Applied Science

Advanced GCE
Unit G635: Working Waves

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Annotations

Annotation	Meaning
\checkmark	Tick
\checkmark	Cross
[10]	Benefit of doubt
[F]	Error carried forward
\square	Example/Reference
I	Ignore
W晨	Not answered question
\square	Benefit of doubt not given
0	Large dot (Key point attempted)
든	Reject
[¢]\%	Contradiction
\square	Error in no. of significant figures
2	Unclear
^	Omission mark

Annotation	Meaning
$/$	alternative and acceptable answers for the same marking point
\checkmark	separates marking points
NOT	answers which are not worthy of credit
REJECT	answers which are not worthy of credit
IGNORE	statements which are irrelevant
ACCEPT	answers that can be accepted
()	words which are not essential to gain credit
-	underlined words must be present in answer to score a mark
ecf	alternative wording
AW	or reverse argument
ora	

Question			Answer			Marks	Guidance
1	(a)		feature displacement speed periodic time frequency	measurements taken $(10 \mathrm{~cm} / 0.1 \mathrm{~m})$ Distances: e.g. 0.5 and 1.5 m 1.0 and 2.0 or 0.75 and $1.75 \mathrm{~m} \checkmark$ (Times: 0.41 and 0.81 s) NA NA	value $0.1(0)(\mathrm{m}) \checkmark$ $2.5\left(\mathrm{~m} \mathrm{~s}^{-1}\right)^{\checkmark}$	4	Accept 0.11 m . Allow ± 0.1 in measurements Accept any sig. figs. Must see two readings NOT simply the difference 1.0 m Accept values 2.0 to 3.0 Accept any sig. figs. 'NA' for BOTH Periodic time and frequency required. Accept 'NA' in either column Ignore 'NA' in displacement and speed.
	(b)	(i)	graph B graph C graph D	quency same as graph A	wavelength me as graph	2	Frequencies all correct \checkmark Wavelengths all correct

Question		Answer	Marks	Guidance
	(ii)	$1 / 4$ cycle $/ 90^{\circ} / \pi / 2(\mathrm{rad}) / 1 \mu \mathrm{~s}$ difference Graph A leads graph B OR graph B lags behind graph A	2	Accept $3 / 4$ cycle $/ 270^{\circ} / 3 \pi / 2(\mathrm{rad}) / 3 \mu$ s difference Accept Graph B leads graph A/Graph A lags behind graph B Combined with $3 / 4$ cycle / $270^{\circ} / 3 \pi / 2(\mathrm{rad}) / 3 \mu$ s difference
	(iii)	$4 \mu \mathrm{~s} / 4 \times 10^{-6} \mathrm{~s} / 4 \times 10^{-3} \mathrm{~ms} \checkmark$	1	
	(iv)	$f=\frac{1}{T}$ Calculation of reciprocal of number in (iii) \checkmark $T=250000(\mathrm{~Hz}) / 250(\mathrm{kHz}) / 0.25(\mathrm{MHz})$ Matching unit to value \checkmark	3	Stated or implied $\begin{aligned} & 0.25(\mathrm{MHz}) \text { if } \mathrm{T}=4(\mu \mathrm{~s}) \\ & 250000(\mathrm{~Hz}) \text { if } \mathrm{T}=4 \times 10^{-6}(\mathrm{~s}) \\ & 250(\mathrm{KHz}) \text { if } \mathrm{T}=4 \times 10^{-3}(\mathrm{~ms}) \end{aligned}$ Ignore fractional answers Accept ecf for incorrect values in (iii) e.g. $T=4 \mathrm{~s}$ gives $0.25(\mathrm{~Hz})$ Accept ecf for incorrect values in (iii) e.g. $T=4$ s gives 0.25 Hz
(c)	(i)	Any two correct positions for A and no incorrect positions for A and no N where A should be \checkmark i.e.	1	Accept at any position vertically

Question	Answer	Marks	Guidance
(ii)	Any two correct positions for N AND no incorrect positions for N AND No A where N should be i.e.	1	Accept at any position vertically
(iii)	Line as shown in red \checkmark	1	Accept horizontal displacement up to 0.05 m (approx two dashes on axis) Ignore Amplitude variations as long as >0
(iv)	Line along axis as shown in red \checkmark	1	
(v)	Any value between 0.65 and $0.68 \mathrm{~m} \checkmark$	1	Allow 2 or more sig. figs.

Question		Answer	Marks	
(d)	Open at both has antinodes at both ends. Open at one end/closed at other end has node at one end \checkmark OR Open at both has odd number of $1 / 4$ wavelengths. Open at one end/closed at other end has even number of $1 / 4$ wavelengths $\checkmark \checkmark$ OR Any two from: Different frequency/ frequencies./wavelength/s \checkmark Different pattern of nodes and antinodes \checkmark Different combination of harmonics/overtones \checkmark One has antinodes at both ends, other has node at one end \checkmark One had odd number of $1 / 4$ wavelengths, other has even number of $1 / 4$ wavelengths \checkmark Diagram of pattern of nodes/antinodes/standing wave in open pipe \checkmark Diagram of pattern of nodes/antinodes/standing wave in closed pipe \checkmark Open at both has harmonics which are all multiples of fundamental frequency. \checkmark Open at one end/closed at other end has harmonics which are only odd multiples of fundamental \checkmark			

Question		Answer	Marks	Guidance	
2 (a)		Different temperatures / warmer / colder \checkmark (Emit) different, wavelength/frequencies/ intensities, / different amounts of, infrared/radiation, \checkmark	2		
	(b)		Different shades of grey / false colours \checkmark Different temperatures / warmer / colder \checkmark	2	
(c)		(Can use it/ produces images,) at night/ in the dark \checkmark	1		
(d)	(i)	IR has, longer/higher, wavelength than visible OR visible has, shorter/lower, wavelength than IR \checkmark	1		
	(e)	(i)	Spatial \checkmark	(ii)	Thermal \checkmark

Question			Answer	Marks	Guidance
4	(a)		Photodiode \checkmark	1	Accept specific valid alternatives Reject eyes, photo detector
	(b)		Total internal reflection \checkmark	1	NOT just TIR
	(c)		Angle of incidence > critical angle \checkmark At interface OR For light travelling from a more dense (medium) to(wards) a less dense medium/ in fibre/core/glass/plastic as it meets air/cladding \checkmark	2	Accept 42° instead of critical angle OR cladding has lower refractive index than core
	(d)		Any two from: Core diameter within range 50-200 $\mu \mathrm{m} \checkmark$ Core of uniform refractive index \checkmark Core covered by cladding/ coating of lower refractive index \checkmark (Outer) protective sheath \checkmark	2	Response may be by text and/or diagram
	(e)	(i)	Narrower core OR Smaller diameter/thickness core Core (diameter) within range $1-10 \mu \mathrm{~m} \quad \checkmark$	2	Ignore Smaller with no reference to diameter/ thickness

Question		Answer	Marks	Guidance
	(ii)	Monomode less degradation/distortion/data loss, fewer repeater stations needed OR Step index distorted / more repeater stations needed Monomode only one path / Step index multiple paths Monomode, light/rays, arrives together / Step index, light/rays, arrives at different times \checkmark	3	Ignore references to cost Accept Light rays travel in a straight line
(f)	(i)	Coherent \checkmark	1	
	(ii)	Coherent fibres arranged in same order at both ends/ throughout OR Incoherent fibres not arranged in same order at both ends/ fibres arranged randomly \downarrow	1	Accept coherent fibres parallel
	(iii)	Signals/data, from different users, would not be sorted correctly/ would be mixed up \checkmark	1	

Quest	Answer	Marks	Guidance
(g)	Banded marking range: [0 mark] response not worthy of credit. [1-2 marks] Candidate demonstrates a limited knowledge of one method of measuring refractive index by describing: For 1 mark at least one valid point. For 2 marks at least two valid points. The answer may not be clearly set out. [3-4 marks] Candidate demonstrates understanding of one method of measuring refractive index by describing and explaining: For 3 marks at least three valid points. For 4 marks at least four valid points. The answer will be set out in a manner that is easy to follow. But may contain and one or two errors or omissions in content [5-6 marks] Candidate demonstrates a high level of knowledge and understanding of the use of one method of measuring refractive index by describing: a full understanding of an appropriate method by giving clear and, and some for 5 marks at least five valid points. for 6 marks six valid points. The answer will be set out in a clear and logical manner	6	Any valid method may be described. Expect one of the following: - ray box sending rays though block - pins viewed through block and rays traced - real and apparent depth - Semicircular block to find critical angle Expected knowledge and learning could include the following valid points: Labelled diagram of how equipment is arranged \checkmark e.g. for ray box method labelled Box shines light ray into (long) side of labelled block and out other side Correctly identify variables \checkmark - i and r between ray and normal. - real and apparent depth - critical angle Appropriate measuring Instrument needed \checkmark Ruler Protractor Travelling microscope/vernier callipers Workable method Processing of results \checkmark e.g. - $\mathrm{n}=\sin \mathrm{i} / \sin r$ - $\mathrm{n}=1 / \mathrm{sin} \mathrm{c}$ - $\mathrm{n}=$ real / apparent depth graph

Question	Answer	Marks	Guidance
			Improved precision: e.g. - Selecting a more precise method of measuring angles using lengths - More than one set of readings obtained - Repeated for different values of i / r - Table of results
	Total	20	

Question		Answer	Marks		
$\mathbf{5}$	(a)	(i)	Analogue \checkmark	1	
		(ii)	Digital \checkmark	1	Accept Binary
	(b)	(i)	Pulse Code Modulation \checkmark	2	May be shown by diagram Accept Many points = frequent
		(ii)	Signal/ sound sampled \checkmark At frequent/ regular intervals \checkmark	1	
		(iii)	Signal/voltage quantised/ converted to binary \checkmark	1	Ignore D to A
		(iv)	Digital to analogue (conversion) \checkmark	Total	7

Question		Answer	Marks	Guidance
6	(a)	Base stations shown at centres of cells or at junctions of three cells \checkmark Base stations shown at alternate junctions \checkmark	2	Allow Base stations shown at centres of cells for 1st mark e.g. of alternate junctions Or any three black circles or any three shaded circles:
	(b)	Any adjacent cell \checkmark	1	
	(c)	Any two from: Variation in population density \checkmark Mountains/ obstructions \checkmark Coverage may not have reached remote areas \checkmark Coastline \checkmark	2	
		Total	5	

Question			Answer	Marks	Guidance
7	(a)		Any three from: X-rays are absorbed by bone X-rays are not absorbed by surrounding parts/ soft tissue \checkmark X-rays are absorbed by materials with high atomic mass/number/ density ora \checkmark Bones/Calcium, have high atomic mass/ number/ density ora \checkmark Image (digital/film) is black where X -rays reach it / white where X-rays do not reach it \checkmark Image (digital/film) is negative	3	Answers may reflect the fact that digital has replaced film.
	(b)	(i)	$\begin{aligned} & \text { (Dark) grey } \checkmark \\ & \text { X-rays absorbed less by fat than by bone } \checkmark \end{aligned}$	2	
		(ii)	$\begin{aligned} & \text { Black } \checkmark \\ & \text { X-rays absorbed less by air than by fat/ soft tissue } \end{aligned}$ \checkmark	2	Reject Dark Accept air does not absorb
	(c)		Barium (meal/ions/sulfate) / iodine (compound) \checkmark	1	

Question		Answer	Marks	Guidance
(d)	(i)	Any one from: X-rays passing though one point on the subject/patient will be spread over a larger area of the film /detector X-rays arriving at one point on the film /detector will have passed though a larger area of the subject/patient blurred image occurs if wide beam is diverging/ not focused	1	Ignore References to scattering
	(ii)	The target surface is at an angle (not 90°) to the incoming/ outgoing (X-ray) beam. Owtte \checkmark	1	
	(iii)	Any one from: A (cone) of lead around the beam \checkmark Two pairs of adjustable lead sheets (that can be moved in and out at right angles to the direction of the beam)	1	Accept Lead diaphragm / Owtte
(e)	(i)	Placing an aluminium sheet in the beam \checkmark	1	
	(ii)	Removes lower frequency/ low-energy, (X-)rays/ radiation \checkmark	1	Ignore Removes high/certain frequencies Accept Weak (X-)rays
	(iii)	Low-frequency /low-energy X-rays would be scattered (in the body) Scattered X-rays would arrive at the wrong point on the film /detector/ cause blurring \checkmark	2	
(f)	(i)	X-rays \checkmark	1	

| Question | | Answer | Marks | |
| :--- | :--- | :--- | :--- | :---: | :--- |
| | (ii) | (X-ray) Source/machine rotates \checkmark
 (Array of) detector(s) rotates (opposite source) \checkmark
 Patient / bed moves along axis /into machine
 OR
 overall motion is helical/spiral \checkmark | 3 | Accept Ecf for (Gamma) Source |
| | (iii) | Intensity of ray reaching film in a conventional X-
 ray has been affected by many layers in the body \checkmark
 CAT scan gives information about intensity at an
 individual point in the patient \checkmark | 2 | |

Question		Answer	Marks	Guidance
8		Banded marking range: [0 mark] response not worthy of credit. [1-2 marks] Candidate demonstrates a limited knowledge of internet connection methods by describing: For 1 mark at least one valid point. For 2 marks at least two valid points. The answer may not be clearly set out. [3 marks] Candidate demonstrates understanding of internet connection methods by describing and explaining at least three valid points. The answer will be set out in a manner that is easy to follow. But may contain and one or two errors or omissions in content [4-5 marks] Candidate demonstrates a high level of understanding of internet connection methods by giving: for 4 marks at least four valid points. for 5 marks at least five valid points. The answer will be set out in a clear and logical manner	5	Expected knowledge and learning could include the following valid points: Naming or describing Dial-up and Broadband \checkmark Naming or describing use of fibre optic cable internet connection Correctly indicating the relative suitability of at least two methods for transmitting large amounts of data i.e. two of: - Dial-up unsuitable / would take a (very) long time, - Broadband suitable/ faster, - Fibre optic best/ very fast Broadband achieves higher data transfer rate/capacity, by using higher frequency (signals than voice /dial-up connection over conventional copper /telephone wires) Fibre optics permit very large information capacity/data transfer rate/capacity (IGNORE just "very fast") \checkmark
		Total	5	

OCR (Oxford Cambridge and RSA Examinations)

1 Hills Road

Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

