Mathematics (MEI)

Advanced GCE 4753
Methods for Advanced Mathematics (C3)

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Section A

$1 \quad \begin{aligned} \int_{0}^{\pi / 6} \cos 3 x \mathrm{~d} x & =\left[\frac{1}{3} \sin 3 x\right]_{0}^{\pi / 6} \\ & =\frac{1}{3} \sin \frac{\pi}{2}-0 \\ = & 1 / 3 \end{aligned}$	M1 B1 A1cao [3]	$\begin{aligned} & k \sin 3 x, k>0, k \neq 3 \\ & k=(\pm) 1 / 3 \\ & 0.33 \text { or better } \end{aligned}$	or M1 for $u=3 x \Rightarrow \int \frac{1}{3} \cos u \mathrm{~d} u$ condone 90° in limit or M1 for $\left[\frac{1}{3} \sin u\right]$ so: $\sin 3 x:$ M1B0, $-\sin 3 x$: M0B0, $\pm 3 \sin 3 x$: M0B0, $-1 / 3 \sin 3 x$: M0B1
$2 \quad \mathrm{fg}(x)=\|x+1\| \quad \operatorname{gf}(x)=\|x\|+1$	$\begin{aligned} & \text { B1 B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & {[4]} \end{aligned}$	soi from correctly-shaped graphs (i.e without intercepts) graph of $\|x+1\|$ only graph of $\|x\|+1$	but must indicate which is which bod gf if negative x values are missing ' V ' shape with $(-1,0)$ and $(0,1)$ labelled 'V' shape with $(0,1)$ labelled $(0,1)$
	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	$\begin{aligned} & \text { chain rule } \\ & 1 / 2 u^{-1 / 2} \\ & \text { o.e., but must be ' } 3 \text { ' } \end{aligned}$	can isw here
$\text { (ii) } \quad \begin{aligned} & y=x\left(1+3 x^{2}\right)^{1 / 2} \\ & \Rightarrow \quad d y / d x=x \cdot \frac{3 x}{\sqrt{1+3 x^{2}}}+1 .\left(1+3 x^{2}\right)^{1 / 2} \\ &=\frac{3 x^{2}+1+3 x^{2}}{\sqrt{1+3 x^{2}}} \\ &=\frac{1+6 x^{2}}{\sqrt{1+3 x^{2}}} * \end{aligned}$	M1 Alft M1 E1 [4]	product rule ft their $\mathrm{d} y / \mathrm{d} x$ from (i) common denominator or factoring $\left(1+3 x^{2}\right)^{-1 / 2}$ www	must show this step for M1 E1

$\begin{aligned} & 4 \quad p=100 / x=100 x^{-1} \\ & \Rightarrow \quad \mathrm{~d} p / \mathrm{d} x=-100 x^{-2}=-100 / x^{2} \\ & \\ & \qquad \begin{aligned} \mathrm{d} p / \mathrm{d} t=\mathrm{d} p / \mathrm{d} x \times \mathrm{d} x / \mathrm{d} t \\ \mathrm{~d} x / \mathrm{d} t=10 \end{aligned} \\ & \text { When } x=50, \mathrm{~d} p / \mathrm{d} x=\left(-100 / 50^{2}\right) \\ & \Rightarrow \mathrm{d} p / \mathrm{d} t=10 \times-0.04=-0.4 \end{aligned}$	M1 A1 M1 B1 M1dep A1 cao [6]	attempt to differentiate $-100 x^{-2} \text { o.e. }$ o.e. soi soi substituting $x=50$ into their $\mathrm{d} p / \mathrm{d} x \operatorname{dep} 2^{\text {nd }} \mathrm{M} 1$ o.e. e.g. decreasing at 0.4	condone poor notation if chain rule correct or $x=50+10 t \mathrm{~B} 1$ $\begin{aligned} & \Rightarrow P=100 / x=100 /(50+10 t) \\ & \Rightarrow \mathrm{d} P / \mathrm{d} t=-100(50+10 t)^{-2} \times 10=-1000 /(50+10 t)^{-2} \mathrm{M} 1 \end{aligned}$ A1 When $t=0, \mathrm{~d} P / \mathrm{d} t=-1000 / 50^{2}=-0.4 \mathrm{~A} 1$
$\begin{array}{ll} \mathbf{5} & y^{3}=x y-x^{2} \\ \Rightarrow & 3 y^{2} \mathrm{~d} y / \mathrm{d} x=x \mathrm{~d} y / \mathrm{d} x+y-2 x \\ \Rightarrow & 3 y^{2} \mathrm{~d} y / \mathrm{d} x-x \mathrm{~d} y / \mathrm{d} x=y-2 x \\ \Rightarrow & \left(3 y^{2}-x\right) \mathrm{d} y / \mathrm{d} x=y-2 x \\ \Rightarrow & \mathrm{~d} y / \mathrm{d} x=(y-2 x) /\left(3 y^{2}-x\right)^{*} \\ & \\ & \mathrm{TP} \text { when } \mathrm{d} y / \mathrm{d} x=0 \Rightarrow y-2 x=0 \\ \Rightarrow & y=2 x \\ \Rightarrow & (2 x)^{3}=x .2 x-x^{2} \\ \Rightarrow & 8 x^{3}=x^{2} \\ \Rightarrow & x=1 / 8 *(\text { or } 0) \end{array}$	B1 B1 M1 E1 M1 M1 E1 [7]	$\begin{aligned} & 3 y^{2} \mathrm{~d} y / \mathrm{d} x \\ & x \mathrm{~d} y / \mathrm{d} x+y-2 x \end{aligned}$ collecting terms in $\mathrm{d} y / \mathrm{d} x$ only or $x=1 / 8$ and $\mathrm{d} y / \mathrm{d} x=0 \Rightarrow y=1 / 4$ or $(1 / 4)^{3}=(1 / 8)(1 / 4)-(1 / 8)^{2}$ or verifying e.g. $1 / 64=1 / 64$	must show ' $x \mathrm{~d} y / \mathrm{d} x+y$ ' on one side or $x=1 / 8 \Rightarrow y^{3}=(1 / 8) y-1 / 64 \mathrm{M} 1$ verifying that $y=1 / 4$ is a solution (must show evidence*) M1 $\Rightarrow \mathrm{dy} / \mathrm{d} x=(1 / 4-2(1 / 8)) /(\ldots)=0 \mathrm{E} 1$ *just stating that $y=1 / 4$ is M1 M0 E0
$\begin{array}{ll} 6 & \mathrm{f}(x)=1+2 \sin 3 x=y \quad x \leftrightarrow y \\ & x=1+2 \sin 3 y \\ \Rightarrow \quad & \sin 3 y=(x-1) / 2 \\ \Rightarrow \quad & 3 y=\arcsin [(x-1) / 2] \\ \Rightarrow & y= \\ \frac{1}{3} \arcsin \left[\frac{x-1}{2}\right] \text { so } \mathrm{f}^{-1}(x)=\frac{1}{3} \arcsin \left[\frac{x-1}{2}\right] \\ & \text { Range of } \mathrm{f} \text { is }-1 \text { to } 3 \\ \Rightarrow \quad & -1 \leq x \leq 3 \end{array}$	M1 A1 A1 A1 M1 A1 [6]	attempt to invert must be $y=\ldots$ or $\mathrm{f}^{-1}(x)=\ldots$ or $-1 \leq(x-1) / 2 \leq 1$ must be ' x ', not y or $\mathrm{f}(x)$	at least one step attempted, or reasonable attempt at flow chart inversion (or any other variable provided same used on each side) condone <'s for M1 allow unsupported correct answers; -1 to 3 is M1 A0
7 (A) True , (B) True , (C) False Counterexample, e.g. $\sqrt{2}+(-\sqrt{ } 2)=0$	$\begin{aligned} & \hline \text { B2,1,0 } \\ & \text { B1 } \\ & {[3]} \\ & \hline \end{aligned}$		

8(i) When $x=1, y=3 \ln 1+1-1^{2}$ $=0$	$\begin{aligned} & \text { E1 } \\ & {[1]} \end{aligned}$		
$\begin{array}{ll} \text { (ii) } & \frac{d y}{d x}=\frac{3}{x}+1-2 x \\ \Rightarrow & \text { At R, } \frac{d y}{d x}=0=\frac{3}{x}+1-2 x \\ \Rightarrow & 3+x-2 x^{2}=0 \\ \Rightarrow & (3-2 x)(1+x)=0 \\ \Rightarrow & x=1.5,(\text { or }-1) \\ \Rightarrow & y=3 \ln 1.5+1.5-1.5^{2} \\ & =0.466(3 \text { s.f. }) \\ & \frac{d^{2} y}{d x^{2}}=-\frac{3}{x^{2}}-2 \end{array}$ When $x=1.5, \mathrm{~d}^{2} y / \mathrm{d}^{2}(=-10 / 3)<0 \Rightarrow \max$	M1 A1cao M1 M1 A1 M1 A1cao B1ft E1 [9]	$\mathrm{d} / \mathrm{d} x(\ln x)=1 / x$ re-arranging into a quadratic $=0$ factorising or formula or completing square substituting their x ft their $\mathrm{d} y / \mathrm{d} x$ on equivalent work www - don't need to calculate $10 / 3$	SC1 for $x=1.5$ unsupported, SC3 if verified but condone rounding errors on 0.466
$\text { (iii) } \left.\quad \begin{array}{rl} \text { Let } u & =\ln x, d u / \mathrm{d} x=1 / x \\ \mathrm{~d} v / \mathrm{d} x & =1, v=x \end{array}\right] \quad \begin{aligned} \Rightarrow \quad \ln x d x & =x \ln x-\int x \cdot \frac{1}{x} d x \\ & =x \ln x-\int 1 . d x \\ & =x \ln x-x+c \end{aligned} \quad \begin{aligned} \Rightarrow \quad A & =\int_{1}^{2.05}\left(3 \ln x+x-x^{2}\right) d x \\ & =\left[3 x \ln x-3 x+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right]_{1}^{2.05} \\ & =-2.5057+2.833 . . \\ & =0.33(2 \text { s.f. }) \end{aligned}$		parts condone no c correct integral and limits (soi) $\left[3 x \text { their }{ }^{\prime} x \ln x-x^{\prime}+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right]$ substituting correct limits dep $1^{\text {st }} \mathrm{B} 1$	allow correct result to be quoted (SC3)

9(i) $(0,1 / 2)$	$\begin{aligned} & \hline \text { B1 } \\ & {[1]} \end{aligned}$	$\begin{aligned} & \text { allow } y=1 / 2, \text { but not }(x=) 1 / 2 \text { or }(1 / 2,0) \\ & \text { nor } \mathrm{P}=1 / 2 \end{aligned}$	
$\text { (ii) } \begin{aligned} {\left[\frac{d y}{d x}\right.} & =\frac{\left(1+\mathrm{e}^{2 x}\right) 2 \mathrm{e}^{2 x}-\mathrm{e}^{2 x} \cdot 2 \mathrm{e}^{2 x}}{\left(1+\mathrm{e}^{2 x}\right)^{2}} \\ & =\frac{2 \mathrm{e}^{2 x}}{\left(1+\mathrm{e}^{2 x}\right)^{2}} \end{aligned}$ When $x=0, \mathrm{~d} y / \mathrm{d} x=2 \mathrm{e}^{0} /\left(1+\mathrm{e}^{0}\right)^{2}=1 / 2$	M1 A1 A1 B1ft [4]	Quotient or product rule correct expression - condone missing bracket cao - mark final answer follow through their derivative	product rule: $\frac{d y}{d x}=\mathrm{e}^{2 x} \cdot 2 \mathrm{e}^{2 x}(-1)\left(1+\mathrm{e}^{2 x}\right)^{-2}+2 \mathrm{e}^{2 x}\left(1+\mathrm{e}^{2 x}\right)^{-1}$ $-\frac{2 \mathrm{e}^{2 x}}{\left(1+\mathrm{e}^{2 x}\right)^{2}}$ from $(u \mathrm{~d} v-v \mathrm{~d} u) / v^{2} \mathrm{SC} 1$
$\text { (iii) } \begin{aligned} A & =\int_{0}^{1} \frac{\mathrm{e}^{2 x}}{1+\mathrm{e}^{2 x}} \mathrm{~d} x \\ & =\left[\frac{1}{2} \ln \left(1+\mathrm{e}^{2 x}\right)\right]_{0}^{1} \end{aligned}$ or \quad let $u=1+\mathrm{e}^{2 x}, \mathrm{~d} u / \mathrm{d} x=2 \mathrm{e}^{2 x}$ $\begin{aligned} \Rightarrow \quad A & =\int_{2}^{1+\mathrm{e}^{2}} \frac{1 / 2}{u} \mathrm{~d} u=\left[\frac{1}{2} \ln u\right]_{2}^{1+\mathrm{e}^{2}} \\ & =\frac{1}{2} \ln \left(1+\mathrm{e}^{2}\right)-\frac{1}{2} \ln 2 \\ & =\frac{1}{2} \ln \left[\frac{1+\mathrm{e}^{2}}{2}\right] * \end{aligned}$	B1 M1 A1 M1 A1 M1 E1 [5]	correct integral and limits (soi) $\begin{aligned} & k \ln \left(1+\mathrm{e}^{2 x}\right) \\ & k=1 / 2 \end{aligned}$ or $v=\mathrm{e}^{2 x}, \mathrm{~d} v / \mathrm{d} x=2 \mathrm{e}^{2 x}$ o.e. $[1 / 2 \ln u]$ or $[1 / 2 \ln (v+1)]$ substituting correct limits www	condone no $\mathrm{d} x$ allow missing $\mathrm{d} x$'s or incompatible limits, but penalise missing brackets
(iv) $\mathrm{g}(-x)=\frac{1}{2}\left[\frac{\mathrm{e}^{-x}-\mathrm{e}^{x}}{\mathrm{e}^{-x}+\mathrm{e}^{x}}\right]=-\frac{1}{2}\left[\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right]=-\mathrm{g}(x)$ Rotational symmetry of order 2 about O	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \\ & \\ & \text { B1 } \\ & \text { [3] } \end{aligned}$	substituting $-x$ for x in $g(x)$ completion www - taking out -ve must be clear must have 'rotational' 'about O ', 'order 2^{\prime} (oe)	not $\mathrm{g}(-x) \neq \mathrm{g}(x)$. Condone use of f for g .
$\text { (v)(A) } \begin{aligned} & g(x)+\frac{1}{2}=\frac{1}{2} \cdot \frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}+\frac{1}{2}=\frac{1}{2} \cdot\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}+\mathrm{e}^{x}+\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right) \\ &=\frac{1}{2} \cdot\left(\frac{2 \mathrm{e}^{x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right) \\ &=\frac{\mathrm{e}^{x} \cdot \mathrm{e}^{x}}{\mathrm{e}^{x}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)}=\frac{\mathrm{e}^{2 x}}{\mathrm{e}^{2 x}+1}=\mathrm{f}(x) \end{aligned}$ (B) Translation $\binom{0}{1 / 2}$ (C) Rotational symmetry [of order 2] about P	M1 A1 E1 M1 A1 B1 [6]	combining fractions (correctly) translation in y direction up $1 / 2$ unit dep 'translation' used o.e. condone omission of $180^{\circ} \%$ order 2	allow 'shift', 'move' in correct direction for M1. $\binom{0}{1 / 2}$ alone is SC1.

OCR (Oxford Cambridge and RSA Examinations)

1 Hills Road

Cambridge

CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

