

Chemistry A

Advanced GCE A2 H434

Advanced Subsidiary GCE AS H034

Mark Schemes for the Units

January 2010

H034/H434/MS/R/10J

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

CONTENTS

Advanced GCE Chemistry A (H434)

Advanced Subsidiary GCE Chemistry A (H034)

MARK SCHEME FOR THE UNITS

Unit/Content	Page
F321 Atoms, Bonds and Groups	1
F322 Chains, Energy and Resources	13
F324 Rings, Polymers and Analysis	33
Grade Thresholds	45

F321 F321 Atoms, Bonds and Groups

Q	Question		Expected Answers	Marks	Additional Guidance
1	(a)		Mass of the isotope compared to 1/12th OR mass of the atom compared to 1/12th ✓ (the mass of a) carbon-12 OR ¹² C (atom) ✓	2	IGNORE Reference to average OR weighted mean (i.e. correct definition of relative atomic mass will score both marks) ALLOW mass of a mole of the isotope/atom with 1/12th the mass of a mole OR 12 g of carbon-12 for two marks. ALLOW 2 marks for: 'Mass of the isotope OR mass of the atom compared to ¹² C atom given a mass of 12.0' i.e. 'given a mass of 12' OR C12 is 12 communicates the same idea as 1/12th.' ALLOW 12C OR C12 ALLOW 12C OR C12 ALLOW 2 marks for:
	(b)		$\frac{(151 \times 47.77) + (153 \times 52.23)}{100}$ OR 72.1327 + 79.9119 OR 152.0446 (calculator value) \checkmark $A_r = 152.04 \checkmark$	2	ALLOW Correct answer for two marks ALLOW One mark for ECF from transcription error in first sum provided final answer is to 2 decimal points and is to between 151 and 153 and is a correct calculation of the transcription

F32	1		Mark	Scheme	e January 2010
Q	uestic	on	Expected Answers	Marks	Additional Guidance
	(c)	(i)	 ¹⁵³Eu has (2) more neutrons OR ¹⁵³Eu has 90 neutrons AND ¹⁵¹Eu has 88 neutrons ✓ 	1	ALLOW There are a different number of neutrons IGNORE Correct references to protons / electrons DO NOT ALLOW Incorrect references to protons / electrons
		(ii)	 (It has the) same number of protons AND electrons OR Both have 63 protons and 63 electrons ✓ 	1	ALLOW Same number of protons AND same electron configuration DO NOT ALLOW 'Same number of protons' without reference to electrons (and vice versa)

F321	Mark	Scheme	a January 2010
Question	Expected Answers	Marks	Additional Guidance
(d)	Xe has a bigger atomic radius OR Xe has more shells ✓	3	ALLOW Xe has more energy levels ALLOW Xe has electrons in higher energy level ALLOW Xe has electrons further from nucleus IGNORE Xe has more orbitals OR more sub-shells DO NOT ALLOW 'different shell' or 'new shell'
	Xe has more shielding ✓		ALLOW More screening There must be a clear comparison ie more shielding OR increased shielding. i.e. DO NOT ALLOW Xe 'has shielding' ALLOW Xe has more electron repulsion from inner shells
	The nuclear attraction decreases OR Outermost electrons of Xe experience less attraction (to nucleus) OR Increased shielding / distance outweighs the increased nuclear charge ✓ ORA throughout		ALLOW Xe has less nuclear pull IGNORE Xe has less effective nuclear charge DO NOT ALLOW nuclear charge for nuclear attraction
	Total	9	

F321			Mark	<pre>Scheme</pre>	ne January 2010	
Q	uesti	on	Expected Answers	Marks	Additional Guidance	
2	(a)	(i)	The H ⁺ ion in an (nitric) acid has been replaced by a metal ion OR by a Ca^{2+} ion \checkmark	1	DO NOT ALLOW it has been produced by the reaction of an acid and a base as this is stated in the question.	
					 IGNORE references to replacement by NH4⁺ ions or positive ions. ALLOW H OR Hydrogen for H⁺; DO NOT ALLOW Hydrogen atoms ALLOW Ca OR Calcium for Ca²⁺. DO NOT ALLOW Calcium atoms ALLOW 'metal' for 'metal ion 	
		(ii)	2HNO ₃ (aq) + Ca(OH) ₂ (aq) → Ca(NO ₃) ₂ (aq)+ 2H ₂ O(I) Formulae \checkmark Balance AND states \checkmark	2	ALLOW multiples ALLOW (aq) OR (s) for Ca(OH) ₂	
		(iii)	Accepts a proton OR accepts H ⁺ ✓	1	ALLOW H ⁺ + OH ⁻ \rightarrow H ₂ O ALLOW OH ⁻ reacts with H ⁺ OR OH ⁻ takes H ⁺ ALLOW OH ⁻ 'attracts' H ⁺ if 'to form water' is seen DO NOT ALLOW OH ⁻ neutralises H ⁺ ('neutralises' is in the question)	
	(b)	(i)	Calculates correctly <u>0.0880 × 25.0</u> = 2.20 × 10 ⁻³ mol 1000 OR 0.00220 mol ✓	1	ALLOW 0.0022 OR 2.2 × 10 ⁻³ mol	
		(ii)	Calculates correctly <u>0.00220</u> = 1.10 × 10 ⁻³ mol 2 OR 0.00110 mol ✓	1	ALLOW 0.0011 OR 1.1 × 10 ⁻³ mol ALLOW ECF for answer (i)/2 as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes	
		(iii)	<u>0.00110 × 1000</u> = 0.0625 mol dm ⁻³ 17.60 OR 6.25 × 10 ⁻² mol dm ⁻³ ✓	1	ALLOW 0.063 OR 6.3 × 10 ⁻² mol dm ⁻³ ALLOW ECF for answer (ii) × 1000/17.60 OR ECF from (i) for answer (i)/2 × 1000/17.60 as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes	

F32 ⁻	1		Mar	k Scheme	e January 2010
	(c)	(i)	(The number of) Water(s) of crystallisation ✓	1	IGNORE hydrated OR hydrous
		(ii)	$142.1 \checkmark$ $x = (322.1 - 142.1) = 10 \checkmark$ 18.0	2	 ALLOW 142 ALLOW <i>M</i>_r expressed as a sum ALLOW ECF from incorrect <i>M</i>_r and <i>x</i> is calculated correctly ALLOW ECF values of <i>x</i> from nearest whole number to calculator value ALLOW 2 marks if final answer is 10 without any working
			Tota	10	

F321			Mark	Scheme	e January 2010	
0	Questi	on	Expected Answers Ma		Additional Guidance	
3	(a)	(i)	(Electrostatic) attraction between oppositely charged ions . ✓	1	IGNORE force IGNORE references to transfer of electrons MUST be ions, not particles	
		(ii)	Mg shown with either 8 of 0 electrons AND S shown with 8 electrons with 2 crosses and 6 dots (or vice versa) ✓	2	Mark charges on ions and electrons independently For first mark , if 8 electrons are shown around the Mg then 'extra electrons' around S must match the symbol chosen for electrons around Mg	
			Correct charges on both lons \checkmark $\left[Mg \right]^{2+} \left[\underbrace{s}_{\bullet} \underbrace{s}_{\bullet} \underbrace{s}_{\bullet} \right]^{2-}$		IGNORE inner shell electrons Brackets are not required	
	(b)	(i)	Electron pairs in covalent bonds shown correctly using dots and crosses in a molecule of the $F_2O \checkmark$ Lone pairs correct on O and both F atoms \checkmark	2	Must be ' <i>dot-and-cross</i> ' circles for outer shells NOT needed IGNORE inner shells Non-bonding electrons of O do not need to be shown as pairs Non-bonding electrons of F do not need to be shown as pairs	
		(ii)	Predicted bond angle 104–105°. ✓ There are 2 bonded pairs and 2 lone pairs ✓ Lone pairs repel more than bonded pairs ✓	3	 ALLOW 103–105° (103° is the actual bond angle) ALLOW responses equivalent to second marking point. e.g. There are 4 pairs of electrons and 2 of these are lone pairs ALLOW 'bonds' for 'bonded pairs' DO NOT ALLOW 'atoms repel' DO NOT ALLOW electrons repel ALLOW LP for 'lone pair' ALLOW BP for bonded pair ALLOW LP repel more if bonded pairs have already been mentioned 	

F32	F321 Question		Mark	Scheme	e January 2010 Additional Guidance	
G			Expected Answers	Marks		
	(c)	(i)	(At least) two NH_3 molecules with correct dipole shown with at least one H with δ^+ and one N with $\delta^- \checkmark$	3	DO NOT ALLOW first mark for ammonia molecules with incorrect lone pairs	
					DO NOT ALLOW first mark if H ₂ O, NH ₂ or NH is shown	
			(Only) one hydrogen bond from N atom on one molecule to a H atom on another molecule \checkmark		ALLOW hydrogen bond need not be labelled as long as it clear the bond type is different from the covalent N–H bond	
					ALLOW a line (i.e. looks like a covalent bond) as long as it is labelled 'hydrogen bond)	
			Lone pair shown on the N atom and hydrogen bond must hit the lone pair \checkmark		ALLOW 2-D diagrams	
			Hydrogen bond δ_{+} δ_{+		ALLOW two marks if water molecules are used. One awarded for a correct hydrogen bond and one for the involvement of lone pair	
		(ii)	Liquid H ₂ O is denser than solid \checkmark In solid state H ₂ O molecules are held apart by hydrogen bonds OR ice has an open lattice \checkmark	2	ORA ALLOW ice floats for first mark	
			OR			
			H₂O has a relatively high boiling point OR melting point ✓		ALLOW higher melting OR boiling point than expected DO NOT ALLOW H ₂ O has a high melting / boiling point	
			(relatively strong) hydrogen bonds need to be broken OR a lot of energy is needed to overcome hydrogen bonds OP bydrogen bonds are strong x		ALLOW other properties caused by hydrogen bonding not mentioned within the specification	
			Total	13		

F3	F321		Mark	January 2010		
(Questi	ion	Expected Answers	Marks	Additional Guidance	
4	(a)		Advantage removes or kills bacteria OR kills germs OR kills micro-organisms OR make it safe to drink OR sterilises water OR disinfects water ✓	2	ALLOW to make water potable IGNORE virus IGNORE 'purifies water' DO NOT ALLOW 'antiseptic'	
			<i>Disadvantage</i> it is toxic OR poisonous OR could form chlorinated hydrocarbons ✓		ALLOW forms carcinogens OR forms toxins IGNORE harmful DO NOT ALLOW 'it causes cancer' DO NOT ALLOW "It kills you"	
	(b)		3d ¹⁰ 4s ² 4p ⁵ ✓	1	ALLOW 4s ² 3d ¹⁰ 4p ⁵ ALLOW subscripts or 3D ¹⁰ ALLOW answers with 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ appearing twice	
	(c)	(i)	$Cl_2 + 2Br^- \rightarrow Br_2 + 2Cl^- \checkmark$	1	IGNORE state symbols ALLOW any correct multiple including fractions	
		(ii)	Yellow / orange / red / brown ✓	1	ALLOW any combination of these, but no others	
	(d)	(i)	Disproportionation ✓	1	ALLOW versions which sound the same DO NOT ALLOW disproportional OR disproportionate OR disproportion	
		(ii)	Cl ₂ + 2NaOH →NaClO + NaCl + H ₂ O \checkmark 3Cl ₂ + 6NaOH → NaClO ₃ + 5NaCl + 3H ₂ O Cl ₂ and NaOH as reactants AND NaClO ₃ and NaCl as products \checkmark Rest of the equation \checkmark	3	ALLOW multiples for either equation ALLOW $3Cl_2 + 6NaOH \rightarrow 2NaClO_3 + 4NaCl + 3H_2$	
		(iii)	NaClO₄ ✓	1	ALLOW Na ₃ ClO ₅ etc	
			Total	10		

F321			Mar	January 2010	
(Quest	ion	Expected Answers	Marks	Additional Guidance
5	(a)	(i)	Potassium AND argon ✓	1	ALLOW K and Ar
		(ii)	They are arranged in increasing atomic number OR Neither would show properties OR trends of rest of group OR Neither would show properties OR trends of rest of period OR They are arranged by electron configuration ✓	1	ALLOW any correct property difference e.g. This would place a reactive metal in the same group as noble gases ALLOW they do not fit in with the rest of the group
	(b)	(i)	$2Mg + O_2 \rightarrow 2MgO \checkmark$	1	ALLOW multiples. Correct species must be seen IGNORE state symbols
		(ii)	 Fizzes OR bubbles OR gas produced OR effervescing ✓ Mg dissolves OR Mg disappears OR a solution is formed ✓ 	2	DO NOT ALLOW 'carbon dioxide gas produced' DO NOT ALLOW 'hydrogen produced' without 'gas' ALLOW 'it for Mg' IGNORE Mg reacts IGNORE temperature change IGNORE steam produced
		(iii)	Quicker OR more vigorous OR gets hotter	1	 MUST be a comparison of a reaction observation, not just 'more reactive' ALLOW any comparison of greater rate including more bubbles etc. DO NOT ALLOW more gas produced

F321	Mark	January 2010	
Question	Expected Answers	Marks	Additional Guidance
(c)	Mg has a giant structure ✓	6	
	Mg has metallic bonding OR description of metallic bonding as positive ions and delocalised electrons \checkmark		Metallic OR delocalised seen spelt correctly at least ONCE
	(There is electrostatic attraction between) positive ions and electrons \checkmark		DO NOT ALLOW as label nuclei OR protons for positive ions
			ALLOW labelled diagram of metallic bonding for second and third marks
			positive ions delocalised electrons
			Lattice must have at least two rows of positive ions. If a Mg ion is shown it must correct charge ALLOW for labels:+ ions, positive ions, cations
			DO NOT ALLOW as label nuclei OR protons for positive ions
			DO NOT ALLOW '–' without label for electron
	Cl has a simple molecular OR simple covalent (lattice) ✓		Covalent OR molecule OR molecular seen spelt correctly at least ONCE
			ALLOW CI is a (covalent) molecule
	CI has van der Waals' forces (between molecules) OR CI has instantaneous dipole–induced dipoles OR		IGNORE CI has intermolecular bonding
	temporary dipole–temporary dipole ✓		

F	321		Mark	Scheme	January 2010
			van der Waals' forces are weak and metallic bonds are strong OR van der Waals' forces are weak er than metallic bonds OR Less energy is needed to overcome van der Waals' than metallic bonds ✓		 ALLOW ECF from incorrect descriptions of giant structure with strong bonds; e.g. Mg has giant ionic structure ALLOW ECF from any incorrect intermolecular forces e.g. permanent dipole –dipole from marking point 5 ALLOW vdW easier to break ORA
	(d)	(i)	O goes from -2 to 0 ✓ N goes from +5 to +4 ✓ N is reduced AND O is oxidised ✓	3	Oxidation numbers may be seen with equation Third mark is dependent upon seeing a reduction in oxidation number of N and an increase in oxidation number of O ALLOW ECF for third mark for N is oxidised and O is reduced if incorrect oxidation numbers support this IGNORE references to strontium IGNORE references to electron loss OR gain DO NOT ALLOW 'One increases and one decreases'

F321			Mark	Mark Scheme		
	(d)	(ii)	Calculates correctly: Mol of $Sr(NO_3)_2 = \frac{5.29}{211.6} = 0.0250 \checkmark$	3	ALLOW 0.025	
			Calculates correctly: Mol of gas = $5/2 \times 0.0250 = 0.0625 \checkmark$		ALLOW ECF for first answer × 2.5 as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes	
			Calculates correctly: Volume of gas = 24.0 × 0.0625 = 1.50 dm ³ \checkmark		ALLOW ECF for second answer × 24(.0) as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes DO NOT ALLOW ECF of first answer × 24(.0) (which gives 0.6(0)	
					dm ³) as this has not measured the volume of any gas, simply 0.0250 mol of solid Sr(NO ₃) ₂ converted into a gas i.e. This answer would give one mark	
					ALLOW 1.5 dm ³	
					ALLOW ECF producing correct volume of NO ₂ only i.e. 1.2(0) dm ³ would give two marks	
					OR	
					ALLOW ECF producing correct volume of O ₂ only i.e. 0.3(0) dm ³ would give two marks	
			Total	18		

F322 Mark 3 F322 Chains, Energy and Resources

(Question		Expected Answers		Additional Guidance	
1	(a)		Fractional distillation ✓	2	DO NOT ALLOW just 'distillation'	
			Because fractions have different boiling points ✓		For fractions, ALLOW components OR hydrocarbons OR compounds ALLOW condense at different temperatures ALLOW because van der Waals' forces differ between molecules IGNORE reference to melting points IGNORE 'crude oil' OR 'mixture' has different boiling points' but ALLOW 'separates crude oil by boiling points	
	(b)	(i)	Decane ✓	1	DO NOT ALLOW deceane	
		(ii)	Skeletal formula of branched C ₁₀ H ₂₂ ✓	1	Formula must be skeletal AND must not include any symbol, e.g. CH ₃ Any possible skeletal formulae e.g.	

F322		Mark Sche	e January 2010	
C	uestion	Expected Answers	Marks	Additional Guidance
	(iii)	Decane has more surface contact OR branched chains have less surface contact ✓ Decane has more van der Waals' forces OR branched chains have fewer van der Waals' forces ✓	2	Both answers need to be comparisonsAssume 'it' refers to decaneIGNORE surface areaALLOW straight chains can get closer togetherOR branched chains cannot get as close to one anotherIGNORE branched chain are more compactALLOW Decane has stronger van der Waals' forcesOR branched chains have weaker van der Waals' forces
	(iv)	Branched chains have more efficient combustion OR decane has less efficient combustion ✓	1	More intermolecular forces is not sufficient ALLOW branched chains are easier to burn OR easier to combust OR burn better OR more efficient fuel OR burn better
				OR less likely to produce pre-ignition or knocking OR increases octane rating ALLOW ORA for decane

F322			Ma	January 2010		
(Question		Expected Answers	Marks	Additional Guidance	
					Better fuel is NOT sufficient Burns more cleanly is NOT sufficient	
	(c)	(i)	$C_{10}H_{22} + 15\frac{1}{2}O_2 \longrightarrow 10CO_2 + 11H_2O$	2	ALLOW any correct multiple IGNORE state symbols	
			All four species correct ✓			
			balancing of four correct species \checkmark			
		(ii)	$N_2 + O_2 \longrightarrow 2NO \checkmark$	1	ALLOW any correct multiple including fractions IGNORE state symbols	
					The mark is for the equation IGNORE writing	

F322	Mark Sche	eme	January 2010
Question	Expected Answers	Marks	Additional Guidance
(d) (i)	Species with an unpaired electron ✓	1	 ALLOW atom, molecule or particle with an unpaired electron ALLOW 'has an unpaired electron' ALLOW particle formed by homolytic fission DO NOT ALLOW particle with a single electron OR particle with a free electron
(ii)	catalyst ✓	1	
(iii)	$ \begin{array}{l} O + O_2 \longrightarrow O_3 \\ \textbf{OR} \ O \ reacts \ with \ O_2 \ to \ make \ ozone \\ \textbf{OR} \ the \ reaction \ is \ reversible \ \checkmark \\ \hline \textbf{Rate of formation of ozone is the same as rate of } \\ decomposition \ \checkmark \end{array} $	2	ALLOW $O_2 + O \rightleftharpoons O_3$ OR $O_3 \rightleftharpoons O_2 + O \checkmark \checkmark$ ALLOW is in equilibrium OR \rightleftharpoons in correct equation OR has steady state condition \checkmark IGNORE other equations involving ozone
	absorbs (narmful) UV ¥		ALLOW keeps out UV OK Tilters UV ALLOW increased UV could cause skin cancer OR increased UV could cause cataracts OR increased UV could cause mutation of crops ✓ IGNORE gamma
	Total	15	

C	Question		Expected Answers	Marks	Additional Guidance
2	(a)	(i)	$2H_2O_2 \longrightarrow 2H_2O + O_2 \checkmark$	1	ALLOW any correct multiple including fractions IGNORE state symbols
		(ii)	More crowded particles OR more particles per (unit) volume ✓	2	ALLOW particles are closer together DO NOT ALLOW 'area' instead of 'volume' IGNORE 'more concentrated particles'
			more collisions per second OR more frequent collisions ✓		ALLOW collisions more often OR increased rate of collision OR collisions are more likely OR there is a greater chance of collisions 'More collisions' is not sufficient
		(iii)	Any two from the following:	2	
			Reaction takes alternative route ✓ Activation energy is lowered ✓		ALLOW catalyst changes reaction mechanism
			More molecules have energy above activation energy OR more molecules have enough energy to react ✓		ALLOW an alternative approach using adsorption particles adsorbed onto surface ✓ so bonds weakened as a result of the adsorption ✓

F322		Mark Sci	January 2010	
Que	estion	Expected Answers	Marks	Additional Guidance
	(iv)	Correct curve for higher temperature ✓	3	 maximum of curve to right AND lower than maximum of original curve AND above dotted line at higher energy as shown in diagram below IGNORE minor point of inflexion of curve
		Activation energy does not change OR clearly labelled on diagram, e.g. E_a OR $E \checkmark$		Note that the diagram above would score all 3 marks
		More molecules have energy above activation energy OR more molecules have enough energy to react ✓		More successful collisions is not sufficient
(1	b) (i)	34.0 × 100 267.4 ✓ 12.7% ✓	2	First mark for 267.4 OR (34.0 + 233.4) OR (169.3 + 98.1) at bottom of fraction with or without × 100 ALLOW from 2 sig figs up to calculator value ALLOW full marks for 13 OR 12.7 OR 12.72 OR 12.715 up to calculator value with no working out 12.71 scores one mark only NO ECF for this part from incorrect numbers in first expression

C	Question		Expected Answers	Marks	Additional Guidance
		(ii)	Any three from the following:	3	
			Oxygen comes from air ✓		IGNORE hydrogen comes from the air
			 No poisonous materials formed OR no poisonous materials involved ✓ No waste products formed OR atom economy is 100% ✓ Anthraquinone is regenerated OR recycled OR used again OR Anthraquinone acts as a catalyst ✓ 		IGNORE harmful ALLOW higher atom economy
	(c)		Bond breaking absorbs energy AND bond making releases energy ✓ More energy released than absorbed ✓	2	 ALLOW bond breaking is endothermic AND bond making is exothermic ALLOW exothermic change transfers more energy than endothermic change OR bond making transfers more energy than bond breaking OR '(the sum of the) bond enthalpies in the products is greater than the (sum of the) bond enthalpies in the reactants' OR '(the sum of the) bond enthalpies of the bonds made is greater than (the sum of) the bond enthalpies of the bonds broken' IGNORE reference to strong and weak bonds IGNORE enthalpy of products is less than enthalpy of reactants
			Total	15	
			lotai	15	

F322			Ma	January 2010	
Question		on	Expected Answers Marks		Additional Guidance
3	(a)		Respiration ✓	1	IGNORE anaerobic
	(b)	(i)	100 × 4.18 × 17.3 ✓	2	ALLOW 7231 J ✓
			7.23 (kJ) ✓		 ALLOW 7.23 with no working out ALLOW from 7.2 up to calculator value of 7.2314 ALLOW from 0.060 up to calculator value for 1 mark (i.e. ECF from use of <i>m</i> = 0.831 in first stage) IGNORE sign
		(ii)	$M_{\rm r} = 180 \checkmark$ amount = 4.62 × 10 ⁻³ (mol) \checkmark	2	ALLOW 4.6 × 10^{-3} OR 4.62 × 10^{-3} OR 4.617 × 10^{-3} up to calculator value DO NOT ALLOW 0.005 ALLOW ECF from wrong M_r
		(iii)	ΔH_c = 1560 (kJ) OR 1570 (kJ) but answer must be to 3 sig fig ✓ minus sign ✓	2	ALLOW ECF from 'answer to (i) ÷ answer to (ii)' but answer must be to 3 sig fig minus mark is an independent mark

F322			Mark So	January 2010	
Q	Question		Expected Answers	Marks	Additional Guidance
	(c)		+1250 ✓	3	ALLOW full marks for -2830 with no working out $\sqrt{\sqrt{4}}$
			+(−394 × 6) + (−286 × 6) OR –4080 ✓		ALLOW for 2 marks: +2830 cycle wrong way around
			-2830 ✓		OR 1400 OR 860 one value not × 6
					OR –5330 OR +5330 wrong sign for 1250 or 4080
					OR +570 ✓ ✓ correct cycle but not × 6
					ALLOW for 1 mark: -1400 OR -860 cycle wrong way around and one value not × 6
					OR –570 cycle wrong way around and not × 6
					OR –1930 OR +1930 ✓ wrong sign and not × 6
					Note: There may be other possibilities.
	(d)		Any two from the following:	2	
			Heat released to the surroundings \checkmark		ALLOW heat loss
			Incomplete combustion OR incomplete reaction OR not everything burns ✓		IGNORE reference to evaporation
			Non-standard conditions ✓		
			Tota	l 12	

Question		n	Expected Answers	Marks	Additional Guidance
4	(a)	(i)	$CH_4 + Br_2 \longrightarrow CH_3Br + HBr \checkmark$	1	ALLOW any correct multiple IGNORE state symbols
		(ii)	Dibromomethane OR tribromomethane OR tetrabromomethane ✓	1	ALLOW 1,1-dibromomethane OR 1,1,1-tribromomethane etc ALLOW 1-dibromomethane DO NOT ALLOW 2,2-dibromomethane etc ALLOW correct formulae e.g. CH ₂ Br ₂
		(iii)	Br ₂ → 2Br OR homolytic fission of bromine ✓ Br + CH ₄ → HBr + CH ₃ ✓ CH ₃ + Br ₂ → CH ₃ Br + Br ✓ Br + CH ₃ → CH ₃ Br OR Br + Br → Br ₂ ✓ Ethane made when two methyl radicals react OR CH ₃ + CH ₃ → C ₂ H ₆ ✓ Quality of Written Communication – Consists of initiation step linked to correct equation propagation step linked to one equation in which there is a radical on the left and a radical on the right termination step linked to correct equation: 2 names of steps linked to correct equations ✓ BUT 3 names of steps linked to correct equations ✓ ✓	7	All equations can be described in words Radicals do NOT need a single dot IGNORE any state symbols ALLOW any other suitable termination If no equations are given to link the names of the step then award one mark for mention of all three steps

F322	Mark S	January 2010		
Question	Expected Answers	Marks	Additional Guidance	
(b)	EITHER Nucleophilic substitution ✓ Example of nucleophilic substitution ✓ Heterolytic fission ✓ C–I curly arrow ✓ Correct dipole on C— I bond ✓ OH ⁻ curly arrow from one lone pair on O of OH ⁻ ion OR from minus sign on OH ⁻ ion ✓	6	The example mark can be awarded as an example of the name of the mechanism given or if the name is wrong can be given as an example of a reasonably correct drawn mechanism If curly half arrows drawn do not give a mark the first time used and then apply ECF $H_3C - C - OH + I^-$ $H_3C - OH + I^-$	
	OR Electrophilic addition \checkmark Example of electrophilic addition \checkmark Heterolytic fission \checkmark Curly arrow from C=C bond to Br—Br bond and Dipole and curly arrow associated with Br ₂ \checkmark Correct carbocation ion \checkmark Curly arrow from one lone pair on Br ⁻ ion OR from minus sign on Br ⁻ ion \checkmark		ALLOW mechanisms for other halogenoalkaes $H \xrightarrow{CH_3} H \xrightarrow{H} \xrightarrow{CH_3} $	
	ALLOWElectrophilic substitution \checkmark Example of electrophilic substitution \checkmark Heterolytic fission \checkmark Curly arrow from benzene ring to the electrophile(i.e. $NO_2^+ OR Br^+) \checkmark$ Correct intermediate \checkmark Curly arrow to show loss of hydrogen ion \checkmark	ALLOW Nucleophilic addition ✓ Example of nucleophilic addition ✓ Heterolytic fission ✓ Correct dipole on carbonyl group ✓ Curly arrow from lone pair on H ⁻ ion OR from minus sign on H ⁻ to C=O carbon and breaking of C=O bon Curly arrow from carbonyl oxygen to either H ⁺ or H ₂ O ✓		
	Total	15		

F322 Question			Mark Sche	Mark Scheme Janu	
		ion	Expected Answers		Additional Guidance
5	(a)		Cracking ✓	1	ALLOW catalytic or thermal cracking ✓
	(b)	(i)	Acid ✓	1	 ALLOW correct formula if no name given: e.g. H₃PO₄ OR H₂SO₄ OR H⁺ ✓ ALLOW correct name of acid even if an incorrect formula is used
					IGNORE heterogeneous OR homogeneous
		(ii)	The position of equilibrium will shift so as to minimise the effect of any change in conditions \checkmark	1	DO NOT ALLOW 'reaction shifts' The idea of a shift in equilibrium is essential
		(iii)	Low temperature AND high pressure ✓	3	One mark for conditions. This mark is independent of the reasons for conditions
			Low temperature because the (forward) reaction is exothermic \checkmark		One mark for reason for the chosen temperature
			High pressure because there are fewer moles (of gas) on the right hand side \checkmark		One mark for reason for the chosen pressure ALLOW fewer moles of products
		(iv)	 (60 atmosphere pressure is a) high pressure may be too expensive OR may cause safety problems ✓ (300 °C is sufficiently high) to give a fast rate of reaction ✓ without shifting equilibrium to the left OR compromising equilibrium yield ✓ 	3	
	(c)		Propene ✓	1	ALLOW prop-1-ene ✓ DO NOT ALLOW prop-2-ene
	(d)	(i)	$-CH_2CHCI- + 2\frac{1}{2}O_2 \longrightarrow 2CO_2 + H_2O + HCI \checkmark$	1	
		(ii)	Alkali OR base OR carbonate ✓	1	ALLOW correct formula of or named carbonate OR alkali OR base Correct name and wrong formula does not score

F322	Mark Scheme		January 2010	
Question	Expected Answers	Marks	Additional Guidance	
(e)	Any two marks from the following:	2		
	Develop photodegradable polymers ✓			
	Develop biodegradable polymers OR develop compostable polymers ✓			
	Develop techniques for cracking polymers OR develop use as a chemical feedstock ✓			
	Develop ways of making polymers from plant-based substances OR reduce the need to use finite raw materials such as			
	crude oil ✓			
	Designing processes with high atom economy OR reduce waste products during manufacture ✓			
	Develop ways of sorting AND recycling polymers \checkmark			
	Total	14		

F322			Mark Scheme		January 2010	
Q	uesti	on	Expected Answers	Marks	Additional Guidance	
6	(a)	(i)	2-Methylpropan-2-ol ✓	1	ALLOW methylpropan-2-ol	
	(b)		OH V	1	Formula must be skeletal AND not include any symbol except for OH	
	(c)	(i)	Same molecular formula but different structural formulae ✓	1	 ALLOW Same molecular formula but different arrangement of atoms OR Same molecular formula but different structures OR Same molecular formula but different displayed formulae DO NOT ALLOW Same molecular formula but different spatial arrangement of atoms 	
		(ii)	CH ₃ CH ₂ CH ₂ CH ₂ OH OR (CH ₃) ₂ CHCH ₂ OH ✓ ALLOW OH OR OH	1	ALLOW displayed formula ALLOW sticks (i.e. no H shown bonded to C) ALLOW $-C$ $-C$ $-C$ $-C$ OH <	

F322 Question		Mark Sci	January 2010	
		Expected Answers	Marks	Additional Guidance
(d)		Has O–H (bonds) OR has hydroxyl (groups) OR has hydroxy (groups) ✓ Forms hydrogen bonds with water (molecules) ✓	2	ALLOW marks from a diagram of hydrogen bonding IGNORE reference to alcohol functional group DO NOT ALLOW 'forms hydrogen bonds'
(e)		CH ₃ COOCH ₂ CH ₂ OOCCH ₃ 1 mark for each ester end of molecule $\checkmark \checkmark$	2	ALLOW displayed formula OR skeletal formula ALLOW sticks CH ₃ COOCH ₂ CH ₂ OH shows one of the two ester groups and scores one mark
(f)	(i)	$\begin{array}{c c} CH_3 & CH_3 & H & CH_3 \\ \hline C = C & C = C \\ H & H & CH_3 & H \\ \end{array}$	2	DO NOT ALLOW H_3C CH_3 H_3C OH $C=C$ CH_3 H_3C H_3C $C=C$ CH_3 i.e. no ECF
	(ii)	E/Z ✓	1	ALLOW cis-trans IGNORE geometric
	(iii)	CH₃CH₂CH=CH₂ OR but-1-ene ✓	1	If but-1-ene given in part (i), ALLOW but-2-ene OR $CH_3CH=CHCH_3$ i.e. ECF from f(i) DO NOT ALLOW methylpropene: $H_3C - H$ $H_3C - H$

F322	Mark Sche	January 2010				
Question	Expected Answers	Marks	Additional Guidance			
From the evic	From the evidence, candidates may have identified compound F as propanone, propanal or propanoic acid					
The mark	scheme for F = propanone and propanal is shown in the 'Expe	cted Answer	s' column.			
The mark	scheme for F = propanoic acid is shown in the 'Additional Guid	ance' colum	n.			
If F is propan	one or propanoic acid, then maximum score = 7; but if F is pro	panal then n	naximum score = 6			
(g)	Mark scheme for F = propanone and propanal	7	Mark scheme for F = propanoic acid			
	mass spec of E– Remember to check the spectrum Quality of Written Communication – mass spec gives M^+ or molecular ion of 60 OR mass spec gives parent ion of 60 OR highest m/z (ALLOW m/e) value is 60 \checkmark m/z = 45 indicates loss of CH ₃ OR $m/z = 45$ indicates presence of CH ₃ CHOH OR CH ₂ CH ₂ OH OR C ₂ H ₅ O \checkmark IR of F – Remember to check the spectrum IR shows no broad absorption between 2500 to 3300 cm ⁻¹		mass spec of E– Remember to check the spectrum QWC – mass spec gives M^+ or molecular ion of 60 OR mass spec gives parent ion of 60 OR highest m/z (OR m/e) value is 60 \checkmark m/z = 45 indicates loss of CH ₃ OR $m/z = 45$ indicates presence of CH ₃ CHOH OR CH ₂ CH ₂ OH OR C ₂ H ₅ O \checkmark IR of F– Remember to check the spectrum IR shows (broad) absorption somewhere between 3500			
	So no O—H bond OR no broad absorption between 2500 to 3300 cm ⁻¹ so not a carboxylic acid ✓ IR shows absorption at 1700 cm ⁻¹ due to a C=O bond OR absorption at 1700 cm ⁻¹ indicates a ketone OR aldehyde present ✓		IR shows absorption at 1700 cm ⁻¹ due to C=O OR absorption at 1700 cm ⁻¹ indicates a carboxylic acid \checkmark			
	Identification and equation F is CH ₃ COCH ₃ OR propanone ✓		Identification and equation F is CH ₃ CH ₂ COOH OR propanoic acid ✓			
	E is CH ₃ CHOHCH ₃ OR propan-2-ol ✓		E is CH ₃ CH ₂ CH ₂ OH OR propan-1-ol ✓			
	$CH_{3}CHOHCH_{3} + [O] \longrightarrow CH_{3}COCH_{3} + H_{2}O \checkmark$		$CH_{3}CH_{2}CH_{2}OH + 2[O] \longrightarrow CH_{3}CH_{2}COOH + H_{2}O \checkmark$			
	If F has been incorrectly identified as propanal, mark identification and equation as ECF, so max = 2 ALLOW E is $CH_3CH_2CH_2OH \checkmark$					
	ALLOW : $CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark$					
	Total	19				

F322 Extra guidance for marking of Q6(g)

If **E** has **not** been identified **OR** if **F** has been identified as a **ketone or aldehyde**, use the **left-hand** mark scheme

If **F** has been identified as a **carboxylic acid**, use the **right-hand** mark scheme

Mass spec

These two marking points stand as independent marks whichever compounds have been identified.

The positive sign for fragment ions is not required. **IGNORE** negative charge. The mass spec may well be on the actual spectrum.

IR mark

These stand as **independent** marks whichever compounds have been identified. The IR analysis may well be on the actual spectrum.

Identification marks

If both structure and name are given they must **both** be correct but allow 'propanol' drawn with the correct structure because the position number of the –OH has been clearly identified

ALLOW ECF for identification of F e.g. if E is pentan-2-ol × then an answer of pentan-2-one for F will be given a mark ✓ as ECF

ALLOW identification marks for E and F from equation

Equation mark

ALLOW ECF for any correct equation showing the oxidation of **any** alcohol to the appropriate product. ALLOW molecular formulae in equations,

 $i.e. \ C_3H_7OH + [O] \rightarrow C_2H_5CHO + H_2O \checkmark; \qquad C_3H_8O + [O] \rightarrow C_3H_6O + H_2O \checkmark; \qquad C_3H_7OH + [O] \rightarrow C_2H_5COH + H_2O \checkmark$

F322			Mark Scheme		January 2010	
(Question		Expected Answers	Marks	Additional Guidance	
7	(a)	(i)	Infrared (radiation absorbed) ✓ by (C–H) bond vibration ✓	2	ALLOW bond stretching OR bond bending DO NOT ALLOW molecules vibrating	
		(ii)	Greater concentration of carbon dioxide OR more carbon dioxide is being made ✓	1	 ALLOW carbon dioxide is the main contributor to global warming DO NOT ALLOW any response that states that CO₂ causes ozone depletion ALLOW C=O bonds absorb IR more readily than C–H bonds ALLOW carbon dioxide has a greater greenhouse effect 	

F322		Mark Scheme	е
Question	Expected Answers		

Question		ion	Expected Answers	Marks	Additional Guidance
7	(b)		Any five from the following: Developing carbon capture AND storage ✓	5	carbon, capture AND storage required ALLOW CCS
			One example of CCS ✓		Examples of CCS
			Second example of CCS ✓		deep in the oceans OR on the sea-bed \checkmark DO NOT ALLOW dissolve CO_2 in the sea OR stored in ocean
					storage in geological formations OR piped into disused or partially filled oil wells or porous rocks OR under the sea-bed ✓
			Provide evidence to governments OR international conferences (e.g. Kyoto) OR reports to United Nations etc ✓ Educating society OR writing in journals OR producing documentaries OR writing books OR making posters ✓		by reaction with metal oxides OR reaction to form (solid) carbonates OR stored as a carbonate OR equation to show formation of metal carbonate ✓ IGNORE mineral storage
			Monitoring atmospheric changes ✓		
			Develop alternative energy sources \checkmark One example of an alternative energy source e.g. develop fuel cells OR developing solar power OR fuels that do not produce CO ₂ \checkmark		ALLOW idea of biofuels only if linked to carbon-neutrality
			(Develop) more efficient engines for transport OR lean burn engines OR hybrid engines OR electric cars ✓		IGNORE reforestation IGNORE reference to CFCs
			Find uses for carbon dioxide OR named use: e.g. dry cleaning OR making decaffeinated coffee OR blowing agent OR fizzy drinks, etc ✓		DO NOT ALLOW use less carbon dioxide

Question	Expected Answers	Marks	Additional Guidance
(c)	Any two from the following:	2	
	 There are times when CO₂ has a high concentration and the temperature is also high OR There are times when CO₂ has a low concentration and the temperature is low ✓ It is impossible to measure with certainty the average temperature years ago ✓ There are other gases that may cause a greenhouse effect OR There are other factors that may cause a greenhouse effect ✓ There are very few anomalous results ✓ 		 ALLOW a (positive) correlation between temperature and carbon dioxide concentration but DO NOT ALLOW just 'a correlation' IGNORE 'graphs are the same shape' IGNORE 'graphs are similar'
	Total	10	

F324 Mark F324 Rings, Polymers and Analysis

1(a) $ALLOW C_8H_6 + Br_2 \longrightarrow C_6H_5Br + HBr$ (b)(i)White precipitate OR white solid OR white crystals \checkmark 1(b)(i)White precipitate OR white solid OR white crystals \checkmark DO NOT ALLOW multiple substitution DO NOT ALLOW Br*(b)(i)White precipitate OR white solid OR white crystals \checkmark DO NOT ALLOW colourless DO NOT ALLOW white ppt and bubbles(ii)1,2-Dibromocyclohexane \checkmark 1DO NOT ALLOW Br_3C_6H_2OH OR 2,4,6-tribromophenol OR trit 12dibromocyclohexane OR 1,2dibrom DO NOT ALLOW dibromocyclohexane OR cyclo-1,2-dibrom DO NOT ALLOW dibromocyclohexane OR 1,2dibrom DO NOT ALLOW dibrom 0,2dibrom 0,2dibro	Question	Expected Answers	Marks	Additional Guidance
 (i) White precipitate OR white solid OR white crystals ✓ (ii) White precipitate OR white solid OR white crystals ✓ (i) White precipitate OR white solid OR white crystals ✓ (i) Units and bubbles (ii) 1,2-Dibromocyclohexane ✓ (ii) 1,2-Dibromocyclohexane ✓ (iii) MUST spell delocalised/delocalized or localised/localized correctly once in the answer to obtain all 5 marks benzene electrons or m-bonds are delocalised ✓ phenol a lone or non-bonded pair of electrons on the oxygen or the OH group is (partially) delocalised into the ring ✓ cyclohexene electrons are localised OR delocalised between two carbons ✓ benzene has a lower electron density OR phenol has a bibber electron density O	1 (a)	$+ Br_2 \rightarrow Br + HBr \checkmark$	1	ALLOW $C_6H_6 + Br_2 \longrightarrow C_6H_5Br + HBr$ DO NOT ALLOW multiple substitution DO NOT ALLOW Br^+
(ii) 1,2-Dibromocyclohexane ✓ 1 ALLOW 1,2dibromocyclohexane OR 1-2dib 12dibromocyclohexane OR cyclo-1,2-dibrom DO NOT ALLOW dibromocyclohexane OR structures (iii) MUST spell <u>delocalised/delocalized</u> or <u>localised/localized</u> correctly once in the answer to obtain all 5 marks ALLOW diagram to show overlap of all 6 p-c delocalisation benzene electrons or π-bonds are delocalised ✓ phenol a lone or non-bonded pair of electrons on the oxygen or the OH group is (partially) delocalised into the ring ✓ ALLOW diagram to show movement of lone phenol cyclohexene electrons are localised OR delocalised between two carbons ✓ 5 ALLOW diagram or description of overlap of for bonding in cyclohexene has a C=C d lone of conding in cyclohexene has a C=C d lone of cyclohexene has a lower electron density OR phenol has a bipher electron density OR cyclohexene has a bipher electron density OR phenol has a bipher electron density OR cyclohexene has a bipher	(b) (i	White precipitate OR white solid OR white crystals \checkmark	2	DO NOT ALLOW colourless DO NOT ALLOW white ppt <u>and</u> bubbles DO NOT ALLOW Br ₃ C ₆ H ₂ OH OR 2,4,6-tribromophenol OR tribromophenol
 (iii) MUST spell <u>delocalised/delocalized</u> or <u>localised/localized</u> or <u>localised/localised</u> or <u>localised or un-bonded</u> pair of electrons on the oxygen or the OH group is (partially) delocalised into the ring ✓ cyclohexene electrons are localised OR delocalised between two carbons ✓ benzene has a lower electron density OR phenol has a bigher electron density OR phenol has a bigher 	(ii) 1,2-Dibromocyclohexane ✓	1	ALLOW 1,2dibromocyclohexane OR 1-2dibromocyclohexane OR 12dibromocyclohexane OR cyclo-1,2-dibromohexane DO NOT ALLOW dibromocyclohexane OR C ₆ H ₁₀ Br ₂ OR structures
Imigher electron density ✓ Imigher electron density ✓ electron density ✓ bonding correctly described benzene cannot polarise or induce a dipole in Br₂ OR phenol can polarise the Br₂ OR cyclohexene can polarise DO NOT ALLOW charge density OR electron density	(ii	 MUST spell <u>delocalised/delocalized</u> or <u>localised/localized</u> correctly once in the answer to obtain all 5 marks benzene <u>electrons</u> or <u>π-bonds</u> are delocalised ✓ phenol a <u>lone</u> or <u>non-bonded</u> pair of electrons on the oxygen or the OH group is (partially) delocalised into the ring ✓ cyclohexene electrons are localised OR delocalised between two carbons ✓ benzene has a lower electron density OR phenol has a higher electron density OR cyclohexene has a higher electron density ✓ benzene cannot polarise or induce a dipole in Br₂ OR phenol can polarise the Br₂ OR cyclohexene can polarise 	5	ALLOW diagram to show overlap of all 6 p-orbitals for delocalisation DO NOT ALLOW benzene has delocalised structure or ring ALLOW diagram to show movement of lone pair into ring for phenol ALLOW diagram or description of overlap of 2 adjacent p-orbitals for bonding in cyclohexene DO NOT ALLOW cyclohexene has a C=C double bond IGNORE slip if cyclohexene is written as cyclohexane but π - bonding correctly described DO NOT ALLOW charge density OR electronegativity instead of electron density

F3	F324		Mark Scheme		January 2010	
C	Question		Expected Answers	Marks	Additional Guidance	
2	(a)	(i)	<u>silver</u> mirror ✓	1	ALLOW Ag(s) OR Ag mirror OR precipitate OR ppt OR solid ALLOW brown OR black OR grey	
		(ii)	HOCH₂COOH ✓	1	ALLOW CH ₂ OHCOOH OR CH ₂ OHCO ₂ H OR HOCH ₂ CO ₂ H OR displayed OR skeletal formula OR HOCH ₂ COO ⁻ DO NOT ALLOW C ₂ H ₄ O OR 2-hydroxyethanoic acid	
	(b)		$\begin{array}{rcl} HOCH_2CHO+3[O] \to HOOCCOOH &+ & H_2O \\ \text{reagents} &\checkmark & \text{both products} &\checkmark \end{array}$	2	ALLOW displayed/skeletal formula/COOHCOOH $\checkmark \checkmark$ if molecular formula used C ₂ H ₄ O ₂ + 3[O] \rightarrow C ₂ H ₂ O ₄ + H ₂ O max = 1 \checkmark	
					Any correctly balanced equation for partial oxidation can score 1 mark \checkmark HOCH ₂ CHO + [O] \rightarrow HOCH ₂ COOH OR HOCH ₂ CHO + 2[O] \rightarrow OHCCOOH + H ₂ O OR HOCH ₂ CHO + [O] \rightarrow OHCCHO + H ₂ O OR HOCH ₂ CHO + 2[O] \rightarrow HOOCCHO + H ₂ O	
	(c)	(i)	HOCH₂CH₂OH ✓	1	ALLOW HO(CH ₂) ₂ OH OR (CH ₂ OH) ₂ OR skeletal formula OR displayed formula DO NOT ALLOW molecular formula (C ₂ H ₆ O ₂)	
		(ii)	curly arrow from H ⁻ to $C^{\delta^+} \checkmark$ dipoles <u>and</u> curly arrow from C=O bond to O \checkmark intermediate \checkmark curly arrow from intermediate to H ^{δ^+} in H ₂ O/H ⁺ and if H ₂ O is used it must show the curly arrow from the O–H bond to the O \checkmark	4	 ALLOW curly arrow to C even if dipole missing or incorrect ALLOW maximum of 3 marks if incorrect starting material is used See page 36 for detailed mechanisms – <i>Alternative 3</i> scores all 4 marks even though the intermediate is not shown 	

F324	Mark Scheme		January 2010	
Question	Expected Answers	Marks	Additional Guidance	
3 (a) (i)	adsorption ✓	1	ALLOW partition OR adsorbtion IGNORE solubility OR desorption DO NOT ALLOW absorption	
(ii)	measure how far each spot travels relative to the solvent front or calculate the $R_{\rm f}$ value \checkmark compare $R_{\rm f}$ values to those for known amino acids \checkmark	2	ALLOW compare R_f values to database ALLOW compare to known amino acids DO NOT ALLOW retention times for first mark, but the 2nd mark would be available as \checkmark ECF ALLOW alternative approach: on the same plate compare position of spots \checkmark with known amino acids \checkmark	
(iii)	(amino acids won't separate because) similar compounds have similar $R_{\rm f}$ (values) \checkmark	1	ALLOW spots often overlap OR don't (fully) separate ALLOW they have similar <i>R</i> _f (values) or similar adsoptions or similar retention times ECF to a(ii)	
(b) (i)	H H ₂ NCOOH R ✓	1	ALLOW RCH(NH ₂)COOH any order for R, NH ₂ and COOH but C must be next to H ' <u>CH'</u> must be shown ALLOW CO_2H brackets around NH ₂ are not essential ALLOW structure	
(ii) use RE one given H_2N H_3CH_2C	must attempt 3Dsymbol in the "tools" to denote whether or not each chiral C is a reflection of thein the questionH $COOH$ H_2N H_2N H_2N H_2N H_2COOH H_2N H_2COOH H_3C H_3COOH H_3C H_3COOH H_3C $H_3CH_2CH_3$ <td c<="" td=""><td>3</td><td> each chiral C must have 2 — bonds, 1 wedge bond (IGNORE shading) & 1 dash bond (IGNORE wedge) check the clockwise orientation of each C. For each C start with the H and if on the: top C the H is followed by COOH it is not a mirror image. If it is a mirror image annotate using RE. bottom C the H is followed by CH₃ it is not a mirror image. If it is a mirror image annotate using RE. the four groups can be attached in any order. If the molecule is drawn upside down – clockwise becomes anti-clockwise. MUST check that the drawn structure is non-superimposable irrespective of the orientation or the way it has been drawn. </td></td>	<td>3</td> <td> each chiral C must have 2 — bonds, 1 wedge bond (IGNORE shading) & 1 dash bond (IGNORE wedge) check the clockwise orientation of each C. For each C start with the H and if on the: top C the H is followed by COOH it is not a mirror image. If it is a mirror image annotate using RE. bottom C the H is followed by CH₃ it is not a mirror image. If it is a mirror image annotate using RE. the four groups can be attached in any order. If the molecule is drawn upside down – clockwise becomes anti-clockwise. MUST check that the drawn structure is non-superimposable irrespective of the orientation or the way it has been drawn. </td>	3	 each chiral C must have 2 — bonds, 1 wedge bond (IGNORE shading) & 1 dash bond (IGNORE wedge) check the clockwise orientation of each C. For each C start with the H and if on the: top C the H is followed by COOH it is not a mirror image. If it is a mirror image annotate using RE. bottom C the H is followed by CH₃ it is not a mirror image. If it is a mirror image annotate using RE. the four groups can be attached in any order. If the molecule is drawn upside down – clockwise becomes anti-clockwise. MUST check that the drawn structure is non-superimposable irrespective of the orientation or the way it has been drawn.

F324	Mark Schen	ne	January 2010
(c)	$H_{3}^{+} - C_{-}^{-} COO^{-} + H_{2}N - C_{-}^{-} COO^{-} + H_{3}^{+} - C_{-}^{-} - COO^{-} + H_{3}^{+} - COO^{$	2.0 ✓	ALLOW CO ₂ ⁻ ALLOW NH ₃ ⁺ If NH ₃ fully displayed ALLOW + charge on N or H If COO fully displayed ALLOW ⁻ charge on O only
(d)	valine–glycine–leucine ✓	1	ALLOW val–gly–leu DO NOT ALLOW structures
(e)	H ₂ N(CH ₂) ₆ NH ₂ ✓ HOOC(CH ₂) ₈ COOH ✓	2	ALLOW H ₂ NCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ NH ₂ ALLOW HOOCCH ₂ CH ₂
	Т	otal 14	

F324	Μ	ark Sche	me January 201
Question	Expected Answers	Marks	Additional Guidance
4 (a)	infrared – 1 mark only shows (very broad) peak between 2500–3300 (cm ⁻¹) (due to O–H bond) ✓	3	ALLOW (very broad) peak around 3000 (cm ⁻¹) OR any stated value between 2500 and 3300 (cm ⁻¹) for O–H DO NOT ALLOW peak in range 3200–3550 (cm ⁻¹) IGNORE any reference to C=O or C–O as both are also present in an ester OR to fingerprint region
	¹³ C NMR – 2 marks $(CH_3)_2CHCH_2COOH$ has 4 peaks (due to 4 different C environments) \checkmark $(CH_3)_3CCOOH$ has 3 peaks (due to 3 different C environments) \checkmark		ALLOW ^{<math>^{13}C NMR detects the number of/different C environments' for 1 \checkmark, suitable example for the 2nd mark</math>}
(b)	splitting pattern explains any two in terms of ' n + 1 rule' for two marks $\checkmark \checkmark$ Explains any one peak for 1 mark \checkmark	6	1 mark for correct ester if two splitting patterns are correctly analysed ignore the third
	 <i>singlet</i> therefore adjacent C (if any) has no Hs <i>multiplet</i> OR split into 7 therefore adjacent Cs have lots of/6 Hs 		ALLOW singlet because next of bonded to an O ALLOW multiplet/heptet because next to 2 CH ₃ s
	 doublet therefore adjacent C is bonded to 1H must spell one of multiplet / heptet, singlet, doublet correctly max = 2 marks 		ALLOW doublet because next to a CH
	chemical shifts		ALLOW tolerance on δ values; 3.6–3.8, 2.6–2.8 and 1.1–1.3

F324	Ma	rk Sche	eme	January 2010
	two marks if any two absorptions are identified correctly ✓✓ one mark if any one absorption is identified correctly ✓ • peak ~3.7 (ppm) – bonded to an O • peak ~2.7 (ppm) – indicates it is next to a C=O • peak ~1.2 (ppm) – bonded to other Cs OR part of a chain max = 2 marks		(ppm) ALLOW any two gets 2 marks, any o HC—O HC—C 3.7 (ppm) 2.7 (ppm) ALLOW peaks labelled on the spectr ALLOW singlet must be bonded to O doublet to CH or R for both chemical if two chemical shifts are correctly ide	ne scores 1 mark R—CH 1.2 (ppm) um , multiplet to C=O and shift marks entified IGNORE the third
	compound identified as $(CH_3)_2CHCOOCH_3 \checkmark 2$ marks compound identified as $CH_3COOCH(CH_3)_2 \checkmark 1$ mark			
	Total	9		

F32	24		1	Mark Sch	neme January 2010
		(ii)	$\begin{array}{c} C_{10}H_{11}NO_{3} \text{ is } \\ H_{3}C \\ H_{$	1	ALLOW amide shown as either CH ₃ CONH– OR H ₃ CCONH– OR CH ₃ COHN– OR H ₃ CCOHN– ALLOW ester shown as either –OCOCH ₃ OR –OOCCH ₃
		(iii)	to ensure that there are no (harmful) side effects \checkmark	1	ALLOW impurities reduce effectiveness (of drug) OR might be toxic OR avoids litigation OR harmful OR hazardous ALLOW to ensure that the drug/active component is safe IGNORE dangerous OR nasty OR can kill OR increased dosage
	(c)		(aspirin contains) ester AND carboxylic acid ✓ (paracetamol contains) amide AND phenol ✓	2	IGNORE arene or benzene or aromatic or phenyl or methyl but any other group loses the mark ALLOW carboxyl group DO NOT ALLOW acid IGNORE arene or benzene or aromatic or phenyl or methyl but any other group loses the mark ALLOW peptide ALLOW hydroxy(I) DO NOT ALLOW hydroxide or alcohol DO NOT ALLOW amine
<u> </u>	(d)	(i)	Both	3	ALLOW hydrolysis by $H^{+}(aq)$ or H^{+} or $HCI(aq)$ or HCI or $H_2SO_4(aq)$

F324	Mark Sche	me J	anuary 2010
Br ₂ ✓ H ₃ C-C H _B r H	2 2 4 1 1 2	ALLOW one or more Br at any position on the ring DO NOT ALLOW Br substitution of OH ALLOW acyl chloride or acid anhydride and corresponding ALLOW FeCl ₃ to form a purple <u>complex ion</u> (structure not ALLOW diazonium and structure showing azo group sub- one of the Hs in the ring f no reagent there cannot be any marks for the products f reagent selected is incorrect but would react with BOTH and paracetamol ALLOW ✓ ECF for the correct organic p	g ester required) stituting aspirin roduct
	Total 14		

Grade Thresholds

Advanced GCE Chemistry A (H034/H434) January 2010 Examination Series

Unit Threshold Marks

Unit		Maximum Mark	а	b	С	d	е	u
F321	Raw	60	46	40	35	30	25	0
	UMS	90	72	63	54	45	36	0
F322	Raw	100	77	68	59	51	43	0
	UMS	150	120	105	90	75	60	0
F324	Raw	60	43	38	33	29	25	0
	UMS	90	72	63	54	45	36	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
H034	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
H034	12.9	37.5	62.7	83.1	96.2	100	1415

1415 candidates aggregated this series.

For a description of how UMS marks are calculated see: http://www.ocr.org.uk/learners/ums/index.html

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

