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INSTRUCTIONS TO CANDIDATES

• Write your name, centre number and candidate number in the spaces provided on the answer
booklet.

• Read each question carefully and make sure you know what you have to do before starting
your answer.

• Answer all the questions.

• Give non-exact numerical answers correct to 3 significant figures unless a different degree of
accuracy is specified in the question or is clearly appropriate.

• You are permitted to use a graphical calculator in this paper.
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• The number of marks is given in brackets [ ] at the end of each question or part question.

• The total number of marks for this paper is 72.

• You are reminded of the need for clear presentation in your answers.
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1 (a) A group G of order 6 has the combination table shown below.

e a b p q r

e e a b p q r

a a b e r p q

b b e a q r p

p p q r e a b

q q r p b e a

r r p q a b e

(i) State, with a reason, whether or not G is commutative. [1]

(ii) State the number of subgroups of G which are of order 2. [1]

(iii) List the elements of the subgroup of G which is of order 3. [1]

(b) A multiplicative group H of order 6 has elements e, c, c2, c3, c4, c5, where e is the identity. Write
down the order of each of the elements c3, c4 and c5. [3]

2 Find the general solution of the differential equation

d2y

dx2
− 8

dy
dx

+ 16y = 4x. [7]

3 Two fixed points, A and B, have position vectors a and b relative to the origin O, and a variable point
P has position vector r.

(i) Give a geometrical description of the locus of P when r satisfies the equation r = λa, where
0 ≤ λ ≤ 1. [2]

(ii) Given that P is a point on the line AB, use a property of the vector product to explain why(r − a) × (r − b) = 0. [2]

(iii) Give a geometrical description of the locus of P when r satisfies the equation r × (a − b) = 0.
[3]
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4 The integrals C and S are defined by

C = � 1
2
π

0
e2x cos 3x dx and S = � 1

2
π

0
e2x sin 3x dx.

By considering C + iS as a single integral, show that

C = − 1
13

(2 + 3eπ),
and obtain a similar expression for S. [8]

(You may assume that the standard result for � ekx dx remains true when k is a complex constant, so

that � e(a+ib)x dx = 1
a + ib

e(a+ib)x.)

5 (i) Find the general solution of the differential equation

dy
dx

+ y
x
= sin 2x,

expressing y in terms of x in your answer. [6]

In a particular case, it is given that y = 2
π

when x = 1
4
π.

(ii) Find the solution of the differential equation in this case. [2]

(iii) Write down a function to which y approximates when x is large and positive. [1]

6 A tetrahedron ABCD is such that AB is perpendicular to the base BCD. The coordinates of the points
A, C and D are (−1, −7, 2), (5, 0, 3) and (−1, 3, 3) respectively, and the equation of the plane BCD
is x + 2y − 2� = −1.

(i) Find, in either order, the coordinates of B and the length of AB. [5]

(ii) Find the acute angle between the planes ACD and BCD. [6]

7 (i) (a) Verify, without using a calculator, that θ = 1
8
π is a solution of the equation sin 6θ = sin 2θ .

[1]

(b) By sketching the graphs of y = sin 6θ and y = sin 2θ for 0 ≤ θ ≤ 1
2
π, or otherwise, find the

other solution of the equation sin 6θ = sin 2θ in the interval 0 < θ < 1
2
π. [2]

(ii) Use de Moivre’s theorem to prove that

sin 6θ ≡ sin 2θ(16 cos4 θ − 16 cos2 θ + 3). [5]
(iii) Hence show that one of the solutions obtained in part (i) satisfies cos2 θ = 1

4
(2 − √

2), and justify
which solution it is. [3]
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8 Groups A, B, C and D are defined as follows:

A: the set of numbers {2, 4, 6, 8} under multiplication modulo 10,

B: the set of numbers {1, 5, 7, 11} under multiplication modulo 12,

C: the set of numbers {20, 21, 22, 23} under multiplication modulo 15,

D: the set of numbers {1 + 2m
1 + 2n

, where m and n are integers} under multiplication.

(i) Write down the identity element for each of groups A, B, C and D. [2]

(ii) Determine in each case whether the groups

A and B,

B and C,

A and C

are isomorphic or non-isomorphic. Give sufficient reasons for your answers. [5]

(iii) Prove the closure property for group D. [4]

(iv) Elements of the set {1 + 2m
1 + 2n

, where m and n are integers} are combined under addition. State

which of the four basic group properties are not satisfied. (Justification is not required.) [2]
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