[image: image2.png]OCRY

RECOGNISING ACHIEVEMENT

Support Material

GCE Computing

OCR Advanced Subsidiary GCE in Computing H047

Unit: F452
This Support Material booklet is designed to accompany the OCR Advanced Subsidiary GCE specification in Computing for teaching from September 2008.

Contents

2Contents

Introduction
3
Schemes of Work
5
Lesson Plan
26
Other forms of Support
38

Introduction

Background

A new structure of assessment for A Level has been introduced, for first teaching from September 2008. Some of the changes include:

· The introduction of stretch and challenge (including the new A* grade at A2) – to ensure that every young person has the opportunity to reach their full potential

· The reduction or removal of coursework components for many qualifications – to lessen the volume of marking for teachers

· A reduction in the number of units for many qualifications – to lessen the amount of assessment for learners

· Amendments to the content of specifications – to ensure that content is up-to-date and relevant.

OCR has produced an overview document, which summarises the changes to Computing. This can be found at www.ocr.org.uk, along with the new specification.
In order to help you plan effectively for the implementation of the new specification we have produced this Scheme of Work and Sample Lesson Plans for Computing. These Support Materials are designed for guidance only and play a secondary role to the Specification.
Our Ethos

All our Support Materials were produced ‘by teachers for teachers’ in order to capture real life current teaching practices and they are based around OCR’s revised specifications. The aim is for the support materials to inspire teachers and facilitate different ideas and teaching practices.
Each Scheme of Work and set of sample Lesson Plans is provided in:

· PDF format – for immediate use

· Word format – so that you can use it as a foundation to build upon and amend the content to suit your teaching style and students’ needs.

The Scheme of Work and sample Lesson plans provide examples of how to teach this unit and the teaching hours are suggestions only. Some or all of it may be applicable to your teaching.
The Specification is the document on which assessment is based and specifies what content and skills need to be covered in delivering the course. At all times, therefore, this Support Material booklet should be read in conjunction with the Specification. If clarification on a particular point is sought then that clarification should be found in the Specification itself.
A Guided Tour through the Scheme of Work

 SHAPE * MERGEFORMAT

GCE Computing H047/H447:
Unit F452 – Programming Techniques and Logical Methods

Introduction
Even though this unit is externally assessed by examination, it is a practical unit and it is anticipated that in preparing for this unit, candidates will have the opportunity to program in a suitable high level language and use this experience to learn the programming principles and techniques covered. The aim of the unit is to develop the candidates’ programming skills as well as a good understanding of the fundamental concepts involved.

Because of the nature of programming, it is unlikely that the different sections of the specification can be taught completely in isolation. Instead, centres are advised to set the candidates a series of programming problems to solve where each problem can be used to focus on a specific area of the specification while reinforcing or introducing others. OCR will provide further guidance including examples of problems that can be set. The aim of this document is to clarify elements of the specification and make suggestions about how they can be addressed specifically within the context of a practical, problem solving course.

This unit is about the principles of procedural programming, but not about any specific procedural language. Centres have the freedom to choose a language which would best suit the facilities, experiences and interests of the centre and its candidates. In examination, the candidates’ understanding of the principles will be tested irrespectively of the language used.

However, centres should ensure that they use a language that will enable the students to cover and experience all the principles covered in the specification. Such languages will include all the languages commonly used in centres such as VB6, VB.net, Java, Delphi, C, C# , C++, Python and Perl. If using an object-oriented language centres are advised that concepts specific to object oriented programming are not tested until unit F453. OCR will offer guidance to any centres who would like further advice on the language to use.

	GCE Computing H047/H447:
Unit F452 – Programming Techniques and Logical Methods

	Section 1: Designing solutions to problems

	Suggested teaching time range
	
	Specification content
	Teacher guidance

	Section summary
	Candidates should be able to:
	Clarification and suggestions
	Teacher notes

	· Design of the input, output and interface

	a. discuss the importance of good interface design;

b. design and document data capture forms, screen layouts, report layouts or other forms of input and output (e.g. sound) for a given problem
	Throughout the course, candidates should be encouraged to critically evaluate the user interface of programs they produce. They will need to be able to comment on the suitability of an interface to solve a given problem.

They should be aware of a range of facilities of a GUI (including menus, text boxes, command buttons, drop town lists, check boxes, radio buttons). They should also have an understanding of other types of user interface and input/output devices (for example menu-based interfaces and touch screens). Candidates will develop this awareness partly due to their general use of computers, but opportunities to develop some of these interfaces themselves will improve their understanding. In examinations they will be asked to describe, sketch or evaluate a proposed design.
	

	
	c. determine the data requirements of a program;
	They will also need to consider the data needed for a program. This could be implicit in their design of an interface for the problem to solve (e.g. by deciding which fields are in an input form), but they may also need to list the requirements explicitly, including details such as the data type or any validation that is required. Producing data dictionaries for programs they write will be good practice.
	

	· [image: image2.png]Use of structure diagrams to describe the modular nature of a solution

	d. explain the advantages of designing a solution to a problem by splitting it up into smaller problems (top-down/modular design);
e. produce and describe top-down/modular designs using appropriate techniques including structure diagrams, showing stepwise refinement;
	The advantages of such modular design are well documented in leading textbooks. Candidates should be encouraged to appreciate these advantages practically. For example, exercises could be set up where different candidates implement different modules of a design, or where one group of candidates is asked to implement a non-modular design while another group implements a modular design to solve the same problem.

Formalised techniques such as JSP are not required, but candidates need to show that they can take a larger problem and decompose it into sub-problems. To show stepwise refinement, they will generally need to have at least 1 intermediary level (rather than immediately splitting the problem into sub-problems which can be implemented as they are).
	

	· Use of program flowcharts and pseudo-code to describe the steps of an algorithm

	f. produce algorithms to solve problems;

g. describe the steps of an algorithm using a program flowchart;

h. describe the steps of an algorithm using pseudo-code;
	Here an algorithm is considered to be the steps needed for the computer program to solve a given problem, whether it is expressed in a flowchart, in pseudo-code or high-level code. Candidates will be doing this throughout the course.

When using flow chart the symbols to be used will be limited to Terminators (Begin and End), Input/Output, Process and Decision (see BCS).

There are no standard conventions for pseudo-code, but candidates should be encouraged to make the logic of their algorithms clear. This can be done, for example, by capitalising keywords, using English phrases rather than complex expressions and indentation to show the control structures.
	

	
	i. understand, and implement algorithms and evaluate them by commenting on their efficiency, correctness and appropriateness for the problem to be solved;
	The candidates’ understanding of algorithms will be examined by asking them to follow (trace) the algorithm, write corresponding high level code or evaluate it. Questions where they are asked to evaluate the algorithm will aim to stretch and challenge the most able candidates who will have the opportunity to comment on the efficiency (for example in terms of use of system resources) and suggest alternative implementations.
	

	· Prototyping and Rapid Application Development(RAD)
	j. describe the use of Rapid Application Development (RAD) as a design strategy including prototyping and iterative development, and state its advantages and disadvantages.
	RAD tools and design techniques and visual programming IDE’s are being used more frequently and candidates in most centres will have been exposed to at least one visual IDE. The candidate should have an understanding of the use of RAD as an alternative to the classic waterfall model of software development. (i.e. producing a model with reduced functionality (prototyping) and evaluating this with the user, - repeating the cycle a number of times (iterative development) until final product reached. Discussing the advantages and disadvantages of this approach provides an opportunity to stretch and challenge the most able candidates.
	

	GCE Computing H047/H447:
Unit F452 – Programming Techniques and Logical Methods

	Section 2 : The Structure of Procedural Programs

	Suggested teaching time range
	
	Specification content
	Teacher guidance

	
	
	
	

	
	k. define and correctly use the following terms as they apply to procedural programming: statement, subroutine, procedure, function, parameter/argument, sequence, selection, iteration/repetition, loop;
	The terms are being spelt out here to give a quick reference to terms the candidates should know and understand This understanding will be enhanced by their correct use of these terms as they study the rest of the unit.

The precise use of some of these terms will vary slightly depending on the language used and this will be recognised in the assessment of the unit. However, the general usage of these terms is set out below and centres are encouraged to teach these general principles as well as the particular implementation used.

A statement is used to mean any individual step/instruction in the code. A subroutine is used to mean a sub-program, a set of statements written to perform a given task as part of solving the main problem which can be called using its identifier. The term procedure will generally be used to mean a subroutine which performs a task but has no return value. The term function will be used specifically for a subroutine which returns a single value and can therefore be used in expressions. Candidates will not be required to differentiate between formal and actual parameters and will be allowed to use the terms “parameter and argument interchangeably.”

A good authority for definitions of terms used in this specification is the BCS glossary.

	

	· [image: image3.jpg]

Basic programming constructs/control structures

	l. identify the three basic programming constructs used to control the flow of execution: sequence, selection and iteration;

m. understand and use selection in pseudo-code and a procedural programming language including the use of IF statements and CASE/SELECT statements;

n. understand and use iteration in pseudo-code and a procedural programming language including the use of count-controlled loops (FOR-NEXT loops) and condition-controlled loops (WHILE-ENDWHILE and
REPEAT-UNTIL loops);

o. understand and use nested selection and iteration statements;
	A good understanding of the control structures is the basis of being able to program in a procedural language and centres are advised to introduce this early in the course.

Candidates should have the opportunity to implement working code using these constructs from designs which have been produced as a class or by themselves. They should also be able to write equivalent code using different iteration structures (FOR, WHILE, REPEAT) and different selection structures (IF and SWITCH/SELECT – as supported by the language used).

The use of jumps(GOTO) should be discouraged by centres in order to encourage the candidates’ understanding of control structures. However, its moderate use, especially in cases such as exception handling or nested loops, may be appropriate.
	

	· Use of subprograms/subroutines including procedures and functions

	p. understand, create and use subroutines (procedures and functions) including the passing of parameters and the appropriate use of the return value of functions
	Understanding the difference between passing parameters by value and by reference will not be tested in examination questions, but may create interesting classroom discussions, depending on the language used..
	

	· [image: image4.jpg]

Recursion

	q. identify and use recursion to solve problems; show an understanding of the structure of a recursive subroutine, including the necessity of a stopping condition;

r. trace the execution of a recursive subroutine including calls to itself;
s. discuss the relative merits of iterative and recursive solutions to the same problem.
	All candidates should be able to identify recursion as a subroutine which calls itself. Candidates should be given the opportunity to trace relatively small recursive subroutines both manually and using the debugging facilities of their programming language.

Candidates should also explore and compare recursive and iterative solutions to the same problem. The coursework tasks for the previous syllabus (Module 2507) from 2001 to 2006 contain some good starting point exercises for this. They can be obtained from OCR.
	

	GCE Computing H047/H447:
Unit F452 – Programming Techniques and Logical Methods

	Section 3 : Data Types and Data Structures

	Suggested teaching time range
	
	Specification content
	Teacher guidance

	Section summary
	Candidates should be able to:
	Clarification and suggestions
	Teacher notes

	· Data types: integer, real, Boolean, character, string

	a. Define different data types numeric (integer, real), Boolean, character and string; select and use these appropriately in their solutions to problems;
	The data types listed here are general and represent the general concept rather than the specific implementation in any language. Common alternatives for the numeric types (such as long integer, float, double etc) will be acceptable, but centres are encouraged to emphasise the fundamental principles.

While a string can be considered as a data structure consisting of characters it is implemented in many languages as a data type of its own and is treated as such here.

Candidates should be able to select and justify the appropriate data types needed to write programs which solve problems.

An authoritative source for definitions is the BCS.

	

	· Data structures: array (one- and two-dimensional), record

	b. define and use arrays (one- and two-dimensional) for solving simple problems, including initialising arrays, reading data into arrays and performing a simple serial search on a one-dimensional array;

c. explain the advantages and disadvantages of different data types and data structures for solving a given problem;

d. design and implement a record format;
	Arrays are considered to be of fixed size and have consecutive integers as their index (typically starting from 1 or 0).

The examples of problems given are not exhaustive. Other problems that can be set for the candidates include:

find the maximum/minimum/total/average/most frequent of the elements of an array

 extract elements of an array that fit a given condition and placing them in another array

Use a two-dimensional array as a look-up table

Such tasks should be set within the context of a real-life problem to solve.

A record structure here is considered to be a compound type consisting of a number of named fields which may be of different data types. Candidates should be able to define and use these in a high level language.

Candidates should be asked to comment on and justify their choice of data structures and data types.
	

	· Storing, retrieving and searching for data in files
	e. define different modes of file access: serial, sequential, indexed sequential and random and justify a suitable mode of file access for a given example;

f. store, retrieve and search for data in files;

g. estimate the size of a file from its structure and the number of records;
h. use the facilities of a procedural language to perform file operations (opening, reading, writing, updating, inserting, appending and closing) on files of different access modes as appropriate.
	Candidates should have the opportunity to manipulate data given in files, as well as outputting data to files as part of their preparation for this course. While the implementation varies greatly between languages, candidates will typically learn how to:

prepare files for input and output (open statements, initialising filestream objects, or similar)

append to a serial file

read the data in a serial file in turn (including testing for the end of the file)

read and write data to a specific location in a random access file

create, rename and delete files

use the above in combination to achieve other effects e.g. inserting an item into a sequential file by creating a new file and deleting the old one.
	

	GCE Computing H047/H447:
Unit F452 – Programming Techniques and Logical Methods

	Section 4 : Common Facilities of Procedural Languages

	Suggested teaching time range
	
	Specification content
	Teacher guidance

	Section summary
	Candidates should be able to:
	Clarification and suggestions
	Teacher notes

	· Assignment statements

	a. Understand and use assignment statements;
	While all candidates will have used assignment statements, the will need to be familiar with the term “assignment” itself. They should also be able to tell the difference between the assignment operator and the equality operator (especially in languages where the same symbol is used). They should learn to spot left to right transposition errors (i.e. <expression>:=<variable> . Many candidates will learn this in the normal course of completing programming exercises as they make and debug these errors.
	

	· Arithmetic, relational and Boolean operations

	b. understand arithmetic operators including operators for integer division (+, -, *, /, MOD and DIV) and use these to construct expressions;

c. understand a range of relational operators, e.g. =, <, <=, >, >= and <> and use these to construct expressions;

d. understand the Boolean operators AND, OR and NOT and use these to construct expressions;
e. understand the effects of the precedence of standard operators and the use of parentheses to alter the order of precedence;

f. evaluate expressions containing arithmetic, relational and Boolean operators and parentheses;
	The operator symbols used here are commonly used in many languages and will be used in any pseudo-code presented in examination papers. (Where necessary, additional explanations or examples may be given to clarify what the operator does). Candidates should be familiar with these as well as any symbols used in the language used in the centre.

The operator precedence will be the same as in most languages.

()

*,/, MOD,DIV

+,-

AND

OR

NOT

Using parentheses to make expressions clearer, even when they are correct by operator precedence is good practice and should be encouraged.
	

	· String manipulation

[image: image5.jpg]

	g. understand and use a range of operators and built-in functions for string manipulation including location (LOCATE), extraction (LEFT, MID, RIGHT), comparison, concatenation, determining the length of a string (LENGTH) and converting between characters and their ASCII code (ASCII and CHAR);
h. understand that relational operations on alphanumeric strings depend on character codes of the characters and explain the results of this effect (e.g. why ‘XYZ’ < ‘abc’,‘2’ > ‘17’ and ‘3’ <> ‘3.0’);

	Every programmer needs to be familiar with string manipulation techniques. While these vary from language to language, the candidate needs to know at least the basic functions given.

Examples of applications for string manipulation which could be used to create exercises for candidates are:

using different ciphers to write messages in code and convert them back into plain text;

rearranging unstructured text data;

Grabbing data from files (e.g.TV listings from web pages)
	

	· Input and output facilities

	i. input and validate data;
j. output data onto screen/file/printer, formatting the data for output as necessary.
	It is likely that most of the programs written by candidates will require some data to be input from the user and will produce some output, so candidates will be familiarising themselves with the input and output facilities of the language all through the course.

Where candidates are using a visual environment, they should be encouraged to explicitly input values by assigning variables to the contents of text boxes, drop down lists etc... instead of working directly with UI objects. This will ensure that the data is of the correct data type and provide an opportunity for validation.

As candidates progress, they should learn to always validate inputs. They should regularly be set the task to make each other’s work crash by entering invalid data. As they progress, they should also explore other forms of output than the screen.
	

	GCE Computing H047/H447:
Unit F452 – Programming Techniques and Logical Methods

	Section 5 : Writing maintainable programs

	Suggested teaching time range
	
	Specification content
	Teacher guidance

	Section summary
	Candidates should be able to:
	Clarification and suggestions
	Teacher notes

	· Declaring and using variables and constants

· Self-documented code, including identifiers, annotation and formatting

· Modularised code

	a. define, understand and use the following terms correctly as they apply to programming: variable, constant, identifier, reserved word/keyword;

b. explain the need for good program writing techniques to facilitate the ongoing maintenance of programs;

c. declare variables and constants, understanding the effect of scope and issues concerning the choice of identifier (including the need to avoid reserved words/keywords);

d. select and use meaningful identifier names and use standard conventions to show the data types and enhance readability;
e. use declared constants to improve maintainability;

f. initialise variables appropriately, before using them;

g. create appropriately modularised programs making effective use of subroutines to improve maintainability;

h. annotate the code with comments so that the logic of the solution can be followed;

i. use indentation and formatting to show clearly the control structures within the code.
	Candidates should be taught to write self-documented code which makes it easy to understand and maintain from the very start of their studies.

Exercises that can be used to supplement this include being given working code that is not self-documented to evaluate and improve. This will help them appreciate the need for good programming techniques and also give them practice in applying these techniques. They can also be asked to critically evaluate the maintainability of each other’s code.

Candidates should declare variables explicitly even if using languages where this can be optional. Variables should generally be declared locally rather than globally unless it is necessary for the variable to be global. Identifier names should be meaningful and follow accepted conventions such as the use of camelCase or PascalCase. Data types can be shown using prefixes.

Candidates should appreciate the need to initialise variables (i.e. assign an initial value to them) before they are used in an expression. They should be trained to do this explicitly even when this is done by the language they use).

A modularised design will result in code that is naturally broken up into subprograms which can easily be understood on their own. Where it is necessary to have longer subprograms, candidates should be encouraged to divide this into blocks which perform logically distinct parts of the algorithm.

Inline comments in code are essential to ensure the logic can be followed. The comments should normally explain the entire algorithm, such that the code can be rewritten using the guidance in the comments. However, the comments should complement the other techniques for writing maintainable code, and the better the code is, the less extensive the comments may need to be.

	

	GCE Computing H047/H447:
Unit F452 – Programming Techniques and Logical Methods

	Section 6 : Testing and Running a Solution

	Suggested teaching time range
	
	Specification content
	Teacher guidance

	Section summary
	Candidates should be able to:
	Clarification and suggestions
	Teacher notes

	· Types of programming errors

	a. describe types of errors in programs (syntax, logic and run-time errors) and understand how and when these may be detected;

b. identify why/where an error may occur in an algorithm and state how the algorithm may be corrected;
	Candidates will experience these errors all through their study of programming and they should have the opportunity to reflect on the causes of the error and be able to classify them as syntax, logic or run-time errors. In this context, syntax errors are those where the rules for making statements are not followed. While the syntax for each language is different, candidates will appreciate the need to use the correct syntax.

They should also be able to follow a simple description or model of the correct syntax – and use these to spot syntax errors (a useful skill when accessing reference material to identify their own syntax errors).

Logic errors include any errors where the syntax of the code written is correct, but the code does not do what was intended. (In some sources these are referred to as semantic errors). Typically a routine with a logic error will run normally but produce unexpected results – however, it may occasionally cause a run-time error.

The term “run-time error” refers in this context to errors which cause the program to crash at run-time, for example a division by 0, or a reference to a file which is not found.
	

	· Testing strategies and test data

	c. describe testing strategies including white box testing, black box testing, alpha testing, beta testing and acceptance testing;

d. select suitable test data for a given problem, including normal, borderline and invalid data;

e. perform a dry run on a given algorithm, using a trace table;
	Candidates should apply white box and black box testing strategies to the programs they write in their study of this unit.

With black box testing, they should appreciate the need to create representative test cases which cover as many possible combinations of input data as possible (for relatively small programs with few input variables, they should be able to provide test cases which cover all possibilities). This will develop their ability to describe the purpose of each test case accurately. They should be able to provide with each test case, example test data and the expected result.

Dry runs in examination questions will be limited to relatively short algorithms.
	

	· Debugging

	f. describe the use of a range of debugging tools and facilities available in procedural programming languages including translator diagnostics, break points, stepping, variable checks;
	Candidates should be familiar with the facilities available in the language they use and be able to describe how they are used.
	

	· [image: image6.wmf]Installation and execution

	g. describe the purpose of an installation routine in the delivered version of the program.
	An installation routine may be automated or the program may need to be installed manually. In any case “installation” refers to all steps that are taken to ensure that the program is ready to be executed in the target machine. This includes:

Copying the executable program files (or the program files and interpreter) to the target machine

Copying/setting up any data files that are needed by the program to run

Copying and installing/registering any library files that the program uses

Making the program easy to access by setting up short cuts / icons etc...

Registering OS variables such file extensions

Initial configuration of the program

Many IDE’s provide a facility for creating an installation routine, and candidates should be encouraged to uses these where available. They should however still appreciate what the installation routine is doing automatically.
	

Lesson Plan: GCE Computing H047/H447
Unit F452
Section title: 3.2.1a, b, c Designing Solutions to Problems

Introduction
OCR recognises that the teaching of this qualification will vary greatly from school to school and from teacher to teacher. With that in mind, this lesson plan is offered as a possible approach but will be subject to modifications by the individual teacher.

Lesson length is assumed to be one hour.

Learning objectives for the lesson

	Objective 1
	Discuss the importance of good interface design

	Objective 2
	Design and document screen layouts

	Objective 3
	Determine the data requirements for a given problem

Recap of previous experience and prior knowledge

It is assumed here that the learners are near the beginning of their course, but have had some experience of using GUI’s and Internet web sites with forms. Ideally, they will have some limited experience of designing a user interface in a visual programming language, but if the centre uses a non-visual language, the exercise can be completed using an ordinary drawing package or even pencil and paper! The actual content of the lesson can be adapted for the facilities of the centre.

Content

	Time
	Content

	10 minutes
	Learners each find an Internet web site where people have to register for a service. (Alternatively the teacher can choose some sites to ensure that there are examples of bad design – or there can be a mixture of teacher and learner choices). Then they get into groups of 3 and look at the web sites in the group and note down:

· What the service was and what data was asked for and why? Is there any data that was collected but appears irrelevant?

· Examples of good design – where the design of the form made collecting the data easier.

· Examples of bad design – where the design of the form hindered the collection of data.

(Learners should avoid thinking of “good design” as meaning “pretty”.)

	5 minutes
	Feedback to whole class – focus on irrelevant data that was collected, good and bad design... if possible, websites mentioned could be projected for whole class to see. Class respond discussing to what extent they agree.

	5 minutes
	 Introduce the problem the learners have to solve:

A new dating agency provides a service where people register and provide some personal information. Based on the information provided, they receive a weekly email, with details of members who live near them. For this service, the agency automatically charges their credit card every month on a date they choose.

(The teacher can adapt this scenario to suit the learners. In particular, including criteria which are used to match the members to each other provides scope for differentiation than can be applied on a learner by learner basis.)

	5 minutes
	Back in groups of 3, learners discus and justify what data will need to be collected from the member at registration, and create a list of these for the next task.

	25 minutes
	Using the UI design facilities of a visual language, design an interface that will be used to register new members. Learners practice adding UI objects to the interface, organise the layout, set properties etc.

	10 minutes
	Consolidation and homework:

Learners in turn describe one aspect of their design so far which makes it a “good” design, and why. Teacher provides immediate feedback.

Homework: Complete design and hand in an annotated screenshot of the design. The annotation should explain how the UI objects contribute to the effectiveness of the design as well as why the data is being collected.

Notes

Feedback to be given on the homework should include the quality of the design as well as the relevance of the data collected.

Follow on lessons should explore the data being collected – their data types and any restrictions on the data. This links to topic 4.i (Inputting and validating data). The learners should at least describe the validation rules that should be applied to each field of data. If the learner’s experience of programming allows they could also implement these validation rules (or this could provide scope for differentiation).

Lesson Plan: GCE Computing H047/H447
Unit F452
Section title: 3.2.2 a The structure of procedural programs

Introduction
OCR recognises that the teaching of this qualification will vary greatly from school to school and from teacher to teacher. With that in mind, this lesson plan is offered as a possible approach but will be subject to modifications by the individual teacher.

Lesson length is assumed to be one hour.

Learning objectives for the lesson

	Objective 1
	Understand what is meant by an algorithm.

	Objective 2
	identify the three basic programming constructs used to control the flow of execution: sequence, selection and iteration (section 2a)

	Objective 3
	Produce some simple algorithms in pseudo-code and as a flow chart

Recap of previous experience and prior knowledge

This lesson assumes that the learners have no prior experience of programming and forms the basis of a first lesson for this unit, immediately setting the focus on problem solving.

Content

	Time
	Content

	10 minutes
	Teacher shows class the picture of robotic ant on a maze (fig 1). Task is to make instructions for the ant to find the fruit.

Go through the instructions that are allowed (Forward n steps, Turn Left/Right, as well as Repeat n times, Repeat until <condition>, IF <cond> then <do this> else <do that>) and the conditions : Wall_Ahead and Found.

Ask learners for instructions to get Ant to fruit. They will immediately produce the sequence. Introduce the term “Algorithm” and the term “sequence”

	10 minutes
	They should then be challenged to find as many other alternative solutions that work.

Some solutions include:

Repeat 2 Times { fd 5, turn r}, Repeat 2 times {fd 4 turn r} ... etc

Repeat Until Found { IF wall_ahead then turn right else forward 1 }

(Other maze layouts can also be provided, but in each case challenge learners to find many solutions that work – alternatively, find an algorithm which will work even if you do not know where the fruit is – or how many squares have fruit.)

	10 minutes
	Class together, some of the students offer instructions, these instructions are written on the board while other students try to follow the instructions to see if they would work. Discussion about the importance of the instructions being clear and unambiguous.

	10 minutes
	Introduce flow chart symbols to students and ask them to put some of the instructions – including those on board – into a flow chart (this allows the control structures to be understood visually).

	15 minutes
	Students put some of their flow charts on the board – other students comment about correctness...

Teacher then asks how the flow charts differ from the flow chart for a sequence... this should bring out the concepts of selection and iteration...

	5 minutes
	Consolidation – students individually write down in their note books their own definitions in their own words for Algorithm, Sequence, Iteration and Selection.

Notes

This lesson should be followed by 2 or 3 more lessons and/or homework where the concepts introduced are reinforced through practice with different grids or similar situations to ensure that the learners gain a good grasp of the control structures. Activities in these lessons could also include testing each other’s algorithms by following the instructions manually on a grid, pr by using control software or LOGO if available. Following the problems through from devising the algorithm, writing it out and testing it will help the candidate understand the basic principles which are fundamental to the rest of this unit.

[image: image7.jpg]

Lesson Plan: GCE Computing H047/H447
Unit F452
Section title: 3.2.4 g, h: Common Facilities of Procedural Languages

Introduction
OCR recognises that the teaching of this qualification will vary greatly from school to school and from teacher to teacher. With that in mind, this lesson plan is offered as a possible approach but will be subject to modifications by the individual teacher.

Lesson length is assumed to be one hour.

Learning objectives for the lesson

	Objective 1
	understand and use a range of operators and built-in functions for string manipulation including location (LOCATE), extraction (LEFT, MID, RIGHT), comparison, concatenation, determining the length of a string (LENGTH) and converting between characters and their ASCII code (ASCII and CHAR);

	Objective 2
	Reinforcement of previously covered skills/knowledge (especially iteration, writing and testing functions and problem solving).

Recap of previous experience and prior knowledge

Before this lesson, learners should already have written programs in a high level language, in which they have been introduced to the concepts of writing functions and also been introduced to control structure. However, typically, their initial experience will usually focus on processing numerical data and they will have learnt some basic techniques such as declaring and assigning variables, creating expressions.

The focus of this lesson is to introduce the string manipulation facilities of the language used by the learners, while generally reinforcing the programming and problem solving skills they have developed so far. It is expected that centres will follow this introduction with a series of lessons where the learners practise similar exercises to develop a fuller understanding of the string manipulation functions of the language used and further their problem solving skills. Appendix B therefore contains suggestions of exercises which will cover more than one lesson, as well as suggestions on how the exercises can be differentiated.
Content

	Time
	Content

	15 Minutes
	Recap of previous learning. Teacher displays code from appendix A (or an implementation of it in the language used by the learners.) Learners asked to look at the code and determine what it does, and how they know this.

This gives an opportunity to reinforce previous concepts including: function, argument, return value, loop

A reminder of different data types particularly Integer and String will also result from this discussion – as well as the distinction between a “number” and a “digit”

The discussion is also an opportunity to look at the string manipulation functions used (length, mid) as well as the type-casting functions (e.g. convert integer to string). This can lead into a discussion of how to access reference material for it in functions in the IDE used by the learners.

The learners should implement the code and test that it works as suggested.

	35 Minutes
	Learners given worksheet – Appendix B – of programming exercises, to work through.

These exercises can be adapted to suit the language used by the centre. They have been graduated to go progressively from easier to more difficult exercises, each time using some of the ideas/tools from previous exercises (and from appendix A).

To provide differentiation, learners can be asked to start at different points. Extra challenges can also be set for most of the exercises depending on the ability of the learner (some examples are given).

As learners work through the exercises, teacher circulates encouraging peer teaching as well as using reference material to solve the problems set.

	10 Minutes
	Consolidation – Class together discuss / demonstrate some of the solutions they have found. This will have involved the use a range of string manipulation facilities which should be summarised and noted down by the students. They should also comment on each other’s algorithms, especially where different learners have found different solutions to the same problem.

Individualised homework can also be set for each learner according to the progress made

Notes

This lesson plan demonstrates the flexibility that the specification of unit F452 offers for centres to develop the programming skills of learners using practical exercises that are adapted to the learner as well as the language of the centre’s choice.

Having a series of small problems to solve can be more rewarding for learners than a more complex problem. This gives the opportunity to discuss some of the benefits of top-down design. An interesting way to reinforce this in a subsequent lesson is to ask the learners to use their functions (as source code, or if the language allows, compiled into a library) with a larger program that makes use of the functions. This program may have been written for them, or by each other, and ideally should work with all functions that meet the specifications given in appendix B.

Appendix A – algorithm for class discussion .

The algorithm should be implemented in the programming language used by the learners. The learners may be given access to an electronic copy of this so that they can try it out themselves.

Function AddDigits(Number : Integer) : Integer

 TotalSoFar = 0

 StringNum = convert Number into a string

 For I = 1 to len(StringNum)

 StringDigit = Mid(strNum,I,1)

 ValueOfDigit = convert StringDigit into an Integer

 TotalSoFar = TotalSoFar + ValueOfDigit

 Next I

 Return TotalSoFar

 End Function

Appendix B – Problem solving exercises

These exercises should be adapted to suit the language used by the centre (as well as any house-style in the centre for producing worksheets). Learners can initially be asked to assume that the arguments are valid. Responding appropriately when the arguments brings in an extra layer of difficulty and is included at the end as a challenge for the most able. In the case of some learners, it may not be necessary to leave this to the end.

1. Write a function called MiddleChar which takes a string as an argument and returns the middle character from this string if the length of the string is odd. If the length of the string is even then it returns the empty string.

For example MiddleChar(“Bob”) should return “o”, but MiddleChar(“Jane”) should return “”.

(For weaker students, this may be split into two exercises, one for even-length and one for odd-lengthed strings.)

2. Write a function called RemoveVowels which takes a string as its argument and returns a string which is the same as the original string but without the vowels.

For example RemoveVowels(“Computing”) should return “Cmptng”.

3. Write a function called CountOccurences which takes two arguments. The first is a single-character string and the second is a string of any length. The function should return the number of times that the character occurs in the second argument.

For example CountOccurences(“a”,“Bananarama”) should return the integer 5.

(For a challenge: add a third argument of type Boolean. If this argument is TRUE then the search is case-sensitive, if it is FALSE then the search ignores case. It should default to FALSE. If the language used by the centre allows it, this third argument could be optional – defaulting to TRUE).

4. Write a function called SearchAndReplace which takes three arguments: a string of any length and two single-character strings. The function replaces all occurrences of the second argument with the third argument and returns the result.

For example SearchAndReplace(“Pat a cake”, “a”, “o”) should return “Pot o coke”.

(An interesting challenge here is to consider allowing the second and third arguments to be strings of any length. For example, what should SearchAndReplace(“Baaad”,”aa”,”oo”) give?)

5. Write a Function called Atbash which takes a string of letters as its argument and returns a string which is the argument encoded using the Atbash cipher. (A ↔Z, B ↔Y, C ↔X etc.) The Atbash cipher has the property of being a self-inverse function so if the argument is the encoded text then the result should be the plain text.

For example Atbash(“bad”) should return “yzw” and Atbash(“yzw”) should return “bad”.

Ideas: If your function leaves everything other than letters – e.g. spaces, punctuation – unchanged, then it can be used to encode and decode whole sentences.

Another cipher with similar properties is ROT13 which is often used on web pages – each letter replaced by the letter 13 places ahead of it in the alphabet arranged in a circle i.e. A↔N, B↔O, C↔P etc. This can even be extended to producing a function for ROTn, where n will also be an argument of the function.

(The following exercises also allow some reinforcement of material from unit f451)

6. Write a VB function called IsValidByte which takes a string as its argument and returns TRUE if the string has exactly 8 characters which are all “0” or “1”. For example IsValidByte(“01101010”) should return TRUE, but IsValidByte(“1101010”) and IsValidByte(“01201101”) should both return FALSE.

7. Write a VB function called AddBytes which takes two valid strings representing bytes (as in number 5) as its arguments and returns a string which represents the sum of the two bytes using Binary arithmetic. For example, AddBytes(“10010100”, “01001101”) should return “11100001”. Note that you are NOT ALLOWED to convert these strings to their equivalent integers! (Challenge: How does your function cope with overflow?).

Final Challenge: Make your functions robust (difficult to crash) by adding code which checks that the arguments to your functions satisfy the preconditions of the function and produces an appropriate effect if they do not. For example, will your program crash if someone executed: RemoveVowels (“”)?

Lesson Plan: GCE Computing H047/H447
Unit F452
Section title: 3.2.6c, d Testing and Running a Solution

Introduction
OCR recognises that the teaching of this qualification will vary greatly from school to school and from teacher to teacher. With that in mind, this lesson plan is offered as a possible approach but will be subject to modifications by the individual teacher.

Lesson length is assumed to be one hour.

Learning objectives for the lesson

	Objective 1
	Understand what is meant by black box testing in contrast to white box testing (and relate these to alpha testing as opposed to beta testing).

	Objective 2
	select suitable test data for a given problem, including normal, borderline and invalid data;

Recap of previous experience and prior knowledge

It is assumed that before this lesson, learners have already gained some practical experience in programming and have written some simple programs which take some input from the user and processes these to be used as output. Some of the programs they have written could be used as resources for this lesson, or should at least be referred to.

Content

	Time
	Content

	5 Minutes
	Intro: teacher refers to programs that learners have written recently and asks the question “How can you be absolutely sure that a program will work perfectly in all possible situations?”

Learners in pairs have two minutes to come up with as many ideas as possible. Then teacher asks round the class collecting some ideas or their strategies and collates them into a list on the board.

	10 Minutes
	Class discussion. Teacher refers specifically to the program with restricted input set and asks learners to suggest test data and the expected result. The inputs suggested are recorded and tested immediately.

(A table listing the test data, expected result and actual result should be used on the board. Teacher can nominate some learners to fill in the table and enter the test data into the computer. The learners will normally not have any difficulty in eventually producing all possible combinations of input)

	10 Minutes
	Pair work. Teacher introduces the second program with an unlimited input set and asks students to do the same. They should immediately see the difficulty created by the fact that the problem is more open ended and should suggest ways of overcoming this problem.

	5 Minutes
	Class discussion. Teacher pulls together any ideas that students will have had. Responds to these ideas and introduces the concept of grouping test cases by their description, i.e. if you can’t test every single combination of input data, you can put the input data into groups (described by the reason or description of the test) and supply an example of test data for each group. Introduce the need to test also invalid and borderline data.

	10 Minutes
	Students in pairs – given worksheet, should now fill in the worksheet with as many different test cases as they can think of.

	5 Minutes
	Groups of four (consisting of 2 previous pairs) look at the test cases together and see if any of their test cases coincide.

They may not have the same test data, but should have many similar test cases. However, this should raise some good discussion between students as to whether their set of tests covers all possibilities, and whether some test cases should be split into two or more (or conversely, whether two cases are actually part of the same “situation”).

Another good discussion point is the need for testing only one invalid input at a time.

	10 Minutes
	Whole class – Students suggest test cases which are collected on the board (again a learner could be nominated to write up the cases, these are then tested immediately and actual output recorded. Students also fill in their sheets with any new test cases as well as the actual result where applicable. Discussion points from the group work should be raised.

	5 minutes
	Reflection and Homework – Teacher asks learners to reflect on whether as a result of completing this exercise, they can be fairly confident that the program works (or that they have all discovered the bugs in it). Learners are encouraged to compare this process with the debugging they have done when writing programs. This should lead to definitions of the concepts of black box testing and white box testing.

Learner in their notes write their own definition in their own words for:

Black box testing

White box testing

Valid data

Invalid data

Borderline data

Set homework – reinforce material learnt in this lesson by producing test data using the same format for a program they have written, or doing an examination question such as Question 2 in the sample paper for unit F452.Some students may require further reinforcement and practice in class before they are able to do such homework independently,

Notes – Resources required for this lesson

The teacher should have access to a way to display running programs to the whole class (e.g. a computer set up to a data projector). He/she will also need:

· An executable version of a program with a restricted input set (e.g. a Rock/Paper/Scissors program which inputs (by means of radio buttons etc) the choice of two players and outputs which player wins or whether it is a draw.

· An executable program with an unlimited input set (e.g. a program which inputs the number of minutes a user has used on their mobile phone, their monthly allowance in minutes, and the cost per minute for calls in excess of the monthly allowance and outputs the bill for the month – assuming a flat rate for different types of call. This example can be adapted for a number of similar situations).

· A hand-out with a blank test data table that has columns for:

· Test Number (to be numbered serially from 1,2,3 etc...)

· Reason for test

· Type of test data (i.e. valid/normal, borderline or invalid)

· Test data

· Expected result

· Actual result

Other forms of Support

In order to help you implement the new Computing specification effectively, OCR offers a comprehensive package of support. This includes:

OCR Training
Get Ready…introducing the new specifications
A series of FREE half-day training events are being run during Autumn 2007, to give you an overview of the new specifications.

Get Started…towards successful delivery of the new specifications

These full-day events will run from Spring 2008 and will look at the new specifications in more depth, with emphasis on first delivery.

Visit www.ocr.org.uk for more details.

Mill Wharf Training

Additional events are also available through our partner, Mill Wharf Training. It offers a range of courses on innovative teaching practice and whole-school issues - www.mill-wharf-training.co.uk.

e-Communities
Over 70 e-Communities offer you a fast, dynamic communication channel to make contact with other subject specialists. Our online mailing list covers a wide range of subjects and enables you to share knowledge and views via email.

Visit https://community.ocr.org.uk, choose your community and join the discussion!

Interchange

OCR Interchange has been developed to help you to carry out day to day administration functions online, quickly and easily. The site allows you to register and enter candidates online. In addition, you can gain immediate a free access to candidate information at you convenience. Sign up at https://interchange.ocr.org.uk
Published Resources

OCR offers centres a wealth of quality published support with a fantastic choice of ‘Official Publisher Partner’ and ‘Approved Publication’ resources, all endorsed by OCR for use with OCR specifications.

Publisher partners

OCR works in close collaboration with three Publisher Partners; Hodder, Heinemann and Oxford University Press (OUP) to ensure centres have access to:

· Better published support, available when you need it, tailored to OCR specifications

· Quality resources produced in consultation with OCR subject teams, which are linked to OCR’s teacher support materials

· More resources for specifications with lower candidate entries

· Materials that are subject to a thorough quality assurance process to achieve endorsement

Hodder Education is the publisher partner for OCR GCE Computing
Hodder Education is producing the following resources for OCR GCE Computing for first teaching in September 2008, which will be available in Spring 2008.
Leadbetter, C, Belanyek, A and Rouse, G. OCR Computing for A Level (2008) ISBN: 9780340967898
Leadbetter, C, Belanyek, A and Rouse, G. OCR Computing for A Level Dynamic Learning Network Edition CD ROM (2008) ISBN: 9780340968239
Approved publications

OCR still endorses other publisher materials, which undergo a thorough quality assurance process to achieve endorsement. By offering a choice of endorsed materials, centres can be assured of quality support for all OCR qualifications.

Endorsement

OCR endorses a range of publisher materials to provide quality support for centres delivering its qualifications. You can be confident that materials branded with OCR’s “Official Publishing Partner” or “Approved publication” logos have undergone a thorough quality assurance process to achieve endorsement. All responsibility for the content of the publisher’s materials rests with the publisher.

These endorsements do not mean that the materials are the only suitable resources available or necessary to achieve an OCR qualification. Any resource lists which are produced by OCR shall include a range of appropriate texts.
= Innovative Teaching Idea

All the teaching ideas contained in the SOW are innovative, but the icon is used to

Highlight exceptionally innovative ideas.

= Stretch & Challenge Activity

This icon is added at the end of text when there is an explicit opportunity to offer

Stretch and Challenge.

= ICT Opportunity

This icon is used to illustrate when an activity could be taught using ICT facilities.

© OCR 2007

2 of 40
GCE [subject]
GCE Computing
3 of 37

