## GCE

## Mathematics A

## H240/02: Pure Mathematics and Statistics

A Level

Mark Scheme for June 2022

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

## Text Instructions

## 1. Annotations and abbreviations

| Annotation in RM assessor | Meaning |
| :--- | :--- |
| $\checkmark$ and $\boldsymbol{x}$ |  |
| BOD | Benefit of doubt |
| FT | Follow through |
| ISW | Ignore subsequent working |
| M0, M1 | Method mark awarded 0, 1 |
| A0, A1 | Accuracy mark awarded 0,1 |
| B0, B1 | Special case |
| SC | Omission sign |
| $\wedge$ | Misread |
| MR | Blank Page |
| BP |  |
| Seen |  |
| Highlighting | Meaning |
| Other abbreviations | in |
| mark scheme | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| dep* | Correct answer only |
| cao | Or equivalent |
| oe | Rounded or truncated |
| rot | Seen or implied |
| soi | Without wrong working |
| www | Answer given |
| AG | Anything which rounds to |
| awrt | By Calculator |
| BC | This question included the instruction: In this question you must show detailed reasoning. |
| DR |  |

## 2. Subject-specific Marking Instructions for A Level Mathematics A

Annotations must be used during your marking. For a response awarded zero (or full) marks a single appropriate annotation (cross, tick, M0 or $\wedge$ ) is sufficient, but not required.

For responses that are not awarded either 0 or full marks, you must make it clear how you have arrived at the mark you have awarded and all responses must have enough annotation for a reviewer to decide if the mark awarded is correct without having to mark it independently.

It is vital that you annotate standardisation scripts fully to show how the marks have been awarded
Award NR (No Response)

- if there is nothing written at all in the answer space and no attempt elsewhere in the script
- OR if there is a comment which does not in any way relate to the question (e.g. 'can't do', 'don't know')

OR if there is a mark (e.g. a dash, a question mark, a picture) which isn't an attempt at the question
Note: Award 0 marks only for an attempt that earns no credit (including copying out the question).
If a candidate uses the answer space for one question to answer another, for example using the space for 8(b) to answer 8(a), then give benefit of doubt unless it is ambiguous for which part it is intended

An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not always be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
If you are in any doubt whatsoever you should contact your Team Leader.
c The following types of marks are available.
M
A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an $M$ mark may be specified.
A method mark may usually be implied by a correct answer unless the question includes the DR statement, the command words "Determine" or "Show that", or some other indication that the method must be given explicitly.

A
Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B
Mark for a correct result or statement independent of Method marks.
Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

When a part of a question has two or more 'method' steps, the $M$ marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
e The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
$\mathrm{f} \quad$ We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so

- When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value.
- When a value is not given in the paper accept any answer that agrees with the correct value to $\mathbf{3}$ s.f. unless a different level of accuracy has been asked for in the question, or the mark scheme specifies an acceptable range
NB for Specification B (MEI) the rubric is not specific about the level of accuracy required, so this statement reads " $2 \mathrm{~s} . \mathrm{f}$ ".
Follow through should be used so that only one mark in any question is lost for each distinct accuracy error.
Candidates using a value of $9.80,9.81$ or 10 for $g$ should usually be penalised for any final accuracy marks which do not agree to the value found with 9.8 which is given in the rubric.
Rules for replaced work and multiple attempts:
- If one attempt is clearly indicated as the one to mark, or only one is left uncrossed out, then mark that attempt and ignore the others.
- If more than one attempt is left not crossed out, then mark the last attempt unless it only repeats part of the first attempt or is substantially less complete.
- if a candidate crosses out all of their attempts, the assessor should attempt to mark the crossed out answer(s) as above and award marks appropriately.

For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question. Marks designated as cao may be awarded as long as there are no other errors. If a candidate corrects the misread in a later part, do not continue to follow through. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
i If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers, provided that there is nothing in the wording of the question specifying that analytical methods are required such as the bold "In this question you must show detailed reasoning", or the command words "Show" or "Determine". Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.

Sig figs: " 0.348 ( 3 sf )" means "answer that rounds to 0.348 ", ISW. eg $0.347652=0.35$ scores A1, $0.348=0.35$ scores A1, but 0.35 alone scores A0 Other forms for probabilities Allow eg 20\% or 1 in 5, but not odds eg 1:4

| Question |  |  | Answer | Mark | AO | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | (a) | DR | $\frac{x(x+2)-(x-1)(x+1)}{(x+1)(x+2)} \text { or } \frac{x^{2}+2 x-x^{2}+1}{x^{2}+3 x+2} \text { oe }(=0)$ $x=-\frac{1}{2}$ | M1 <br> M1 <br> A1 | $\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$ | M1 for $x(x+2)-(x+1)(x-1)$ oe Multiply out brackets. Allow one error Ignore denominator even if " $=0$ " NB correct with no working: SC B1 |
|  |  |  | Alternative method $\begin{aligned} & x(x+2)=(x+1)(x-1) \\ & x^{2}+2 x=x^{2}-1 \quad \text { or } 2 x=-1 \quad \text { oe } \\ & x=-\frac{1}{2} \end{aligned}$ | M1 <br> M1 <br> A1 |  | M1 for attempt "cross-multiply". <br> Multiply out brackets. Allow one error |
|  |  |  |  | [3] |  |  |
| 1 | (b) |  | DR <br> Solve quadratic in $\frac{1}{x^{3}}$ or $x^{3}$ or $u\left(=x^{3}\right.$ or $\left.\frac{1}{x^{3}}\right)$ using any correct method. $\frac{1}{x^{3}}(\text { or } u)=1 \&-\frac{1}{8} \quad \text { or } x^{3}(\text { or } u)=1 \&-8$ <br> or correct factorisation of quadratic $x=1 \& x=-2$ with no extras | M1 <br> B1 <br> B1f <br> [3] | 3.1a <br> 1.1 <br> 1.1 | or cubic in $x$ Condone quadratic in $x$ with $x=\frac{1}{x^{3}}$ or $x=x^{3}$ <br> Must see attempt at correct method for this mark <br> Allow arithmetical errors <br> Can be scored without M1 Condone $x=1,-\frac{1}{8}$ or $x=1,-8$ <br> Ignore $x^{3}=0$, if seen, for this mark <br> ft their $x^{3}$ or $\frac{1}{x^{3}} \quad$ If also $x=0, \mathrm{~B} 0$ <br> NB correct with no working: M0B0B1 |
| 1 | (c) |  | DR <br> eg $\left(x^{2}-7\right) \ln 3=\ln \frac{1}{243}$ or $x^{2}-7=\log _{3}\left(\frac{1}{243}\right)$ or $3^{x^{2}-7}=3^{-5}$ or $x^{2}-7=-5$ or $3^{x^{2}}=3^{2}$ $x= \pm \sqrt{2}$ or $\pm 1.41(3 \mathrm{sf})$ | M1 <br> A1 | 3.1a $1.1$ | Condone incorrect or omitted brackets <br> Any correct step after $\log$ (both sides) <br> or ANY correct step using indices <br> NB correct with no working or T \& I: SC B1 |


| Question |  |  | Answer | Mark | AO | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | [2] |  |  |
| 2 | (a) |  | $\begin{array}{ll} \hline(4 \mathbf{i}+2 \mathbf{j}-\mathbf{5 k})-(3 \mathbf{i}+2 \mathbf{j}) & (=\mathbf{i}-5 \mathbf{k}) \\ \text { or }(3 \mathbf{i}+2 \mathbf{j})-(4 \mathbf{i}+2 \mathbf{j}-\mathbf{5 k}) & (=\mathbf{5 k}-\mathbf{i}) \\ A B=\sqrt{26} \text { or } 5.10(3 \mathrm{sf}) \text { or } 5.1 & \end{array}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$ | 1.1 <br> 1.1 | $\mathbf{b}-\mathbf{a}$ or $\mathbf{a}-\mathbf{b}$ attempted, using $\mathbf{i}, \mathbf{j}, \mathbf{k}$ or column vectors May be implied by calculation seen www. Correct answer, no working: M1A1 <br> Mark(s) cannot be gained retrospectively in (b) |
| 2 | (b) |  | ${ }^{2} 26$ ' $=(p-3)^{2}+4+9+(p-4)^{2}+4+4$ | M1 | 3.1a | Attempt $A B^{2}=B P^{2}+P A^{2}$ (involving $p$ ) ft their $A B$ |
|  |  |  | Alternative methods for M1 <br> Attempt $\|P C\|^{2}=(\text { their radius })^{2}$ | M1 |  | or $\left(\frac{7}{2}-p\right)^{2}+4+\frac{1}{4}=\frac{13}{2}$ |
|  |  |  | Attempt $\overline{P A} \cdot \overline{P B}=0$ | M1 |  | or $((3-p) \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}) \cdot((4-p) \mathbf{i}+2 \mathbf{j}-2 \mathbf{k})=0$ |
|  |  |  | $\begin{aligned} & p^{2}-7 p+10=0 \text { oe } \text { or }\left(p-\frac{7}{2}\right)^{2}=\frac{9}{4} \\ & p=2 \text { or } 5 \end{aligned}$ | A1f <br> A1f <br> [3] | 1.1 $1.1$ | Correct simplified equation, ft their (a), ie: or $p^{2}-7 p+\frac{46-\text { their } a^{2}}{2}=0$ or $\left(p-\frac{7}{2}\right)^{2}=\frac{\text { their } a^{2}-17}{4}$ ft only their (a) |
| 3 | (a) |  | (No because) they differ only by a constant or eg $c_{2}=c_{1}+\frac{1}{3}$, or $\frac{1}{3}$ is part of Ben's $c$ <br> If definite integral found, answers are same If differentiate, answers same | B1 [1] | 1.2 | oe, eg They may have different constants of integration Only the " $c$ "s are different <br> Not "Both are correct" or "just different correct methods" |
| 3 | (b) | (i) | $\left[\frac{(1+x)^{-1}}{-1}\right] \begin{aligned} & a \\ & 1\end{aligned}$ or $\left[-\frac{1}{u}\right]_{2}^{a+1}$ or $\left[-\frac{1}{\sqrt{u}}\right]^{(a+1)^{2}}$ oe $\begin{aligned} & =\frac{(1+a)^{-1}}{-1}+\frac{1}{2} \text { oe } \\ & \left(=\frac{1}{2}-\frac{1}{1+a}\right) \quad=\frac{a-1}{2(a+1)} \end{aligned}$ | M1 <br> M1 <br> A1 <br> [3] | 1.1 <br> 1.1 <br> 1.1 | Attempt integral, must be of form $k(1+x)^{-1}$ or $k u^{-1}$ or $k u^{-0.5}$ (if from substitution $u=(1+x)^{2}$ ) <br> Ignore limits <br> Attempt substitute appropriate limits into their integral cao oe single fraction |


| Question |  |  | Answer | Mark | AO | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | (b) | (ii) | $\begin{aligned} & \frac{a-1}{2(a+1)}=\frac{1}{3} \text { or their }(\mathrm{b})(\mathrm{i})(\text { limits subst'd })=\frac{1}{3} \\ & a=5 \end{aligned}$ | M1 <br> A1 <br> [2] | $\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$ | or their new attempt at $\int_{1}^{a} \frac{1}{(1+x)^{2}} \mathrm{~d} x=\frac{1}{3}$ cao |
| 3 | (c) |  | DR $\begin{aligned} & \frac{1}{2}[\ln \|\sin 2 x+2\|]_{0}^{\frac{1}{12} \pi} \\ & =\frac{1}{2}\left[\ln \left(\sin \frac{1}{6} \pi+2\right)-\ln (0+2)\right] \\ & =\frac{1}{2}\left(\ln \left(\frac{5}{2}\right)-\ln 2\right) \\ & =\frac{1}{2} \ln \frac{5}{4} \quad \text { oe, eg } \ln \frac{\sqrt{5}}{2} \end{aligned}$ | M1 <br> M1 <br> A1 <br> A1 <br> [4] | 1.1 <br> 1.1 <br> 1.1 <br> 2.1 | Allow incorrect use of brackets throughout <br> Allow $\ln (\ldots)$ instead of $\ln \|\ldots\|$ <br> Allow $k \ln (\sin 2 x+2), k$ any constant. Ignore limits <br> Attempt substitute both correct limits into their log integral. <br> Allow numerical errors <br> Allow $\times$ any $k$, otherwise any correct form without trig. <br> Correct one-term exact result. ISW, eg ignore decimal <br> NB No working, no marks. |
|  |  |  | Alternative methods $\begin{array}{lll} u=\sin 2 x+2, & \text { or } & u=\sin 2 x \\ \frac{1}{2} \int_{2}^{5 / 2} \frac{1}{u} \mathrm{~d} u & \text { or } & \frac{1}{2} \int_{0}^{1 / 2} \frac{1}{u+2} \mathrm{~d} u \\ \frac{1}{2}[\ln u]_{2}^{5 / 2} & \text { or } & \frac{1}{2}[\ln (u+2)]_{0}^{1 / 2} \\ \left(=\frac{1}{2}[\ln (\sin 2 x+2)]_{0}^{\frac{1}{12} \pi}\right) & \\ & & \\ & \\ \frac{1}{2}\left(\ln \left(\frac{5}{2}\right)-\ln 2\right) & & \end{array}$ | M1 <br> M1 <br> A1 |  | Attempt substitute and integrate and obtain $k \ln u$ or $k \ln (u+2), k$ any constant; ignore limits (May not see this step) <br> Attempt substitute their limits into their log integral. but not limits for wrong variable, eg not $\ln \frac{\pi}{12}-\ln 0$ <br> Allow numerical errors <br> Correct exact result, any form without trig. Allow $\times$ any $k$ |


| Question |  | Answer | Mark | AO | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $=\frac{1}{2} \ln \frac{5}{4} \quad$ oe, eg $\ln \frac{\sqrt{5}}{2}$ | A1 |  | cao, ISW, eg ignore decimal answer |
| 4 |  | $\begin{aligned} & 20+20 \times r+20 \times r^{2}+\ldots . \text { or } 20 \times \frac{1-r^{n}}{1-r} \\ & 20 \times \frac{1-0.95^{n}}{1-0.95}=205 \\ & 0.95^{n}=\frac{195}{400} \text { or } \frac{39}{80} \text { or } 0.4875 \\ & n=\frac{\ln 0.4875}{\ln 0.95} \text { oe or } n=\log _{0.95}\left(\frac{39}{80}\right) \text { oe } \\ & \text { (Number of steps }=) 14 \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[5]} \end{aligned}$ | 3.1b <br> 1.1 <br> 1.1 <br> 2.1 <br> 1.1 | Sum of a GP implied. Allow any $r$, eg $r=0.05$ <br> Correct equation <br> Allow 0.487 or 0.488 <br> or $0.95^{14}=0.4875$ or 0.487 or 0.488 seen. Can be implied by their answer ft their equation of form $a^{n}=b$ (dep M1 gained and $b>0$ ) cao. Allow $n=14$. Allow 14.0. Allow $\approx 14$ |
|  |  |  | $\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \mathbf{A 1} \\ & \mathbf{A 1} \\ & \mathbf{A 1} \\ & {[5]} \end{aligned}$ |  | Attempt add $\geq 10$ terms. Allow any value of $r$ for this mark Correct 14 terms added <br> NB Unsupported correct answer: SC B3 |
|  |  | Alternative (incorrect) methods using $\mathbf{r}=1.05$, or $\frac{1}{0.95}$ or $\frac{20}{19}$ $\left\{\begin{array}{l} 20+20 \times r+20 \times r^{2}+\ldots . \quad \text { or } 20 \times \frac{1-r^{n}}{1-r} \\ 20 \times \frac{1-\left(\frac{1}{0.95}\right)^{n}}{1-\frac{1}{0.95}}=205 \text { or } 20 \times \frac{1-\left(\frac{20}{19}\right)^{n}}{1-\frac{20}{19}}=205 \\ \left(\frac{20}{19}\right)^{n}=\frac{117}{76} \quad \text { or } 1.05^{n}=1.51 \text { or } 1.54 \end{array}\right.$ | M1 <br> A1 <br> A1 |  | (For info' only: $r=\frac{1}{0.95}$ or $\frac{20}{19}$ comes from misinterpreting "lowest" to mean "shortest") Allow any value of $r$ for this mark <br> oe using 1.05. Correct equation |



| Question |  | Answer | Mark | AO | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \left\{y: y \geq \frac{1}{2}\right\},\left\{y: \frac{1}{2} \leq y<\infty\right\},\left\{y: \frac{1}{2} \leq y \leq \infty\right\} \\ & \text { or }\left[\frac{1}{2}, \infty\right) \text { or }\left[\frac{1}{2}, \infty\right] \end{aligned}$ | B1 [2] | 2.5 | Correct range in set notation. Any letter (not $x$ ) or $\frac{1}{x}$ or $\mathrm{f}(x)$ |
| 7 | (a) | $\begin{array}{\|l\|l} (3 m+0)^{2}=9 m^{2} & \\ (3 m+1)^{2} & (3 m+2)^{2} \\ =9 m^{2}+6 m+1 & =9 m^{2}+12 m+4 \\ =3\left(3 m^{2}+2 m\right)+1 & =3\left(3 m^{2}+4 m+1\right)+1 \\ & \text { or } 3\left(3 m^{2}+4 m\right)+4 \end{array}$ <br> None of these is of the form $3 n+2$ <br> Allow " $\neq 3 n+2$ " | B1 <br> M1 <br> A1 <br> A1 <br> [4] | $\begin{gathered} \text { 3.1a } \\ 1.1 \\ \\ 2.1 \\ \text { 3.2a } \end{gathered}$ | NB Other correct methods may be seen <br> $9 m^{2}$ alone, not as part of longer expression <br> At least one of these expansions attempted using $r=1$ or 2. Must include three (or four) terms, Allow one error <br> At least one of these seen explicitly <br> Must see the statement oe. <br> Can be seen once at end or with each separate case Dep complete method, with all three cases seen |
|  |  | Alternative method 1 $\begin{aligned} & (3 m+r)^{2} \\ & =3\left(3 m^{2}+2 m r\right)+r^{2} \\ & =3 n+r^{2} \end{aligned}$ <br> But $r^{2}=0,1$ or 4 <br> Hence not in the form $3 n+2$ for any $r$ | $\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { A1 } \end{gathered}$ |  | Attempted. Must include 3 (or 4) terms, Allow one error Explicit <br> Must see the statement oe Dep complete method |
|  |  | Alternative method 2 <br> Let $(3 m+r)^{2}=3 n+2$ $3\left(3 m^{2}+2 m r-n\right)=2-r^{2}$ <br> Hence $2-r^{2}$ is divisible by 3 <br> But $2-0^{2}=2,2-1^{2}=1,2-2^{2}=-2$ <br> None of these is divisible by 3 | M1 <br> A1 <br> B1 <br> A1 |  |  |



| Question |  | Answer | Mark | AO | Guidance |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{8}$ |  |  |  | Summary method: <br> Express $V$ in terms of $h$ <br> Differentiate $V$ with respect to $h$ <br> Attempt chain rule, <br> Attempt separate variables <br> Correct integrals <br> Substitute correct limits <br> Answer | B1 |  |





| Question |  |  | Answer | Mark | AO | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | ctd |  | Example incorrect method $\begin{aligned} & r=50 / \sqrt{3} \quad V=\frac{\pi}{3} \times 2500 \times \frac{h}{3} \\ & \frac{\mathrm{~d} V}{\mathrm{~d} h}=\frac{2500 \pi}{9} \\ & \frac{\mathrm{~d} V}{\mathrm{~d} h}=\frac{\mathrm{d} V}{\mathrm{~d} t} \times \frac{\mathrm{d} t}{\mathrm{~d} h} \\ & \frac{2500 \pi}{9}=-2 h \frac{\mathrm{~d} t}{\mathrm{~d} h} \\ & \frac{\mathrm{~d} h}{h}=-\frac{18}{2500 \pi} \mathrm{~d} t \end{aligned}$ | $\begin{gathered} \text { B0 } \\ \text { M0 } \\ \text { M1 } \\ \text { M1 } \end{gathered}$ |  |  |
| 9 | (a) |  | Area of 20-30 block $\div$ total area $=\frac{110}{750}$ or $\frac{22}{150}$ or $\frac{4.4}{30}=0.147(3 \mathrm{sf})(\mathbf{A G})$ | $\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$ | $\begin{aligned} & 1.2 \\ & 1.1 \end{aligned}$ | attempted, using any units, eg small squares or $\mathrm{cm}^{2}$ <br> Correct calculation seen and answer 0.147 seen <br> Not any method starting with 0.147 , eg $0.147 \times 150=22.05$ |
| 9 | (b) | (i) | Roughly bell-shaped | B1 [1] | 2.2b | or Roughly symmetrical <br> and peaks in middle or has one peak <br> and tails off at each end, or drops off either side <br> All 3 of these must be seen <br> (except "Bell-shaped" scores B1) <br> Not "Shape is like normal curve" Ignore all else |
| 9 | (b) | (ii) | Roughly symmetrical about $x=40$, or area to left of $40 \approx$ area to right of 40 or the peak is at 40 or 40 is in the middle $70-40 \approx 3 \sigma, \text { hence } \sigma \approx 10$ <br> or most values within 20 of mean, so $20 \approx 2 \sigma$ | B1 | 2.4 | or calculate mean and obtain $\frac{5915}{150}$ or 39.4 <br> Allow 40 has the highest frequency or frequency density Ignore all else <br> or calculate sd and obtain 10.3 <br> Most data is within $6 \sigma$ |



| Question |  |  | Answer | Mark | AO | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | [2] |  | Ignore all else NB No ft |
| 10 | all |  |  |  |  | Allow "percentage" or "value" or "number" or "rate" etc for proportion in all parts of qu 10 |
| 10 | (a) | (i) | High(er) or increased proportion 18-24 | $\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$ | 2.2b | eg "many 18-24" Ignore any LA mentioned Ignore extras only if they don't contradict High 18-24 only |
| 10 | (a) | (ii) | High(er) or increased proportion either/both | $\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$ | 2.2b | or high proportion of younger. Ignore any LA mentioned Ignore extras |
| 10 | (a) | (iii) | Low(er) or decreased proportion either/both | $\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$ | 2.2b | or low proportion of younger. Ignore any LA mentioned eg "LA F because low \% in younger ages" B1 Ignore extras |
| 10 | (b) | (i) | G, H, K, M | $\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$ | 2.2b | No extras or omissions |
| 10 | (b) | (ii) | F, N, R | $\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$ | 2.2b | No extras or omissions |
| 10 | (c) |  | Imply need to consider other age range(s) <br> Examples: <br> May be a large \% of 25-64 (or 65+) <br> Some LAs have low 0-17 and 18-24 and 65+ Low 0-17 \& 18-24 does not mean high 65+ <br> Need to consider other factors or anomalies | B1 <br> [1] | 2.3 | Low 0-17 \& 18-24 not $\Rightarrow$ attractive to older <br> High \% of young people does not necessarily imply low \% of older people <br> Older people may want live near young relatives <br> Eg May be reasons for low \% younger people eg no schools |
| 10 | (d) |  | State all 3 LAs are > $1.5 \times \mathrm{IQR}$ above UQ Confirms F, N, R (implied) despite (c) | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$ | $\begin{gathered} 1.2 \\ 2.2 a \end{gathered}$ | NB. No ft for either mark <br> Or $16.76+1.5 \times(16.76-14.56) \quad(=20.06)$ <br> Ignore attempt at lower limit Independent mark. But must mention (c) |


| Question |  | Answer | Mark | AO | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | (e) | Mean > UQ <br> Median better | B1* <br> B1dep <br> [2] | $\begin{gathered} 1.1 \\ 2.2 b \end{gathered}$ | or mean is in $4^{\text {th }}$ quartile <br> Ignore all else <br> Not Mean skewed by F, N, R so median better <br> Not Median not skewed by F, N, R so better <br> Not Mean because need take account of outliers (or F,N,R) |
|  |  |  |  |  |  |
| 11 |  | See the exemplars at the end of the MS <br> Hypotheses: <br> $\mathrm{H}_{0}: \mu=3300$ <br> $\mathrm{H}_{1}: \mu>3300$ <br> where $\mu=$ (population) mean mass <br> Calculation and comparison <br> $\bar{X} \sim \mathrm{~N}\left(3300, \frac{450^{2}}{200}\right)$ or $\mathrm{N}(3300,1012.5)$ oe and $\bar{X}>3360$ $\mathrm{P}(\bar{X}>3360)=0.0297(\mathbf{N B} 3 \mathbf{~ s f})$ | B1 <br> B1 <br> M1* <br> A1 | 1.1 2.5 3.3 3.4 | NB. Use of a "continuity correction" loses 1st A1 only <br> Allow other letter (including $X$ ) only if clearly defined <br> Subtract B1 for each error eg: <br> $\begin{array}{llll}\text { 2-tail } & \text { B1B0 } & \text { Undefined } \mu & \text { B1B0 } \\ \text { not in terms of parameter } & \text { B1B0 } & \text { Not include 3300 } & \text { B0B0 } \\ \bar{X} \text { stated or implied } & \text { B0B0 } & \mathrm{H}_{0}=3300 \text { etc: } & \text { B0B0 }\end{array}$ <br> $\mu=$ sample mean implied B0 \& (B1 or B0) <br> Correct distribution and $\bar{X}$ (allow 3359.5, 3360.5, 3659) <br> stated or implied eg by 0.0297 or 0.0307 or 0.0286 <br> even if within incorrect statement eg $\mathrm{P}(X=3360)=0.0297$ <br> Allow $450^{2} \div \sqrt{200}$ or $450^{2} \div 200^{2}$ <br> Not 0.0297 from $\mu=3360, \mathrm{P}(\bar{X}$ < 3300$)$ <br> BC cao |



| Question |  | Answer | Mark | AO | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 1}$ |  |  |  |  |  |


| Question |  |  | Answer | Mark | AO | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | [5] |  | Unsupported answers;  <br> $0.0359:$ M1M1A1A0A0 <br> Critical region is $X \geq 19$ M1M1A0A0A0 |
| 12 | (a) | ctd | $\begin{aligned} & \text { Alternative method (normal with no cc) } \\ & X \sim \mathrm{~N}(600 \times 0.02,600 \times 0.02 \times 0.98) \\ & \text { or } X \sim \mathrm{~N}(12,11.76) \\ & \text { Attempt } \mathrm{P}(X \geq n) \text { for } 17 \leq n \leq 20 \\ & \mathrm{P}(X \geq 17)=0.0724 \text { or } 0.072 \quad(\mathbf{2} \mathbf{~ f f}) \\ & \\ & \mathrm{P}(X \geq 18)=0.0401 \text { or } 0.040 \quad(\mathbf{2} \mathbf{~ s f}) \\ & \mathrm{P}(\text { concludes claim incorrect })=0.0401 \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A0 } \end{aligned}$ |  | soi. Can be scored either for $\mathrm{N}(12,11.76)$ or $\mathrm{B}(600,0.02)$ $\mathrm{P}(x>a)=0.05 \Rightarrow a=17.64$ only gets M1 if a probability is calculated |
|  |  |  | Alternative method (normal with cc) $X \sim \mathrm{~N}(600 \times 0.02,600 \times 0.02 \times 0.98)$ or $X \sim \mathrm{~N}(12,11.76)$ <br> Attempt $\mathrm{P}(X \geq n)$ for $17 \leq n \leq 20$ $\mathrm{P}(X \geq 18)=\mathrm{P}(X \geq 17.5)=0.054(\mathbf{2} \mathbf{~ f f})$ $\mathrm{P}(X \geq 19)=\mathrm{P}(X \geq 18.5)=0.0290(\mathbf{2} \mathbf{~ s f})$ <br> $\mathrm{P}($ concludes claim incorrect $)=0.0290$ | $\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { A0 } \end{gathered}$ |  | soi. Can be scored either for $\mathrm{N}(12,11.76)$ or $\mathrm{B}(600,0.02)$ |
| 12 | (b) |  | (Incorrect because eg:) <br> You have to consider $\mathrm{P}(X \geq 18)$ <br> or18 is in the acceptance region (for $5 \%$ test) or critical region is $\geq 19$, or CV is 19 | B1 [1] | 2.3 | or 18 is under the significance level Allow You have to do a proper hypothesis test No other answers acceptable |
| 13 | (a) |  | Single Venn diagram drawn showing 3, 14, $x$ and $3 x$ correctly placed $3+14+x+3 x=25 \text { oe or } x=2$ <br> Number who study English $=" 2 "+3$ or 5 | B1 <br> M1 <br> M1 | 3.1a <br> 1.1a $1.1$ | or showing 3,14, 2 and 6 correctly placed <br> Allow omission of rectangle, so long as 14 seen outside Allow probabilities in the diagram <br> May be implied, eg by 2 seen in correct place in diagram Their $x+3$. May be implied by answer |


| Question |  |  | Answer | Mark | AO | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{P}(\mathrm{E})=\frac{5}{25}$ or $\frac{1}{5}$ or 0.2 | A1 <br> [4] | 1.1 | If $x$ is total English, giving $x=5$, use an equivalent scheme. |
| 13 | (a) | ctd | Alternative (incorrect) method for $\mathbf{H} \leftrightarrow \mathbf{E}$ Diagram $3+14+x+3 x=25$ oe or $x=2$ <br> Number who study English $=$ " $6 "+3$ or 9 $\mathrm{P}(\mathrm{E})=\frac{9}{25}$ | $\begin{gathered} \text { B0 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$ |  | Or implied in diagram, History only $=2$, or total History $=5$ Their $3 x+3$. May be implied by answer <br> If $x$ is total History, giving $x=5$, use an equivalent scheme |
| 13 | (b) |  | $\begin{aligned} & \mathrm{P}(\text { exactly one English })=\frac{5}{25} \times \frac{20}{24} \times 2 \text { oe } \\ & =\frac{1}{3} \text { or } 0.333(3 \mathrm{sf}) \\ & \mathrm{P}(\text { exactly one E and exactly one } \mathrm{H})= \\ & \mathrm{P}\left(\mathrm{HE}^{\prime} \text { and } \mathrm{H}^{\prime} \mathrm{E}\right)+\mathrm{P}\left(\mathrm{EH} \text { and } \mathrm{E}^{\prime} \mathrm{H}^{\prime}\right) \\ & =\left(\frac{6}{25} \times \frac{2}{24}+\frac{3}{25} \times \frac{14}{24}\right) \times 2 \text { oe } \\ & \left(=\frac{9}{50} \text { or } 0.18\right) \\ & \frac{\mathrm{P}(\text { exactly one E and exactly one } \mathrm{H})}{\mathrm{P}(\text { exactly one } \mathrm{E})}\left(=\frac{9}{50} \div \frac{1}{3}\right) \\ & =\frac{27}{50} \text { or } 0.54(3 \text { sf }) \end{aligned}$ | M1 <br> A1 <br> M2 <br> M1 <br> A1 | 1.1 <br> 1.1 <br> 3.1b <br> 2.4 <br> 1.1 <br> 1.1 | Allow omit $\times 2$. Allow $\frac{5}{25} \times \frac{20}{25}$ or 0.16 or 0.32 . Allow $+\ldots$. <br> NB No ft from (a) in (b) <br> M1 for one of $\frac{6}{25} \times \frac{2}{24}$ or $\frac{3}{25} \times \frac{14}{24}$ oe <br> OR $\frac{6}{25} \times \frac{2}{25}+\frac{3}{25} \times \frac{14}{25}$ (both terms) <br> OR $\frac{6}{25} \times \frac{a}{24}+\frac{3}{25} \times \frac{b}{24}$ or $\frac{2}{25} \times \frac{a}{24}+\frac{14}{25} \times \frac{b}{24}(a, b$ integer < 24$)$ <br> Allow any of the above + extras for M1 <br> Divide attempted probs of correct events dep $\geq$ M1M1 <br> Careful!! SCs for correct answer by incorrect methods: " $\times 2$ " omitted throughout: $\frac{9}{100} \div \frac{1}{6}=\frac{27}{50}: \text { M1A0M1M0M1A1 (Total 4) }$ <br> Denominator $25 \times 25$ instead of $25 \times 24$ : |


| Question |  |  | Answer | Mark | AO | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | [6] |  | $\frac{54}{625} \div \frac{4}{25}=\frac{27}{50}: \quad$ M1A0M1M0M1A1 (Total 4) $\underline{\text { Both the above }} \frac{27}{625} \div \frac{2}{25}=\frac{27}{50}$ M1A0M1M0M1A1 |
| 13 | (b) | ctd | $\begin{aligned} & \text { Alternative method 1: } \\ & \mathrm{n}(\text { exactly one English })=\mathrm{n}(\mathrm{E}) \times \mathrm{n}\left(\mathrm{E}^{\prime}\right) \\ & =5 \times 20=100 \\ & \mathrm{n}(\text { exactly one } \mathrm{E} \text { and exactly one } \mathrm{H}) \\ & =\mathrm{n}\left(\mathrm{EH}^{\prime}\right) \times \mathrm{n}\left(\mathrm{E}^{\prime} \mathrm{H}\right)+\mathrm{n}(\mathrm{EH}) \times \mathrm{n}\left(\mathrm{E}^{\prime} \mathrm{H}^{\prime}\right) \\ & =2 \times 6+3 \times 14 \\ & \text { Attempt } \frac{\mathrm{n}(\text { exactly one } \mathrm{E} \text { and exactly one } \mathrm{H})}{\mathrm{n}(\text { exactly one } \mathrm{E})} \\ & \left(=\frac{54}{100}\right) \\ & =\frac{27}{50} \text { oe or } 0.54(3 \mathrm{sf}) \end{aligned}$ | M1 <br> A1 <br> M1 <br> M1 <br> M1 <br> A1 |  | M1 for one of $2 \times 6$ or $3 \times 14$ or M1 for $2 \times a+3 \times b$ <br> ( $a, b$ integers, $a<23, b<22$ ) |
|  |  |  | Alternative method 2 $\begin{array}{ll} \mathrm{P}(\mathrm{H} / \mathrm{E})=3 / 5 & \mathrm{P}\left(\mathrm{H} / \mathrm{E}^{\prime}\right)=6 / 20 \\ \mathrm{P}\left(\mathrm{H}^{\prime} / \mathrm{E}\right)=2 / 5 & \mathrm{P}\left(\mathrm{H}^{\prime} / \mathrm{E}^{\prime}\right)=14 / 20 \\ 6 / 20 \times 2 / 5+3 / 5 \times 14 / 20 \end{array}$ $=27 / 50$ | M1 <br> A1 <br> M3 <br> A1 |  | M1 for three of these fractions seen <br> A1 for all four fractions seen <br> M2 for one of these products $6 / 20 \times 2 / 5$ or $3 / 5 \times 14 / 20$ <br> or M1 for $a / 20 \times 2 / 5+3 / 5 \times b / 20$ <br> or M1 for $6 / a \times 2 / 5+3 / 5 \times 14 / b$ |


| Question |  |  | Answer | Mark | AO | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13 | (b) | ctd | Alternative (incorrect) method for $\mathbf{H} \leftrightarrow \mathbf{E}$ $\mathrm{P}($ exactly one English $)=\frac{9}{25} \times \frac{16}{24}(\times 2)$ $=\frac{6}{25}$ <br> $\mathrm{P}($ exactly one E and exactly one H$)=$ $\mathrm{P}\left(\mathrm{HE}^{\prime}\right.$ and $\left.\mathrm{H}^{\prime} \mathrm{E}\right)+\mathrm{P}\left(\mathrm{EH}\right.$ and $\left.\mathrm{E}^{\prime} \mathrm{H}^{\prime}\right)$ Same as main scheme ( $=\frac{9}{50}$ or 0.18 ) $\begin{aligned} & \frac{\mathrm{P}(\text { exactly one } \mathrm{E} \text { and exactly one } \mathrm{H})}{\mathrm{P}(\text { exactly one } \mathrm{E})} \\ & \left(=\frac{9}{50} \div \frac{6}{25}\right) \\ & =\frac{3}{4} \text { or } 0.75(3 \mathrm{sf}) \end{aligned}$ | M1 <br> A0 <br> M1 <br> M1 <br> M1 <br> A0 |  | Allow without $\times 2$. Allow $\frac{9}{25} \times \frac{16}{25}$ or 0.230 or 0.461 . <br> Attempt divide attempted probabilities of correct events dep at least M1M1 <br> SC answer $\frac{3}{4}$, but omit $\times 2$ and/or denominator of 25 , M1A0M1M0M1A1 |

## Exemplars for $\mathbf{0 1 1}$

## Hypotheses

A $\quad \mathrm{H}_{0}: \mu=3300$
$\mathrm{H}_{1}: \mu>3300$ where $\mu=$ (pop) mean mass B1B1
B $\quad \mathrm{H}_{0}: \mu=3300$
$\mathrm{H}_{1}: \mu>3300$
B1B0
C $\quad \mathrm{H}_{0}$ : The (pop) mean mass is 3300
$\mathrm{H}_{1}$ : The (pop) mean mass is greater than 3300
B1B0
See Specimen paper q10 MS "Must be in terms of parameter values"
D $\quad \mathrm{H}_{0}=3300$
$\mathrm{H}_{0}>3300$
B0B0
E $\quad \mathrm{H}_{0}: \mu=3300$
$\mathrm{H}_{1}: \mu \neq 3300$ where $\mu=$ (pop) mean mass
B1B0
F $\quad \mathrm{H}_{0}: \mu=3300$
$\mathrm{H}_{1}: \mu \neq 3300$
B0B0

## Calculation, comparison and conclusion

G No statement of distribution

| $\mathrm{P}(\bar{X}=3360)=0.0297$ | M1A1 |
| :--- | :--- |
| $0.0297>0.025$ | A1 |
| Don't reject $\mathrm{H}_{0}$ | M1 |
| There is no evidence that mean mass has increased | A1 |

H $\mathrm{P}(\bar{X}=3360.5)=0.0286 \quad$ M1A0
$0.0286>0.025$ A1
Accept $\mathrm{H}_{0}$
There is evidence that mean mass hasn't increased A0
I $\mathrm{P}(\bar{X}>3360.5)=0.0286 \quad$ M1A0
A0
Accept $\mathrm{H}_{0}$ M1
There is evidence that mean mass hasn't increased A0
J $\mathrm{P}(\bar{X}=3359.5)=0.024 \quad$ M1A0
$0.024<0.025$ A1
Reject $\mathrm{H}_{0}$
M1
There is evidence that mean mass has increased A1ft
K $\mathrm{P}(\bar{X}<3360)=0.970 \quad$ M1A1
$0.970<0.975$ A1
Reject $\mathrm{H}_{1}$ M1
Insufficient evidence that mean mass has changed A0
$\mathrm{L} \quad \mathrm{P}(\bar{X}>3360)=0.970 \quad$ M1A1
$0.970>0.025$ A0
Insufficient evidence that mean mass has increased M0A0

M $\bar{X} \sim \mathrm{~N}(3300,1012.5)$
$\mathrm{P}(\bar{X}>3360)=0.297 \quad$ M1A0
$0.297>0.025$
Insufficient evidence that mean mass has increased
A1
M1A1
N $\mu \pm 1.96 \sigma=3237$ to 3362
3360 lies within this range
A1
Can't reject $\mathrm{H}_{0}$
M1
Mean mass hasn't increased
A0
O $\quad \mathrm{CV}=3362$
M1A1
$3360<3362$
Reject $\mathrm{H}_{0}$. Evidence that level of poll't has increased.
A1
M0A0
P $\quad(3360-3300) \div(450 \div \sqrt{200}=1.886$
$1.866<1.96$
Don't reject $\mathrm{H}_{0}$. Mean mass hasn't increased.

## 2-tail

Q $\quad \mathrm{H}_{0}: \mu=3360$
$\mathrm{H}_{1}: \mu \neq 3360$
B0B0
$0.0297>0.0125$ A1
Don't reject $\mathrm{H}_{0}$
M0
There is no evidence that mean mass has changed
A0
R $\quad \mathrm{H}_{0}: \mu=3360$
$\mathrm{H}_{1}: \mu \neq 3360$ where $\mu=$ (pop) mean mass
B1B0
$0.0297>0.025$
Don't reject $\mathrm{H}_{0}$
A0
There is no evidence that mean mass has changed
M0
A0
S $\quad \mathrm{H}_{0}$ : The (pop) mean mass $=3360$
$\mathrm{H}_{1}$ : The (pop) mean mass $\neq 3360$
B0B0
$0.97<0.9875$
A1
Accept $\mathrm{H}_{0}$
M0
There is no evidence that mean mass has changed

## Need to get in touch?

If you ever have any questions about OCR qualifications or services (including administration, logistics and teaching) please feel free to get in touch with our customer support centre.

Call us on
01223553998
Alternatively, you can email us on
support@ocr.org.uk
For more information visit

## []

ocr.org.uk/qualifications/resource-finder
( ocr.org.uk
$f$ Twitter/ocrexams
3y locrexams
in /company/ocr

- locrexams


##  <br> UNVVRRTT PRESS \& ASSSSMENT

OCR is part of Cambridge University Press \& Assessment, a department of the University of Cambridge.
For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored. © OCR 2022 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA.

Registered company number 3484466 . OCR is an exempt charity.
OCR operates academic and vocational qualifications regulated by Ofqual, Qualifications Wales and CCEA as listed in their qualifications registers including A Levels, GCSEs, Cambridge Technicals and Cambridge Nationals.

OCR provides resources to help you deliver our qualifications. These resources do not represent any particular teaching method we expect you to use. We update our resources regularly and aim to make sure content is accurate but please check the OCR website so that you have the most up-to-date version. OCR cannot be held responsible for any errors or omissions in these resources.

Though we make every effort to check our resources, there may be contradictions between published support and the specification, so it is important that you always use information in the latest specification. We indicate any specification changes within the document itself, change the version number and provide a summary of the changes. If you do notice a discrepancy between the specification and a resource, please contact us.

Whether you already offer OCR qualifications, are new to OCR or are thinking about switching, you can request more information using our Expression of Interest form.

Please get in touch if you want to discuss the accessibility of resources we offer to support you in delivering our qualifications.

