \checkmark\right.$	2	ALLOW 142 ALLOW M_{r} expressed as a sum ALLOW ECF from incorrect M_{r} and x is calculated correctly ALLOW ECF values of x from nearest whole number to calculator value ALLOW 2 marks if final answer is 10 without any working
		Total	10	

Question			Expected Answers	Marks	Additional Guidance
3	(a)	(i)	(Electrostatic) attraction between oppositely charged ions.	1	IGNORE force IGNORE references to transfer of electrons MUST be ions, not particles
		(ii)	Mg shown with either 8 of 0 electrons AND S shown with 8 electrons with 2 crosses and 6 dots (or vice versa) Correct charges on both ions	2	Mark charges on ions and electrons independently For first mark, if 8 electrons are shown around the Mg then 'extra electrons' around S must match the symbol chosen for electrons around Mg Shell circles not required IGNORE inner shell electrons Brackets are not required
	(b)	(i)	Electron pairs in covalent bonds shown correctly using dots and crosses in a molecule of the $\mathrm{F}_{2} \mathrm{O} \checkmark$ Lone pairs correct on O and both F atoms \checkmark	2	Must be 'dot-and-cross' circles for outer shells NOT needed IGNORE inner shells Non-bonding electrons of O do not need to be shown as pairs Non-bonding electrons of F do not need to be shown as pairs
		(ii)	Predicted bond angle 104-105 ${ }^{\circ}$. There are 2 bonded pairs and 2 lone pairs Lone pairs repel more than bonded pairs	3	ALLOW $103-105^{\circ}\left(103^{\circ}\right.$ is the actual bond angle $)$ ALLOW responses equivalent to second marking point. e.g. There are 4 pairs of electrons and 2 of these are lone pairs ALLOW 'bonds' for 'bonded pairs' DO NOT ALLOW 'atoms repel' DO NOT ALLOW electrons repel ALLOW LP for 'lone pair' ALLOW BP for bonded pair ALLOW LP repel more if bonded pairs have already been mentioned

Question		Expected Answers	Marks	Additional Guidance
(c)	(i)	(At least) two NH_{3} molecules with correct dipole shown with at least one H with δ^{+}and one N with δ^{-} (Only) one hydrogen bond from N atom on one molecule to a H atom on another molecule Lone pair shown on the N atom and hydrogen bond must hit the lone pair \checkmark	3	DO NOT ALLOW first mark for ammonia molecules with incorrect lone pairs DO NOT ALLOW first mark if $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{2}$ or NH is shown ALLOW hydrogen bond need not be labelled as long as it clear the bond type is different from the covalent $\mathrm{N}-\mathrm{H}$ bond ALLOW a line (i.e. looks like a covalent bond) as long as it is labelled 'hydrogen bond) ALLOW 2-D diagrams ALLOW two marks if water molecules are used. One awarded for a correct hydrogen bond and one for the involvement of lone pair
	(ii)	Liquid $\mathrm{H}_{2} \mathrm{O}$ is denser than solid \checkmark In solid state $\mathrm{H}_{2} \mathrm{O}$ molecules are held apart by hydrogen bonds OR ice has an open lattice \checkmark OR $\mathrm{H}_{2} \mathrm{O}$ has a relatively high boiling point OR melting point \checkmark (relatively strong) hydrogen bonds need to be broken OR a lot of energy is needed to overcome hydrogen bonds OR hydrogen bonds are strong \checkmark	2	ORA ALLOW ice floats for first mark ALLOW higher melting OR boiling point than expected DO NOT ALLOW $\mathrm{H}_{2} \mathrm{O}$ has a high melting / boiling point ALLOW other properties caused by hydrogen bonding not mentioned within the specification E.g. high surface tension - strong hydrogen bonds on the surface
		Total	13	

Question			Expected Answers	Marks	Additional Guidance
4	(a)		Advantage removes or kills bacteria OR kills germs OR kills micro-organisms OR make it safe to drink OR sterilises water OR disinfects water \checkmark Disadvantage it is toxic OR poisonous OR could form chlorinated hydrocarbons \checkmark	2	ALLOW to make water potable IGNORE virus IGNORE 'purifies water' DO NOT ALLOW 'antiseptic’ ALLOW forms carcinogens OR forms toxins IGNORE harmful DO NOT ALLOW 'it causes cancer' DO NOT ALLOW "It kills you"
	(b)		$3 d^{10} 4 s^{2} 4 p^{5} \checkmark$	1	ALLOW $4 s^{2} 3 d^{10} 4 p^{5}$ ALLOW subscripts or 3D ${ }^{10}$ ALLOW answers with $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ appearing twice
	(c)	(i)	$\mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-} \checkmark$	1	IGNORE state symbols ALLOW any correct multiple including fractions
		(ii)	Yellow / orange / red / brown \checkmark	1	ALLOW any combination of these, but no others
	(d)	(i)	Disproportionation \checkmark	1	ALLOW versions which sound the same DO NOT ALLOW disproportional OR disproportionate OR disproportion
		(ii)	$\begin{aligned} & \mathrm{Cl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{NaClO}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \checkmark \\ & 3 \mathrm{Cl}_{2}+6 \mathrm{NaOH} \rightarrow \mathrm{NaClO}_{3}+5 \mathrm{NaCl}+3 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ Cl_{2} and NaOH as reactants AND NaClO_{3} and NaCl as products \checkmark Rest of the equation \checkmark	3	ALLOW multiples for either equation $\text { ALLOW } 3 \mathrm{Cl}_{2}+6 \mathrm{NaOH} \rightarrow 2 \mathrm{NaClO}_{3}+4 \mathrm{NaCl}+3 \mathrm{H}_{2}$
		(iii)	$\mathrm{NaClO}_{4} \checkmark$	1	ALLOW $\mathrm{Na}_{3} \mathrm{ClO}_{5}$ etc
			Total	10	

Mark Scheme
January 2010

Question			Expected Answers	Marks	Additional Guidance
5	(a)	(i)	Potassium AND argon \checkmark	1	ALLOW K and Ar
		(ii)	They are arranged in increasing atomic number OR Neither would show properties OR trends of rest of group OR Neither would show properties OR trends of rest of period OR They are arranged by electron configuration \checkmark	1	ALLOW any correct property difference e.g. This would place a reactive metal in the same group as noble gases ALLOW they do not fit in with the rest of the group
	(b)	(i)	$2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO} \checkmark$	1	ALLOW multiples. Correct species must be seen IGNORE state symbols
		(ii)	Fizzes OR bubbles OR gas produced OR effervescing \checkmark Mg dissolves OR Mg disappears OR a solution is formed	2	DO NOT ALLOW 'carbon dioxide gas produced' DO NOT ALLOW 'hydrogen produced' without 'gas' ALLOW 'it for Mg' IGNORE Mg reacts IGNORE temperature change IGNORE steam produced
		(iii)	Quicker OR more vigorous OR gets hotter	1	MUST be a comparison of a reaction observation, not just 'more reactive’ ALLOW any comparison of greater rate including more bubbles etc. DO NOT ALLOW more gas produced

(d)	(ii)	Calculates correctly: Mol of $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}=\frac{5.29}{211.6}=0.0250 \checkmark$ Calculates correctly: Mol of gas $=5 / 2 \times 0.0250=0.0625 \checkmark$ Calculates correctly: Volume of gas $=24.0 \times 0.0625=1.50 \mathrm{dm}^{3} \checkmark$	3	ALLOW 0.025 ALLOW ECF for first answer $\times 2.5$ as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes ALLOW ECF for second answer $\times 24(.0)$ as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes DO NOT ALLOW ECF of first answer $\times 24(.0)$ (which gives 0.6(0) dm^{3}) as this has not measured the volume of any gas, simply 0.0250 mol of solid $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ converted into a gas i.e. This answer would give one mark ALLOW $1.5 \mathrm{dm}^{3}$ ALLOW ECF producing correct volume of NO_{2} only i.e. $1.2(0) \mathrm{dm}^{3}$ would give two marks OR ALLOW ECF producing correct volume of O_{2} only i.e. $0.3(0) \mathrm{dm}^{3}$ would give two marks
		Total	18	

F322 Chains, Energy and Resources

Question			Expected Answers	Marks	Additional Guidance
1	(a)		Fractional distillation Because fractions have different boiling points \checkmark	2	DO NOT ALLOW just 'distillation’ For fractions, ALLOW components OR hydrocarbons OR compounds ALLOW condense at different temperatures ALLOW because van der Waals' forces differ between molecules IGNORE reference to melting points IGNORE 'crude oil' OR 'mixture' has different boiling points' but ALLOW 'separates crude oil by boiling points
	(b)	(i)	Decane \checkmark	1	DO NOT ALLOW deceane
		(ii)	Skeletal formula of branched $\mathrm{C}_{10} \mathrm{H}_{22} \checkmark$	1	Formula must be skeletal AND must not include any symbol, e.g. CH_{3} Any possible skeletal formulae e.g.

Question		Expected Answers	Marks	Additional Guidance	
		(c)	(i)	$\mathrm{C}_{10} \mathrm{H}_{22}+151 / 2 \mathrm{O}_{2} \longrightarrow 10 \mathrm{CO}_{2}+11 \mathrm{H}_{2} \mathrm{O}$ All four species correct \checkmark balancing of four correct species \checkmark	$\mathbf{2}$
		Better fuel is NOT sufficient Burns more cleanly is NOT sufficient			

Question		Expected Answers	Marks	Additional Guidance
(d)	(i)	Species with an unpaired electron \checkmark	1	ALLOW atom, molecule or particle with an unpaired electron ALLOW 'has an unpaired electron' ALLOW particle formed by homolytic fission DO NOT ALLOW particle with a single electron OR particle with a free electron
	(ii)	catalyst \checkmark	1	
	(iii)	$\mathrm{O}+\mathrm{O}_{2} \longrightarrow \mathrm{O}_{3}$ OR O reacts with O_{2} to make ozone OR the reaction is reversible \checkmark Rate of formation of ozone is the same as rate of decomposition \checkmark	2	ALLOW $\mathrm{O}_{2}+\mathrm{O} \rightleftharpoons \mathrm{O}_{3} \quad \mathrm{OR} \quad \mathrm{O}_{3} \rightleftharpoons \mathrm{O}_{2}+\mathrm{O}$ ALLOW is in equilibrium $\mathrm{OR} \rightleftharpoons$ in correct equation OR has steady state condition IGNORE other equations involving ozone
	(iv)	absorbs (harmful) UV \checkmark	1	ALLOW 'keeps out UV' OR 'filters UV' ALLOW increased UV could cause skin cancer OR increased UV could cause cataracts OR increased UV could cause mutation of crops \checkmark IGNORE gamma
		Total	15	

Question			Expected Answers	Marks	Additional Guidance
2	(a)	(i)	$2 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \checkmark$	1	ALLOW any correct multiple including fractions IGNORE state symbols
		(ii)	More crowded particles OR more particles per (unit) volume \checkmark more collisions per second OR more frequent collisions \checkmark	2	ALLOW particles are closer together DO NOT ALLOW 'area' instead of 'volume' IGNORE 'more concentrated particles' ALLOW collisions more often OR increased rate of collision OR collisions are more likely OR there is a greater chance of collisions 'More collisions' is not sufficient
		(iii)	Any two from the following: Reaction takes alternative route \checkmark Activation energy is lowered More molecules have energy above activation energy OR more molecules have enough energy to react	2	ALLOW catalyst changes reaction mechanism ALLOW an alternative approach using adsorption particles adsorbed onto surface so bonds weakened as a result of the adsorption

Question		Expected Answers	Marks	Additional Guidance
	(iv)	Correct curve for higher temperature \checkmark Activation energy does not change OR clearly labelled on diagram, e.g. E_{a} OR $E \checkmark$ More molecules have energy above activation energy OR more molecules have enough energy to react \checkmark	3	maximum of curve to right AND lower than maximum of original curve AND above dotted line at higher energy as shown in diagram below IGNORE minor point of inflexion of curve Note that the diagram above would score all 3 marks More successful collisions is not sufficient
(b)	(i)	$\begin{aligned} & \frac{34.0}{267.4} \times 100 \\ & 12.7 \% \checkmark \end{aligned}$	2	First mark for 267.4 OR (34.0 + 233.4) OR (169.3 + 98.1) at bottom of fraction with or without $\times 100$ ALLOW from 2 sig figs up to calculator value ALLOW full marks for 13 OR 12.7 OR 12.72 OR 12.715 up to calculator value with no working out 12.71 scores one mark only NO ECF for this part from incorrect numbers in first expression

Question		Expected Answers	Marks	Additional Guidance
	(ii)	Any three from the following: Oxygen comes from air \checkmark No poisonous materials formed OR no poisonous materials involved \checkmark No waste products formed OR atom economy is 100% Anthraquinone is regenerated OR recycled OR used again OR Anthraquinone acts as a catalyst \checkmark	3	IGNORE hydrogen comes from the air IGNORE harmful ALLOW higher atom economy
(c)		Bond breaking absorbs energy AND bond making releases energy More energy released than absorbed \checkmark	2	ALLOW bond breaking is endothermic AND bond making is exothermic ALLOW exothermic change transfers more energy than endothermic change OR bond making transfers more energy than bond breaking OR '(the sum of the) bond enthalpies in the products is greater than the (sum of the) bond enthalpies in the reactants' OR '(the sum of the) bond enthalpies of the bonds made is greater than (the sum of) the bond enthalpies of the bonds broken' IGNORE reference to strong and weak bonds IGNORE enthalpy of products is less than enthalpy of reactants
		Total	15	

Question			Expected Answers	Marks	Additional Guidance
3	(a)		Respiration \checkmark	1	IGNORE anaerobic
	(b)	(i)	$\begin{aligned} & 100 \times 4.18 \times 17.3 \checkmark \\ & 7.23(\mathrm{~kJ}) \checkmark \end{aligned}$	2	ALLOW 7231 J \checkmark ALLOW 7.23 with no working out ALLOW from 7.2 up to calculator value of 7.2314 ALLOW from 0.060 up to calculator value for 1 mark (i.e. ECF from use of $m=0.831$ in first stage) IGNORE sign
		(ii)	$\begin{aligned} & M_{\mathrm{r}}=180 \checkmark \\ & \text { amount }=4.62 \times 10^{-3}(\mathrm{~mol}) \checkmark \end{aligned}$	2	ALLOW 4.6×10^{-3} OR 4.62×10^{-3} OR 4.617×10^{-3} up to calculator value DO NOT ALLOW 0.005 ALLOW ECF from wrong M_{r}
		(iii)	$\Delta H_{\mathrm{c}}=1560(\mathrm{~kJ})$ OR $1570(\mathrm{~kJ})$ but answer must be to 3 sig fig \checkmark minus sign \checkmark	2	ALLOW ECF from 'answer to (i) : answer to (ii)' but answer must be to 3 sig fig minus mark is an independent mark

Quest	Expected Answers	Marks	Additional Guidance
(c)	$\begin{aligned} & +1250 \checkmark \\ & +(-394 \times 6)+(-286 \times 6) \mathrm{OR}-4080 \\ & -2830 \checkmark \end{aligned}$	3	ALLOW full marks for -2830 with no working out ALLOW for 2 marks: +2830 cycle wrong way around OR 1400 OR 860 one value not $\times 6$ OR -5330 OR +5330 wrong sign for 1250 or 4080 OR $+570 \checkmark \checkmark$ correct cycle but not $\times 6$ ALLOW for 1 mark: -1400 OR -860 cycle wrong way around and one value not $\times 6$ OR -570 cycle wrong way around and not $\times 6$ OR -1930 OR +1930 \checkmark wrong sign and not $\times 6$ Note: There may be other possibilities.
(d)	Any two from the following: Heat released to the surroundings Incomplete combustion OR incomplete reaction OR not everything burns \checkmark Non-standard conditions	2	ALLOW heat loss IGNORE reference to evaporation
	Total	12	

Question			Expected Answers	Marks	Additional Guidance
4	(a)	(i)	$\mathrm{CH}_{4}+\mathrm{Br}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{Br}+\mathrm{HBr} \checkmark$	1	ALLOW any correct multiple IGNORE state symbols
		(ii)	Dibromomethane OR tribromomethane OR tetrabromomethane	1	ALLOW 1,1-dibromomethane OR 1,1,1-tribromomethane etc ALLOW 1-dibromomethane DO NOT ALLOW 2,2-dibromomethane etc ALLOW correct formulae e.g. $\mathrm{CH}_{2} \mathrm{Br}_{2}$
		(iii)	$\mathrm{Br}_{2} \longrightarrow 2 \mathrm{Br}$ OR homolytic fission of bromine $\begin{aligned} & \mathrm{Br}+\mathrm{CH}_{4} \longrightarrow \mathrm{HBr}+\mathrm{CH}_{3} \checkmark \\ & \mathrm{CH}_{3}+\mathrm{Br}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{Br}+\mathrm{Br} \checkmark \end{aligned}$ $\mathrm{Br}+\mathrm{CH}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{Br}$ $\mathrm{ORBr}+\mathrm{Br} \longrightarrow \mathrm{Br}_{2} \checkmark$ Ethane made when two methyl radicals react $\mathrm{ORCH}_{3}+\mathrm{CH}_{3} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6} \downarrow$ Quality of Written Communication - Consists of initiation step linked to correct equation propagation step linked to one equation in which there is a radical on the left and a radical on the right termination step linked to correct equation: 2 names of steps linked to correct equations \checkmark BUT 3 names of steps linked to correct equations $\checkmark \checkmark$	7	All equations can be described in words Radicals do NOT need a single dot IGNORE any state symbols ALLOW any other suitable termination If no equations are given to link the names of the step then award one mark for mention of all three steps

Quest	Expected Answers	Marks	Additional Guidance
(b)	EITHER Nucleophilic substitution \checkmark Example of nucleophilic substitution \checkmark Heterolytic fission C-I curly arrow \checkmark Correct dipole on C - I bond \checkmark OH^{-}curly arrow from one lone pair on O of OH^{-}ion OR from minus sign on OH^{-}ion \checkmark OR Electrophilic addition \checkmark Example of electrophilic addition \checkmark Heterolytic fission \checkmark Curly arrow from $\mathrm{C}=\mathrm{C}$ bond to $\mathrm{Br}-\mathrm{Br}$ bond and Dipole and curly arrow associated with $\mathrm{Br}_{2} \checkmark$ Correct carbocation ion \checkmark Curly arrow from one lone pair on Br^{-}ion OR from minus sign on Br^{-}ion \checkmark	6	The example mark can be awarded as an example of the name of the mechanism given or if the name is wrong can be given as an example of a reasonably correct drawn mechanism If curly half arrows drawn do not give a mark the first time used and then apply ECF ALLOW mechanisms for other halogenoalkaes ALLOW mechanisms for other halogens and hydrogen halides
	ALLOW Electrophilic substitution \checkmark Example of electrophilic substitution \checkmark Heterolytic fission \checkmark Curly arrow from benzene ring to the electrophile (i.e. $\left.\mathrm{NO}_{2}^{+} \mathrm{OR} \mathrm{Br}^{+}\right)^{\checkmark}$ Correct intermediate \checkmark Curly arrow to show loss of hydrogen ion \checkmark	ALL Nucl Exam Hete Corr Curly OR f Curly	W philic addition le of nucleophilic addition \checkmark lytic fission \checkmark t dipole on carbonyl group \checkmark arrow from lone pair on H^{-}ion minus sign on H^{-}to $\mathrm{C}=\mathrm{O}$ carbon and breaking of $\mathrm{C}=\mathrm{O}$ bond \checkmark arrow from carbonyl oxygen to either H^{+}or $\mathrm{H}_{2} \mathrm{O} \checkmark$
	Total	15	

Question		Expected Answers	Marks	Additional Guidance
(e)	Any two marks from the following: Develop photodegradable polymers \checkmark Develop biodegradable polymers OR develop compostable polymers \checkmark Develop techniques for cracking polymers OR develop use as a chemical feedstock \checkmark Develop ways of making polymers from plant-based substances OR reduce the need to use finite raw materials such as crude oil \checkmark Designing processes with high atom economy OR reduce waste products during manufacture \checkmark Develop ways of sorting AND recycling polymers \checkmark			

Question			Expected Answers	Marks	Additional Guidance	
6	(a)	(i)	2-Methylpropan-2-ol \checkmark	1	ALLOW methylpropan-2-ol	
	(b)			1	Formula must be skeletal AND not include any symbol except for OH	
	(c)	(i)	Same molecular formula but different structural formulae \checkmark	1	ALLOW Same molecular formula but different arrangement of atoms OR Same molecular formula but different structures OR Same molecular formula but different displayed formulae DO NOT ALLOW Same molecular formula but different spatial arrangement of atoms	
		(ii)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \mathrm{OR}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH} \checkmark$ ALLOW OR	1	ALLOW displayed formula ALLOW sticks (i.e. no H shown bonded to C)	
					ALLOW sticks OK and -OH is OK	DO NOT ALLOW OH shown as below sticks OK but OH - is not OK
					ALLOW correct ethers	

Question		Expected Answers	Marks	Additional Guidance
(d)		Has O-H (bonds) OR has hydroxyl (groups) OR has hydroxy (groups) \checkmark Forms hydrogen bonds with water (molecules) \checkmark	2	ALLOW marks from a diagram of hydrogen bonding IGNORE reference to alcohol functional group DO NOT ALLOW 'forms hydrogen bonds'
(e)		$\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{OOCCH}_{3}$ 1 mark for each ester end of molecule $\checkmark \checkmark$	2	ALLOW displayed formula OR skeletal formula ALLOW sticks $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ shows one of the two ester groups and scores one mark
(f)	(i)		2	DO NOT ALLOW i.e. no ECF
	(ii)	$E / Z \checkmark$	1	ALLOW cis-trans IGNORE geometric
	(iii)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ OR but-1-ene \checkmark	1	If but-1-ene given in part (i), ALLOW but-2-ene $\mathrm{OR} \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$ i.e. ECF from $f(i)$ DO NOT ALLOW methylpropene:

From the evidence, candidates may have identified compound F as propanone, propanal or propanoic acid

- The mark scheme for $\mathbf{F}=$ propanone and propanal is shown in the 'Expected Answers' column
- The mark scheme for $\mathbf{F}=$ propanoic acid is shown in the 'Additional Guidance' column.

If F is propanone or propanoic acid, then maximum score $=7$; but if F is propanal then maximum score $=6$

Extra guidance for marking of Q6(g)
If E has not been identified $O R$ if F has been identified as a ketone or aldehyde,
use the left-hand mark scheme

If F has been identified as a carboxylic acid,
use the right-hand mark scheme

Mass spec

These two marking points stand as independent marks whichever compounds have been identified.

The positive sign for fragment ions is not required. IGNORE negative charge.
The mass spec may well be on the actual spectrum.

IR mark

These stand as independent marks whichever compounds have been identified.
The IR analysis may well be on the actual spectrum.

Identification marks

If both structure and name are given they must both be correct
but allow 'propanol' drawn with the correct structure because the position number of the -OH has been clearly identified
ALLOW ECF for identification of F e.g. if E is pentan-2-ol x then an answer of pentan-2-one for F will be given a mark \checkmark as $E C F$
ALLOW identification marks for \mathbf{E} and \mathbf{F} from equation

Equation mark

ALLOW ECF for any correct equation showing the oxidation of any alcohol to the appropriate product
ALLOW molecular formulae in equations,
i.e. $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}+[\mathrm{O}] \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O} \checkmark$;
$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}+[\mathrm{O}] \rightarrow \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \checkmark$;
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}+[\mathrm{O}] \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COH}+\mathrm{H}_{2} \mathrm{O} \checkmark$

Question			Expected Answers	Marks	Additional Guidance
7	(a)	(i)	Infrared (radiation absorbed) \checkmark by (C-H) bond vibration \checkmark	2	ALLOW bond stretching OR bond bending DO NOT ALLOW molecules vibrating
		(ii)	Greater concentration of carbon dioxide OR more carbon dioxide is being made \checkmark	1	ALLOW carbon dioxide is the main contributor to global warming DO NOT ALLOW any response that states that CO_{2} causes ozone depletion ALLOW C=O bonds absorb IR more readily than $\mathrm{C}-\mathrm{H}$ bonds ALLOW carbon dioxide has a greater greenhouse effect

Quest	Expected Answers	Marks	Additional Guidance
(c)	Any two from the following: There are times when CO_{2} has a high concentration and the temperature is also high OR There are times when CO_{2} has a low concentration and the temperature is low \checkmark It is impossible to measure with certainty the average temperature years ago \checkmark There are other gases that may cause a greenhouse effect OR There are other factors that may cause a greenhouse effect \checkmark There are very few anomalous results \checkmark	2	ALLOW a (positive) correlation between temperature and carbon dioxide concentration but DO NOT ALLOW just 'a correlation' IGNORE 'graphs are the same shape' IGNORE 'graphs are similar'
	Total	10	

F324 Rings, Polymers and Analysis

Question			Expected Answers	Marks	Additional Guidance
1	(a)			1	$\text { ALLOW } \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{Br}_{2} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}+\mathrm{HBr}$ DO NOT ALLOW multiple substitution DO NOT ALLOW Br ${ }^{+}$
	(b)	(i)	White precipitate OR white solid OR white crystals \checkmark	2	DO NOT ALLOW colourless DO NOT ALLOW white ppt and bubbles DO NOT ALLOW $\mathrm{Br}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{OH}$ OR 2,4,6-tribromophenol OR tribromophenol
		(ii)	1,2-Dibromocyclohexane \checkmark	1	ALLOW 1,2dibromocyclohexane OR 1-2dibromocyclohexane OR 12dibromocyclohexane OR cyclo-1,2-dibromohexane DO NOT ALLOW dibromocyclohexane OR $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Br}_{2}$ OR structures
		(iii)	MUST spell delocalised/delocalized or localised/localized correctly once in the answer to obtain all 5 marks benzene electrons or π-bonds are delocalised phenol a lone or non-bonded pair of electrons on the oxygen or the OH group is (partially) delocalised into the ring \checkmark cyclohexene electrons are localised OR delocalised between two carbons \checkmark benzene has a lower electron density OR phenol has a higher electron density OR cyclohexene has a higher electron density benzene cannot polarise or induce a dipole in $\mathrm{Br}_{2} \mathrm{OR}$ phenol can polarise the Br_{2} OR cyclohexene can polarise Br_{2} or the $\mathrm{Br}-\mathrm{Br}$ bond \checkmark	5	ALLOW diagram to show overlap of all 6 p -orbitals for delocalisation DO NOT ALLOW benzene has delocalised structure or ring ALLOW diagram to show movement of lone pair into ring for phenol ALLOW diagram or description of overlap of 2 adjacent p-orbitals for bonding in cyclohexene DO NOT ALLOW cyclohexene has a $\mathrm{C}=\mathrm{C}$ double bond IGNORE slip if cyclohexene is written as cyclohexane but π bonding correctly described DO NOT ALLOW charge density OR electronegativity instead of electron density ALLOW $\mathrm{Br}^{\delta+}$ OR electrophile Br^{+}as alternate to polarise

(c)

(c)	 alanine at $\mathrm{pH}=6.0$ glutamic acid at $\mathrm{pH}=10$ lysine at $\mathrm{pH}=2.0$		ALLOW CO ${ }_{2}^{-}$ ALLOW NH ${ }_{3}{ }^{+}$ If NH_{3} fully displayed ALLOW + charge on N or H If COO fully displayed ALLOW ${ }^{-}$charge on O only
(d)	valine-glycine-leucine \checkmark	1	ALLOW val-gly-leu DO NOT ALLOW structures
(e)	$\begin{aligned} & \mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2} \\ & \mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{COOH} \end{aligned}$	2	ALLOW $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ ALLOW $\mathrm{HOOCCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ ALLOW $\mathrm{CO}_{2} \mathrm{H}$ for COOH ALLOW acid chloride, $\mathrm{ClOC}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{COCl}$ ALLOW displayed formulae or skeletal formulae
	Total	14	

Additional Guidance
ALLOW (very broad) peak around $3000\left(\mathrm{~cm}^{-1}\right)$ OR any stated value between 2500 and $3300\left(\mathrm{~cm}^{-1}\right)$ for $\mathrm{O}-\mathrm{H}$ DO NOT ALLOW peak in range 3200-3550 (cm ${ }^{-1}$)

3 IGNORE any reference to $\mathrm{C}=\mathrm{O}$ or $\mathrm{C}-\mathrm{O}$ as both are also present in an ester OR to fingerprint region

ALLOW ${ }^{13}$ C NMR detects the number of/different C environments' for $1 \checkmark$, suitable example for the 2nd mark

1 mark for correct ester
if two splitting patterns are correctly analysed ignore the third

ALLOW singlet because next or bonded to an O
ALLOW multiplet/heptet because next to $2 \mathrm{CH}_{3} \mathrm{~S}$

ALLOW doublet because next to a CH

ALLOW any two gets 2 marks, any one scores 1 mark

- peak ~ 3.7 (ppm) - bonded to an O
- peak $\sim 2.7(\mathrm{ppm})$ - indicates it is next to a C=O
- peak ~1.2 (ppm) - bonded to other Cs OR part of a chain

3.7 (ppm)
2.7 (ppm)

1.2 (ppm)

ALLOW peaks labelled on the spectrum
ALLOW singlet must be bonded to O , multiplet to $\mathrm{C}=\mathrm{O}$ and doublet to CH or R for both chemical shift marks
if two chemical shifts are correctly identified IGNORE the third
Question

(ii)
or $\mathrm{H}_{2} \mathrm{SO}_{4}$ to give hydroxybenzoic acid + ethanoic acid with aspirin \checkmark and ammonium salt of 4-aminophenol + ethanoic acid with paracetamol \checkmark

ALLOW hydrolysis by $\mathrm{OH}^{-}(\mathrm{aq})$ or $\mathrm{NaOH}(\mathrm{aq})$ and other alkali leading to hydrolysis to give carboxylate salt and phenoxide salt on the ring + ethanoate with aspirin \checkmark and 4-aminophenoxide ion + ethanoate ion with paracetamol \checkmark

ALLOW HNO_{3} (and $\mathrm{H}_{2} \mathrm{SO}_{4}$) to give NO_{2} in one or more positions on the ring in both aspirin and paracetamol $\checkmark \checkmark$

DO NOT ALLOW NH_{3} but correct ammonium salts can be awarded 2 marks ECF

DO NOT ALLOW H2O but correct products can be awarded 2 marks ECF
if no reagent there cannot be any marks for the products If reagent selected is incorrect but would react with either aspirin or paracetamol ALLOW \checkmark ECF for the correct organic product

ALLOW Mg, carbonates, NH_{3}
ALLOW alcohols (ROH) to give ester
if no reagent there cannot be any marks for the products

If reagent selected is incorrect but would react with BOTH aspirin and paracetamol ALLOW \checkmark ECF for the correct organic product

ALLOW Br_{2} water

ALLOW one or more Br at any position on the ring
DO NOT ALLOW Br substitution of OH
ALLOW acyl chloride or acid anhydride and corresponding ester
ALLOW FeCl_{3} to form a purple complex ion (structure not required)
ALLOW diazonium and structure showing azo group substituting one of the Hs in the ring
if no reagent there cannot be any marks for the products
If reagent selected is incorrect but would react with BOTH aspirin and paracetamol ALLOW \checkmark ECF for the correct organic product

Grade Thresholds

Advanced GCE Chemistry A (H034/H434)
January 2010 Examination Series
Unit Threshold Marks

Unit		Maximum Mark	a	b	c	d	e	u
F321	Raw	60	46	40	35	30	25	0
	UMS	90	72	63	54	45	36	0
F322	Raw	100	77	68	59	51	43	0
	UMS	150	120	105	90	75	60	0
F324	Raw	60	43	38	33	29	25	0
	UMS	90	72	63	54	45	36	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
H034	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{H 0 3 4}$	12.9	37.5	62.7	83.1	96.2	100	1415

1415 candidates aggregated this series.
For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums/index.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

