GCE

Mathematics A

H240/03: Pure Mathematics and Mechanics

A Level

Mark Scheme for June 2022

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

1. Annotations and abbreviations

Annotation in scoris	Meaning
\checkmark and \boldsymbol{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
A	Omission sign
MR	Misread
Highlighting	
Other abbreviations in mark scheme	Meaning
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by*
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By Calculator
DR	This question includes the instruction: In this question you must show detailed reasoning.

2. Subject-specific Marking Instructions for A Level Mathematics A

a. Annotations must be used during your marking. For a response awarded zero (or full) marks a single appropriate annotation (cross, tick, M0 or ${ }^{\wedge}$) is sufficient, but not required.

For responses that are not awarded either 0 or full marks, you must make it clear how you have arrived at the mark you have awarded and all responses must have enough annotation for a reviewer to decide if the mark awarded is correct without having to mark it independently.

It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

Award NR (No Response)

- if there is nothing written at all in the answer space and no attempt elsewhere in the script
- OR if there is a comment which does not in any way relate to the question (e.g. 'can't do', 'don't know')
- OR if there is a mark (e.g. a dash, a question mark, a picture) which isn't an attempt at the question.

Note: Award 0 marks only for an attempt that earns no credit (including copying out the question).

If a candidate uses the answer space for one question to answer another, for example using the space for 8(b) to answer 8(a), then give benefit of doubt unless it is ambiguous for which part it is intended
b. An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not always be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner

If you are in any doubt whatsoever you should contact your Team Leader.
c. The following types of marks are available.

M

A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.
A method mark may usually be implied by a correct answer unless the question includes the DR statement, the command words "Determine" or "Show that", or some other indication that the method must be given explicitly.

A

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B
Mark for a correct result or statement independent of Method marks.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
d. When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
e. The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
f. We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so.

- When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value.
- When a value is not given in the paper accept any answer that agrees with the correct value to $\mathbf{3}$ s.f. unless a different level of accuracy has been asked for in the question, or the mark scheme specifies an acceptable range.
NB for Specification B (MEI) the rubric is not specific about the level of accuracy required, so this statement reads " 2 s.f".
Follow through should be used so that only one mark in any question is lost for each distinct accuracy error.
Candidates using a value of $9.80,9.81$ or 10 for g should usually be penalised for any final accuracy marks which do not agree to the value found with 9.8 which is given in the rubric.
g. Rules for replaced work and multiple attempts:
- If one attempt is clearly indicated as the one to mark, or only one is left uncrossed out, then mark that attempt and ignore the others.
- If more than one attempt is left not crossed out, then mark the last attempt unless it only repeats part of the first attempt or is substantially less complete.
- if a candidate crosses out all of their attempts, the assessor should attempt to mark the crossed out answer(s) as above and award marks appropriately.
h. For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question. Marks designated as cao may be awarded as long as there are no other errors. If a candidate corrects the misread in a later part, do not continue to follow through. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
i. If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers, provided that there is nothing in the wording of the question specifying that analytical methods are required such as the bold "In this question you must show detailed reasoning", or the command words "Show" or "Determine". Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
j. If in any case the scheme operates with considerable unfairness consult your Team Leader.

Question		Answer	Marks	AO	Guidance	
2	(a)	Translation - 8 units parallel to the y-axis or $\binom{0}{-8}$	B1 B1 [2]	2.5 1.1	Do not accept shift, move, transformation, etc. for first B1 Correct description e.g. correct vector (not as a coordinate), ' 8 units down'. Do not allow second B1 after incorrect type of transformation e.g. stretch/rotation etc. but allow after shift/move etc. Condone lack of 'units' but do not accept 'factor - 8', '8 places/spaces/steps down' etc. If more than a single transformation, then no marks (unless two translations equivalent to the correct answer)	For 'parallel to the y axis' allow 'vertically', 'in the y direction'. Do not accept across/up/along/to/in/ towards the y axis' Mark vector before description/words
2	(b)	$\begin{aligned} & y=x^{3}-8 \Rightarrow y+8=x^{3} \\ & x=\ldots \\ & \mathrm{f}^{-1}(x)=(x+8)^{\frac{1}{3}} \end{aligned}$	M1 A1 [2]	1.1 1.1	Attempt to make x the subject (allow sign errors only) Must be in terms of x. Allow the expression only e.g. $(x+8)^{\frac{1}{3}}, \sqrt[3]{x+8}$, oe	May use either $\mathrm{f}(x)$ or y Ignore what this expression is equated to
2	(c)	One graph is the reflection of the other graph in the line $y=x$	B1 [1]	1.2	Must include both 'reflection' or 'mirror image' or 'mirrored' and ' $y=x$ '	B0 for 'symmetrical' unless clearly describing reflective symmetry

Question		Answer	Marks	AO	Guidance	
4	(a)	$\text { GP: } x, \frac{15}{y}, z \Rightarrow \frac{\frac{15}{y}}{x}=\frac{z}{\frac{15}{y}}$ AP: $x, y, z \Rightarrow y-x=-4$ or $z-y=-4$	M1*	3.1a	M1 for un-simplified correct use of $r=\frac{u_{n}}{u_{n-1}}$ so allow this mark for stating that $r=\frac{15}{x y}$ or $r=\frac{y z}{15}$ or $r^{2} x=z$ oe	Or for the terms of the GP as $\begin{aligned} & y+4, \frac{15}{y}, y-4 \text { in } y \\ & \text { only } \end{aligned}$
			M1*	1.1	M1 for $y-x= \pm 4$ or $z-y= \pm 4$ or $z-x= \pm 8$ oe For reference: $x y^{2} z=225, x=y+4$ and $z=y-4$	Or for the terms of the AP as $y+4, y, y-4$ in y only
		$(y+4) y^{2}(y-4)=225$	M1dep*	1.1	Eliminate x and z to form an equation in y only (must be equivalent to a quartic in y)	Or for $\begin{aligned} & \frac{y-4}{\frac{15}{y}}=\frac{\frac{15}{y}}{y+4} \\ & \left(\Rightarrow y^{2}-16=\frac{225}{y^{2}}\right) \end{aligned}$
		$y^{2}\left(y^{2}-4 y+4 y-16\right)=225 \Rightarrow y^{4}-16 y^{2}-225=0$	A1	2.2a	AG so sufficient working must be shown www - note that $y=x+4$ and $y=z-4($ from $d=+4)$ can lead to the correct equation (which can score the \mathbf{M} marks only)	
			[4]			

Question		Answer	Marks	AO	Guidance	
4	(b)	$y^{4}-16 y^{2}-225=0 \Rightarrow y= \pm 5 \text { but } y>0 \Rightarrow y=5$	B1	1.1	BC Allow implied e.g. $y= \pm 5$ then using $y=5$ only ($\mathbf{B} \mathbf{0}$ if the sum to infinity for other values of y are not rejected)	$x=9, z=1$
		$\Rightarrow r^{2}=\frac{z}{x}=\frac{1}{9} \Rightarrow r=\frac{1}{3}$	M1	1.1	Calculate r (soi) corresponding to $y=5$ allow unsimplified e.g. $r=\frac{(5)(1)}{15}$ and allow if more than one value of y stated	Possibly done implicitly in formula for S_{∞}
		$S_{\infty}=\frac{x}{1-r}=\frac{9}{\frac{2}{3}}$	M1	1.1	Using the correct formula for the sum to infinity of a GP with their value of $x(=$ their $y \pm 4)$ and a value of r where $-1<r<1$	
		$S_{\infty}=13.5$	A1	1.1	cao oe eg $\frac{27}{2}$ - do not award this mark if more than one value for $S_{¥}$ stated	A0 for a triple-decker fraction e.g. $\frac{9}{\frac{2}{3}}$
			[4]			

Question		Answer	Marks	AO	Guidance	
5	(b)	DR Consider both $\mathrm{f}(0.5)$ and $\mathrm{f}(1)$ Where $\mathrm{f}(x)= \pm\left(4 x^{3}+3 x-3\right)$ $\mathrm{f}(0.5)=-1<0$ and $\mathrm{f}(1)=4>0$ $($ or $\mathrm{f}(0.5)=1>0$ and $\mathrm{f}(1)=-4<0)$ Change of sign indicates that the x-coordinate lies between 0.5 and 1	M1 A1 [2]	1.1 2.4	Working or correct answer for one value is sufficient evidence of correct method but both 0.5 and 1 must be seen Correct values together with explanation (change of sign) and correct conclusion (as a minimum 'root' oe)	Just stating that $\mathrm{f}(0.5)<0$ and $\mathrm{f}(1)>0$ is M0
		Alternative				
		Considers both $g(0.5)$ and $g(1)$ where $g(x)=\frac{\left(4 x^{2}+1\right)(2)-(2 x-3)(8 x)}{\left(4 x^{2}+1\right)^{2}}$	M1		Must be using the correct derivative. Working or correct answer for one value is sufficient evidence of correct method but both 0.5 and 1 must be seen	Just stating that $\begin{aligned} & \mathrm{g}(0.5)>2 \text { and } \\ & \mathrm{g}(1)<2 \text { is M0 } \end{aligned}$
		$\mathrm{g}(0.5)=3>2$ and $\mathrm{g}(1)=0.72<2$ Values either side of 2 indicates that the x-coordinate lies between 0.5 and 1	A1		Correct values together with explanation (values either side of 2) and correct conclusion (as a minimum 'root' oe)	
			[2]			

Question		Answer	Marks	AO	Guidance	
5	(c)	DR Let $\mathrm{h}(x)=\frac{3-4 x^{3}}{3} \Rightarrow \mathrm{~h}^{\prime}(x)=-4 x^{2}$ As the root α lies in the interval $(0.5,1) \Rightarrow \mathrm{h}^{\prime}(\alpha)<-1$ so iterative formula cannot converge to the x-coordinate of P	B1* B1dep* [2]	2.1	Calculates correct derivative of rhs of given iterative formula Correct explanation that any value in the given interval gives a gradient which is less than -1	No marks for just showing that the iteration doesn't converge using different starting values
5	(d)	$\begin{aligned} & \mathbf{D R} \\ & \mathrm{f}\left(x_{n}\right)=4 x_{n}^{3}+3 x_{n}-3 \Rightarrow \mathrm{f}^{\prime}\left(x_{n}\right)=12 x_{n}^{2}+3 \\ & x_{n+1}=x_{n}-\left\{\frac{4 x_{n}^{3}+3 x_{n}-3}{12 x_{n}^{2}+3}\right\} \\ & x_{0}=0.5, \quad x_{1}=\frac{2}{3} \text { or } 0.666666 \ldots, \quad x_{2}=\frac{29}{45} \text { or } 0.644444 \ldots, \\ & \left(x_{3}=0.64395510 \ldots\right) \\ & x \text { coordinate of } P \text { is } 0.64395 \end{aligned}$ y coordinate of P is -0.64395	B1 M1 A1 A1 A B1 [5]	1.1 2.1 1.1 2.2a 1.1	Correct derivative (possibly seen in N-R formula) Correct N-R formula seen with correct $\mathrm{f}\left(x_{n}\right)$ and their $\mathrm{f}^{\prime}\left(x_{n}\right)$ substituted First two iterations correctly stated to at least 5 decimal places (or exact) (truncated or rounded) Independent of previous A mark (but must have scored B1 M1) - must be stated to exactly 5 decimal places Independent of all previous marks - must be stated to exactly 5 decimal places	Condone x for x_{n} oe Condone x for x_{n} oe The correct first two iterations can imply B1 M1 This A mark does not imply the previous \mathbf{A} mark The correct answers with no evidence of N-R (e.g. no iterations stated and no N-R formula) then B0M0A0A0B1 max.

10	(a)	$3 g-16.8=3 a$ $a=\frac{3 g-16.8}{3}=4.2\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$	M1 A1 [2]	3.3 1.1	N2L for Q - correct number of terms with the correct mass. Condone sign errors	M0 if using $3 g$ for the mass but allow g missing from the net force
10	(b)	$\begin{aligned} & 16.8-F_{P}=2.5(4.2) \\ & 16.8-2.5(4.2)=\mu(2.5 g) \\ & \mu=0.257 \end{aligned}$	M1* M1dep* A1 [3]	3.3 3.4 1.1	N2L for P horizontally using $T=16.8$ and their a (but not ± 9.8) from (a) - allow sign errors but must have correct number of terms and correct mass ($\left.\begin{array}{l}1 \\ \\ 3\end{array}\right)$ - if correct $F_{P}=6.3$ Use of $F=\mu R$ for P with $R=2.5 g$ awrt 0.257 - condone working with F „ μR provided that the value of μ is explicitly stated (and not left in an inequality)	F_{P} is the friction between P and B $\begin{aligned} & 0.257142857 \ldots \\ & \text { allow } \frac{9}{35} \end{aligned}$
10	(c)	$\begin{aligned} & R_{B}=2.5 g+M g \\ & 6.3, \frac{5}{49}(2.5 g+M g) \\ & \begin{array}{l} M \ldots 3.8 \text { so least possible value for the mass of } B \text { is } 3.8 \\ (\mathrm{~kg}) \end{array} \end{aligned}$	M1* M1dep* A1 [3]	3.1b 3.4 2.2a	Resolving vertically for B - correct number of terms, allow sign errors and condone g 's missing Use of F " μR or $F=\mu R$ with correct R and $\mu=\frac{5}{49}$ with F being their F_{P} from (b) where $F_{P}{ }^{1} 16.8$ 3.8 - allow use of ' $=$ ' throughout this part	Where M is the mass of B No g 's missing for this mark No justification required

12	(a)	$\mathbf{v}=(1-2 t) \mathbf{i}+\left(2 t^{2}+t-13\right) \mathbf{j}$ If P is stationary, then $1-2 t=0$ and $2 t^{2}+t-13=0$ $\begin{aligned} & \mathbf{i}: 1-2 t=0 \Rightarrow t=\frac{1}{2} \\ & \mathbf{j}: 2 t^{2}+t-13=0 \Rightarrow t=2.3117 \ldots,-2.8117 \ldots \end{aligned}$ No value of t is common to both components, so P is never stationary	M1 A1 [2]	3.1b $2.2 \mathrm{a}$	Considers either the \mathbf{i} or \mathbf{j} component equal to zero or forms a five-term quartic equation for $\|\mathbf{v}\|^{2}=0$ (oe) $\left(4 t^{4}+4 t^{3}-47 t^{2}-30 t+170=0\right)$ BC - need not see the negative value of t or for substituting $t=0.5$ into quadratic expression for \mathbf{j} and showing this gives a non-zero answer (oe) with correct working and conclusion	A1 for the correct quartic equation with roots stated as $2.3 \pm 0.35 i$, - $2.8 \pm 0.65 \mathrm{i}$ + correct conclusion
12	(b)	$\Rightarrow \mathbf{a}=-2 \mathbf{i}+(4 t+1) \mathbf{j}\left(\mathrm{m} \mathrm{s}^{-2}\right)$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	1.1	Correct derivative - or as a column vector	Brackets must be around the $4 t+1$

12	(c)	$-2\left(2 t^{2}+t-13\right)=1(1-2 t)$	M1*	3.1b	Setting up a quadratic equation in t only allow sign errors (including on the 1 and 2) and the 1 and -2 on the wrong side	Or multiples of 1 and -2
		$4 t^{2}-25=0 \Rightarrow t=2.5$	M1dep*	1.1	Solves their (two or three term) quadratic and selects their positive value of t	Check unsupported solutions if incorrect quadratic equation
		$\mathbf{F}=m \mathbf{a} \Rightarrow \mathbf{F}=0.5\{-2 \mathbf{i}+(4 t+1) \mathbf{j}\}$	M1*	3.4	Substitute their \mathbf{a} into $\mathbf{F}=0.5 \mathbf{a}$ or their $\|\mathbf{a}\|$ into $\|\mathbf{F}\|=0.5\|\mathbf{a}\|$. If \mathbf{F} not stated in terms of t then one component must be correct following through from their a (and possibly t)	Must use correct value of 0.5 for m but can be in terms of t
		$\|\mathbf{F}\|=\sqrt{(-1)^{2}+5.5^{2}}$	M1dep*	1.1	Dependent on previous M mark only	From a value of $t>0$
		$\|\mathbf{F}\|=5.59(\mathrm{~N})$	$\begin{aligned} & \mathbf{A 1} \\ & {[5]} \\ & \hline \end{aligned}$	1.1	awrt 5.59 (exact: $\frac{5 \sqrt{5}}{2}$)	5.590169...

13	(c)	$\begin{aligned} & \sqrt{3 g a+\frac{4}{3} g a}=54.6 \\ & a=70.2 \end{aligned}$	M1 A1 [2]	3.4 1.1	Using $\sqrt{U^{2}+V^{2}}=54.6$ to set up an equation in a (and possibly g) www awrt 70.2	an answer of 97.344 (awrt 97.3) from using $(3 a, 0)$ in (b) scores M1 A0
		Alternative 1				
		$54.6 \cos (33.7 \ldots)=\sqrt{3 g a}$ or $54.6 \sin (33.7 \ldots)=\sqrt{\frac{4}{3} g a}$	M1		Setting either the horizontal component equal to their U (from (b)) or the vertical component equal to their V (from (b)). Allow $\sin /$ cos confusion	M0 for an unsupported value of θ (if used)
		$a=70.2$	A1		www awrt 70.2	
			[2]			
		Alternative 2				
		$a=\frac{U V}{2 g}=\frac{54.6 \cos (33.7 \ldots)^{\prime} 54.6 \sin (33.7 \ldots)}{2 g}$	M1		Using their expression for a (possibly seen in (b)) in terms of U and V with 54.6 and their θ. M0 for an unsupported value of θ	Allow sin/cos confusion
		$a=70.2$	A1		www awrt 70.2	
			[2]			

13	(d)	$\begin{aligned} & 0=V^{2}-2 g H\left(\Rightarrow H=\frac{V^{2}}{2 g}\right) \\ & H=\frac{1}{2 g}\left(\frac{4 g a}{3}\right)=\frac{2}{3} a \end{aligned}$ $H=\frac{2}{3}(70.2)=46.8(\mathrm{~m})$	M1* M1dep* A1 [3]	3.3 3.4 $2.2 \mathrm{a}$	Setting up the model using $v^{2}=u^{2}+2$ as with $v=0$ and $a=-g$ Using their expression for V from (b) to get an expression for H in terms of a (oe) e.g., $H=\frac{V^{2}}{2 g}$ where $V=54.6 \sin \theta$ (allow $\cos \theta$) with their value of θ awrt 46.8	H is the maximum height of B M0 for an unsupported value of θ an answer of 54.756 (awrt 54.8) from using ($3 a, 0$) in (b) scores M1M1A0
		Alternative 1				
		$0=V-g t \text { Р } t=\frac{54.6 \sin (33.7 \ldots)}{g}$	M1*		Find t at maximum height with $v=0$, $a=-g$ and $u=$ their $V^{1} 54.6$ (allow \sin / \cos confusion). M0 for an unsupported value of θ	$t=3.090472522 \ldots$
		$\begin{aligned} H & =(54.6 \sin (33.7 \ldots)) t-\frac{1}{2} g t^{2} \\ & =(54.6 \sin (33.7 \ldots))(3.09 \ldots)-\frac{1}{2} g(3.09 \ldots)^{2} \end{aligned}$	M1dep*		Substituting their t into $s=V t-\frac{1}{2} g t^{2}$	$V^{1} 54.6$ (allow sin/cos confusion)
		$H=46.8$ (m)	A1		awrt 46.8	
			[3]			
		Alternative 2				
		$x=2 a$ ค $2 U^{2} y=4 U V a-4 g a^{2}$	M1*		Setting $x=2 a$ or $1.5 a$ and substituting into path equation from (a)	
		$\begin{aligned} & 2(54.6 \cos (33.7))^{2} H= \\ & 4(54.6 \cos (33.7))(54.6 \sin (33.7))(70.2)-4 g(70.2)^{2} \end{aligned}$	M1dep*		Substituting their U, V and a to form an equation in H (and possibly g) only. M0 for an unsupported value of θ	$\begin{aligned} & U \text { and } V^{1} 54.6 \\ & \text { (allow sin/cos } \\ & \text { confusion) } \end{aligned}$
		$H=46.8$ (m)	A1		awrt 46.8	
			[3]			

Method marks for solving/factorising quadratics of the form $a x^{2}+b x+c$ - however note that candidates may solve quadratics on their calculators without showing any working so (unless the scheme says otherwise) unsupported answers from an incorrect quadratic equation need to be checked by examiners to award the corresponding M mark(s)

1. Factorisation: The modulus of the product of the first two terms in the brackets must equal $|a| x^{2}$. The modulus of the product of the second two terms in the bracket must equal $|c|$, e.g. $2 x^{2}+x-6$ any of the following would score M1: $\pm 2 x(x \pm 2) \pm 3(x \pm 2) \quad(\pm 2 x \pm 3)(\pm x \pm 2)$
2. Formula: If the formula is written down correctly, then allow a maximum of one sign error in the substituted values for M1
3. Completing the square: Must get as far as halving the coefficient of x and dealing with the square of that term as well as moving the constant terms to one side ready to take the square root. Condone 1 sign error.
e.g. $x^{2}+5 x-3=0 \Rightarrow\left(x+\frac{5}{2}\right)^{2}=3 \pm\left(\frac{5}{2}\right)^{2}$ would get M1
e.g. $x^{2}+5 x-3=0 \Rightarrow\left(x+\frac{5}{2}\right)^{2}=-3+\left(\frac{5}{2}\right)^{2}$ would get M1

Need to get in touch?

If you ever have any questions about OCR qualifications or services (including administration, logistics and teaching) please feel free to get in touch with our customer support centre.

Call us on
01223553998
Alternatively, you can email us on
support@ocr.org.uk
For more information visit

[]

ocr.org.uk/qualifications/resource-finder
(ocr.org.uk
f Twitter/ocrexams
3y locrexams
in /company/ocr

- locrexams

 UNVVRRTT PRESS \& ASSSSMENT

OCR is part of Cambridge University Press \& Assessment, a department of the University of Cambridge.
For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored. © OCR 2022 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA.

Registered company number 3484466 . OCR is an exempt charity.
OCR operates academic and vocational qualifications regulated by Ofqual, Qualifications Wales and CCEA as listed in their qualifications registers including A Levels, GCSEs, Cambridge Technicals and Cambridge Nationals.

OCR provides resources to help you deliver our qualifications. These resources do not represent any particular teaching method we expect you to use. We update our resources regularly and aim to make sure content is accurate but please check the OCR website so that you have the most up-to-date version. OCR cannot be held responsible for any errors or omissions in these resources.

Though we make every effort to check our resources, there may be contradictions between published support and the specification, so it is important that you always use information in the latest specification. We indicate any specification changes within the document itself, change the version number and provide a summary of the changes. If you do notice a discrepancy between the specification and a resource, please contact us.

Whether you already offer OCR qualifications, are new to OCR or are thinking about switching, you can request more information using our Expression of Interest form.

Please get in touch if you want to discuss the accessibility of resources we offer to support you in delivering our qualifications.

