GCE

Physics A

Advanced GCE G485

Fields, Particles and Frontiers of Physics

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the C-mark is given.

A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored

Convention used when marking scripts

WRONG PHYSICS OR EQUATION - indicate by ? on scoris
No credit is given for correct substitution, or subsequent arithmetic, in a physically incorrect equation.
ERROR CARRIED FORWARD - indicate by ECF on scoris
Answers to later sections of numerical questions may be awarded up to full credit provided they are consistent with earlier incorrect answers.
ARITHMETIC ERROR - indicate by AE on scoris
Deduct 1 mark for the error and then follow through the working/calculation giving full credit for subsequent marks if there are no further errors. The ruling also includes power of ten (POT).

TRANSCRIPTION ERROR - indicate by \wedge on scoris
This error is when there is incorrect transcription of data from the question, formulae booklet or previous answer. For example 1.6×10^{-19} has been written down as 6.1×10^{-19} or 1.6×10^{19}. Deduct the relevant mark and then follow through the working giving full credit for subsequent marks.

SIGNIFICANT FIGURES - indicate by SF on scoris
Where more SFs are given than is justified by the question, do not penalise. Fewer significant figures than necessary will be considered within the mark scheme. An error in significant figures is penalised only once per paper.

BENEFIT OF DOUBT - indicate by BOD on scoris
This mark is awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient work has been done.

RUBRIC INFRINGEMENT

If the candidate crosses out an answer but does not make any other attempt, then the work that is crossed out should be marked and the marks awarded without penalty.

CONTRADICTION - indicate by CON on scoris No mark can be awarded if the candidate contradicts himself or herself in the same response. For example, '... the mass of the particle increases and decreases.'

Question			Expected Answers	Marks	Additional Guidance
1	a		Capacitance = charge per (unit) potential difference	B1	Allow: capacitance = charge / potential difference, charge/pd, charge/voltage but not charge / volt, coulomb /pd (no mixture of quantities and units. Allow 'over' instead of per
	b	(i)	$Q=C V=4.5 \mu \times 6.3=28 .(35)(\mu \mathrm{C})$	B1	Allow: 28 ($\geq 2 \mathrm{sf}$)
		(ii)	$\begin{aligned} E=1 / 2 C V^{2} & =0.5 \times 4.5 \times \mu \times(6.3)^{2} \\ & =8.9(3) \times 10^{-5}(\mathrm{~J}) / 89.3 \mu(\mathrm{~J}) \end{aligned}$	C1 A1	Allow use of $E=1 / 2 Q V$ and the Q value from (b)(i) $\mathrm{Q}=28 \mathrm{E}=8.82$ and $\mathrm{Q}=28.4 \mathrm{E}=8.946$ Allow ecf from (b)(i) penalise power of ten error (-1)
	c	(i)	Electrons / they move in an anticlockwise direction Charge on plates decreases / electrons neutralise positive charge p.d. decreases exponentially	B1 B1 B1	Alternatives for anticlockwise: from / lower plate around the circuit, from / lower plate through the resistor to top plate implied Capacitor discharges / loses charge
		(ii)	(dissipated as heat) in the resistor / wires	B1	
	d	(i)	Total capacitance $=1.5+4.5=6(.0)(\mu \mathrm{F})$	A1	Allow one SF
		(ii)	Original charge on $4.5 \mu \mathrm{~F}$ capacitor is conserved ($28.35 \mu \mathrm{C}$) $V=(28.35 \mu) /(1.5+4.5) \mu=4.7(V)$	C1 A1	ecf from (b)(i) and (d)(i)
			Total	[11]	

Question			Expected Answers	Marks	Additional Guidance
2	a		static / homogeneous infinite / infinite number of stars	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Uniform (density) Do not allow isotropic or fixed
	b	(i)	gradient of graph $=\mathrm{H}_{0}$ value $\mathrm{H}_{0}=66 \pm 4$ $\left(\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}\right)$	C1 A1	
		(ii)	$\begin{aligned} \text { age } & =1 / \mathrm{H}_{0} \quad\left(\mathrm{H}_{0}=2.1 \times 10^{-18} \mathrm{~s}^{-1}\right) \\ & =\left(1 / 66 \times 3.2 \times 10^{-20} \times 3.2 \times 10^{7}\right) \\ & =1.5 \times 10^{10}\left(1.48 \times 10^{10}\right) \quad \text { (year) } \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	ecf from H_{0} value Or correct age in seconds ($4.7 \times 10^{17} \mathrm{~s}$) Answer will depend on H_{0} value in (b)(i) Minus one if Mega or kilo omitted
	C	(i)	$\begin{aligned} \rho_{\mathrm{c}} & =3 \mathrm{H}_{0}{ }^{2} / 8 \pi \mathrm{G} \\ & =\left[3 \times\left(2.1 \times 10^{-18}\right)^{2}\right] /\left(8 \times \pi \times 6.67 \times 10^{-11}\right) \\ & =7.9 \times 10^{-27} \quad\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	If units of H_{0} not converted or converted incorrectly then maximum one out of two ecf from H_{0} value in (b)(i)
		(ii)	if average density of the Universe is less than critical then it will be too small to stop it expanding / it goes on forever if the average density of the Universe is greater than the critical value it will cause the contraction (and produce a big crunch) close to critical value and therefore a universe expands that will go towards a limit / expands at an ever decreasing rate asymptotic	B1 B1 B1	do not allow answers open, closed and flat

$\mathbf{2}$	d galaxies are moving apart / universe is expanding if galaxies have always been moving apart then at some stage they must have been closer together / or started from a point evidence in red shift either optical / microwave further away the galaxy the faster the speed of recession the existence of a (2.7 K) microwave background radiation there is more helium in the universe than expected	(B1)	(B1)	(B1)

Question			Expected Answers	Marks	Additional Guidance
3	a	(i)	uniformly spaced, vertical parallel lines must begin and end on the plates with a minimum of three lines arrow in the correct direction down	B1 B1	ignore any edge effects
		(ii)	$\begin{aligned} \mathrm{E}=\mathrm{V} / \mathrm{d} \quad \mathrm{E} & =60 / 5 \times 10^{-3} \\ & =12000\left(\mathrm{~V} \mathrm{~m}^{-1}\right) \end{aligned}$	A1	
	b	(i)	Use of energy qV and kinetic energy $=1 / 2 \mathrm{mv}^{2}$ $\begin{aligned} & v=[(2 \mathrm{qV}) / \mathrm{m}]^{1 / 2} \\ & v=\left[\left(2 \times 3.2 \times 10^{-19} \times 400\right) / 6.6 \times 10^{-27}\right]^{1 / 2} \\ & v=1.97 \times 10^{5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	M1 M1 AO	
		(ii)	$\begin{array}{rl} a=F / m & a=E q / m \\ a & \left.=\left(12000 \times 3.2 \times 10^{-19}\right) / 6.6 \times 10^{-27}\right) \\ & =5.82 \times 10^{11}\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{array}$	C1 A1	Both required for the mark
		(iii)		M1 A0 C1 A1	Answer will depend on number of sf used by candidate. Using u $=2 \times 10^{5}$ scores $0 / 2$ Allow slight variation in answers that follow from the candidates working

c	$\begin{aligned} & \mathrm{Eq}=\mathrm{Bq} v \\ & \mathrm{~B}=\mathrm{E} / \mathrm{v}=12000 / 2 \times 10^{5} \\ &=0.060(\mathrm{~T}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow one sf unless answer is 0.061 when using $\mathrm{v}=1.97 \times 10^{5}$
d	velocity (produced by p.d / 400 V) is less force due the magnetic field is reduced / Bqv is less / force due to the electric field is unchanged hence beam deflects down	B1 B1	Allow the resultant force is downward Allow towards the lower plate
	Total	[15]	

Question			Expected Answers	Marks	Additional Guidance
4	a		magnetic flux = magnetic flux density x area (perpendicular to field direction)	B1	Allow equation with the symbols identified correctly Do not allow magnetic field or magnetic field strength
	b		$\begin{aligned} \Phi=\mathrm{NBA} & =500 \times 0.035 \times 2.5 \times 10^{-3} \\ & =0.044(0.04375) \end{aligned}$ unit: Wb	C1 A1 B1	[allow for one mark $8.75 \times 10^{-5}(\mathrm{~Wb})$ i.e. $\mathrm{B} \times \mathrm{A}$] Allow: Wb turns and T^{2} and V s
	c	(i)	The component of B perpendicular to the area changes / the idea that the area changes relative to the field direction detail of how it varies / depends on $\cos \theta$ / maximum when field is perpendicular to $B /$ zero when area is parallel to B	B1 B1	Allow the idea that the direction of the field relative to the area of the coil varies with the orientation of the coil Do not allow reference to cutting of the flux by the coil
		(ii)	Induced / e.m.f is proportional / to the rate of change of (magnetic) flux	B1	Allow the emf produced is equal to the rate of change of flux or flux cutting
		(iii)	e.m.f. max when ϕ is zero or at $0.005 / 0.015 / 0.025$ s e.m.f zero when ϕ is a \max or at $0.0 / 0.01 / 0.02 \mathrm{~s}$ e.m.f. and ϕ have the same frequency allow e.m.f and ϕ out of phase by $\pi / 2 /$ emf follows a sin curve emf is the gradient of the graph MAX 3	(B1) (B1) (B1) (B1) (B1) B3	

4	(iv)	$\begin{aligned} \varepsilon & =(\text { change in flux linkage }) / \text { time } \\ & =0.04375 / 0.005\left(8.8 \times 10^{-5} \times 500\right) / 0.005 \\ & =8.75(\mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	[if N omitted then give one mark ($\varepsilon=0.0175$)] [if 10^{-5} omitted then minus 1] [reading error from graph is penalised -1 (should be 8.8 and not 8.4)]
	(v)	Max e.m.f. is twice the original value as the rate of flux change is twice the original	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Do not allow just larger Allow: the change in magnetic flux occurs in half the time Allow the max gradient will double
		Total	[14]	

| $\mathbf{5}$ | \mathbf{b} | Advantage: not ionising radiation (as with X-rays)/better
 soft tissue contrast | B1 | Accept can view soft tissue in brain / skull |
| :---: | :---: | :--- | :--- | :--- | :--- |
| Disadvantage: heating effect of metal objects /effect on
 cardiac pacemakers / takes a long time to perform MRI scan | B1 | Do not allow not harmful | | |

Question			Expected Answers	Marks	Additional Guidance
7	a	(i)	e: 0 and $-1 \quad \mathrm{~N}: 15$ and $7+$ (antineutrino)	B1	
		(ii)	```e:0 and +1 Si: 30 and 14 + (neutrino) correct 'neutrino' in each case```	B1 B1	Allow 1 for +1 Correct symbols required for the neutrinos: v and (Allow v_{e} and C_{e}
	b	(i)	uud \rightarrow udd	B1	Allow $u \rightarrow d$
		(ii)	udd \rightarrow uud	B1	Allow d $\rightarrow \mathrm{u}$
	c		weak(nuclear force)	B1	
			Total	[6]	

Question	Expected Answers	Marks	Additional Guidance		
$\mathbf{8}$	a	(i)	mass of uranium is greater than (the sum of) the mass of the products E = $\Delta \mathrm{mc}^{2}$ OR binding energy of the products is greater than that of uranium energy available is the difference between the binding energies of uranium and the sum of the products	M1	A1

Question		Expected Answers	Marks	Additional Guidance
9	a	$\begin{aligned} \mathrm{F} & =\mathrm{Q}_{1} \mathrm{Q}_{2} / 4 \pi \varepsilon_{0} \mathrm{r}^{2} \\ & =\left(1.6 \times 10^{-19} \times 1.6 \times 10^{-19}\right) / 4 \pi \varepsilon_{0}\left(2 \times 10^{-15}\right)^{2} \\ & =57.5(\mathrm{~N}) \end{aligned}$	C1 A1	Allow use of 9×10^{9} instead of $1 / 4 \pi \varepsilon_{0}$ (using this gives 57.6) Allow ≥ 2 sf (58) If correct formula quoted and then AE (e.g. not squaring r or not squaring Q) then allow ecf in final answer for $2 / 3$
	b	attractive strong (nuclear force)	B1	Do not it holds them together
	c	as the proton travels towards the stationary proton it experiences a repulsive force that slows it down. (It needs a high velocity) to get close enough (to the proton) / for the (attractive) short range force to have any effect	B1 B1	
		Total	[5]	

Question		Expected Answers	Marks	Additional Guidance
$\mathbf{1 0}$	\mathbf{a}	ANY ONE from X-rays interact with matter by: the photoelectric effect where an (orbital) electron is ejected from atom / atom is ionised Compton scattering where X-ray scattered by the interaction with (orbital) electron Pair production where X-ray photon interacts with the nucleus / atom and an electron and positron are produced [allow one mark for statement and one for explanation]	(B2)	(B2) Allow electrons ejected from metal surface if reference is made to free electrons
(B2)	Allow: X-ray diffraction B1 X-ray passes through the 'slits' / atomic gap formed by the			
B1				

	b			C1 C1 A1	Calculation of $\mu=0.768 \mathrm{C} 1$ Substitution into second equation C1 Allow 0.9 (1sf) If question misread and 0.9 used for change $\mu=0.035$ and x = 19.7 (allow 20) give $2 / 3$
10	C	(i)	Absorption of X-rays by (silver halide molecules) by a photographic film Uses of fluorescent / scintillator/ phosphor Photon releases electron (that is accelerated onto a fluorescent screen) number of electrons increased/multiplied MAX B2 QWC: Phosphor / Intensifier/ it converts X-ray photon into increased number of 'visible' photons	$\begin{aligned} & \text { (B1) } \\ & \text { B2 } \\ & \text { B1 } \end{aligned}$	

	(ii)	Different soft body tissue produce little difference in contrast/attenuation (Contrast media with) high atomic number / Z used / iodine or barium (used to give greater contrast) liquids injected or swallowed into soft tissue areas / or examples of such	(B1)	This method produces good contrast for soft tissue /for similar Z values
(B1)	B2			

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre

14-19 Qualifications (General)

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

