

Mathematics

Advanced GCE 4729

Mechanics 2

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

1		$v^2 = 2 \times 9.8 \times 10$	M1		Using $v^2 = u^2 + 2as$ with $u = 0$
1		$V = 2 \times 3.6 \times 10$			$O \operatorname{sing} V = u + 2 \operatorname{as} \operatorname{with} u = 0$
		$v = 14 \text{ ms}^2$	AI		
		speed = $\sqrt{(7^2 + 14^2)}$	M1		Method to find speed using their "v"
		15.7 or $7\sqrt{5} \text{ m s}^{-1}$	A1		
		$\tan^{-1}(14/7)$ or $\tan^{-1}(7/14)$	M1		Method to find angle using their "v"
		63.4° to the horizontal	A1	6	26.6° to vertical
					6
2	(i)	$(6\sin \Pi/2) \div (\Pi/2)$	M1		Use of correct formula
		3.82	A1	2	AG
	(ii)	$8\mathfrak{d} = 3(6-3.82) + 5\times9.82$	M1		Method to find centre of mass
		or $8x = +\{3(-3, 82) + 5x3, 82\}$	A1		
		d = 6.95 or 6.96 or $x = +/-0.955$	A1		
		$\tan\theta = 0.96/6$	M1		Attempt to find the required angle
		$\theta = 9^{\circ}$	A1	5	
					7
L			•		
3	(i)	D = 128 000/80 (= 1600)	B1		
		$k(80)^2 = 128\ 000/80$	M1		Driving force = resistance
			A1		
		$k = \frac{1}{4}$	A1		
		R = 900 N FT	B1	5	FT on their k ($R = 3600k$)
					``´´`
(ii)		$D = 128\ 000\ /\ 60\ (=\ 2133\ 1/_3)$	B1		
		2000 x 9.8 x sin2°	B1		
		6400/3-900-2000 x 9.8 x sin2° = 2000a	M1		4 terms required
		$a = 0.275 \text{ m s}^{-2}$	A1	4	
					9
4	(i)	$4T\cos 20^\circ = 5 \text{ x g x } 2.5$	M1		Using moments; allow sin/cos mix
			A1		Allow with omission of g
		T = 32.6 N	A1	3	
	(11)	$X = T \sin 20^{\circ}$	MI		allow sin/cos mix
		X = 11.1 FT	Al		FT their T
		$Y + T\cos 20^\circ = 5 x g$	M1		
		or $2.5Y = 1.5 \times T\cos 20$ or $4Y = 1.5 \times 5g$			
		Y = 18.4 FT	A1		FT their T, but not from omission of
			<u> </u>		g
		$R = \sqrt{(X^2 + Y^2)}$ or $\tan^{-1}(Y/X)$	M1		$X \neq 0, Y \neq 0$
		or $\tan^{-1}(X/Y)$			
		D = 21.5 N	A 1		
		$\mathbf{N} = 21.3 \text{ IN}$		7	ar 21 29 to 1st -ft 1
		$\theta = 38.8^{\circ}$ above the horizontal	AI	/	or 31.2° to left of vertical
					10

Mark Scheme

June 2010

4729

4729		Mark So	June 2010	
5	(i)	$T\cos 45^\circ + R\sin 45^\circ = mg$	*M1	3 terms
		2	A1	- 2
		$Tsin45^\circ - Rcos45^\circ = mlsin45^\circ \omega^2$	*MI 41	3 terms; $a = r \omega^2$
		$2T = \sqrt{2mg} + ml\omega^2$	Dep*M1	Method to eliminate R
		$T = m/2(\sqrt{2}g + l\omega^2)$	Al 6	AG www
	(ii)	$\mathbf{R} = 0$	B1	may be implied
	(11)	$2R = \sqrt{2mg} - ml\omega^2$	B1	may be implied
		or $T\cos 45^\circ = mg$		
		or $T = ml\omega^2$		
		Solve to find ω	MI	
		$\omega = 4.16 \text{ rad s}^{-1}$	A1 4	10
6	(i)	2mu = 2mv + 3mv	M1	Conservation of momentum
		v=2/5 u	Al Al 3	Must be $v =$
	(ii)	e = (3v - v) / u	M1	Using restitution
		e = 4/5	A1 2	AG
	(iii)	Initial K.E. = $9mv^2 / 2 = 18mu^2 / 25$	B1 FT	FT on their v from (i)
		Final K.E. = $9mv^2 / 8 = 9mu^2 / 50$	B1 FT	FT on their v from (i)
		$\frac{1}{2}m(V)^2$ = Final K.E.	M1	
		V = 3 u / 5	AI 4	AG
	(iv)	4mm / 5 - 2mm / 5 - 2mm + mm	M1	Conservation of momentum
	(1)	u/5 = 2x + y	A1 FT	FT on their v from (i): aef
		e = 4/5 = (y - x) / u	M1 FT	Using restitution
		4u = 5y - 5x	A1	FT on their v from (i); aef
		solving 2 relevant equations	M1	
		$x = -u/5 \ y = 3u/5$	Al	
		y = 3u/3 away from wall (x) + towards wall (v)	A1 A1 8	both
				17

4729	Mark Scheme			June 2010	
7 (i)	$R = 0.2 \times 9.8 \times \cos 30^\circ (= 1.70)$	B1			
	$F = 0.1 \times 9.8 \times \cos 30^{\circ} (= 0.849)$ FT	B1		FT on their R, but not R =0.2g	
	$1(-1)^2 = 0.2 = 11^2 = 1(-1)^2 = 0.2 = 10^2$	MI		Use of conservation of energy	
	$72 \times 0.2 \times 11 = 72 \times 0.2 \vee -$ 0.2 × 0.8 × 5sin 30 + 5 × 0.840				
	$v = 5.44 \text{ m s}^{-1}$	A1 A1	6	AG	
	· · · · · · · · · · · · · · · · · · ·	111	U		
Or	$F + 0.2gsin30 = \pm 0.2a$	M1		Use of N2L, 3 terms	
last 4	$a = \pm 9.1$	A1			
marks	$v^2 = 11^2 + 2 x a x 5$	M1		Complete method to find v	
of (i)	$v = 5.44 \text{ m s}^{-1}$	A1			
(ii)	$t = 5aaa^20^{\circ}/5.44aaa^20^{\circ}$	M1		time to lateral position over C	
(11)	t = 0.919 s			time to fateral position over C	
	$u = 5.44 \sin 30^\circ (= 2.72)$	B1			
	$s = 2.72 \times 0.919 - 4.9 \times 0.919^2$	M1			
	s = -1.6 (or better)	A1		Ht dropped	
	Ht drop to $C = 5\sin 30^\circ = 2.5$ m	B1			
	Ball does not hit the roof	A1	7	13	
0	2^{2}	DI			
Or	$y = x \tan \theta - g x^{-} \sec^{-} \theta / 2 V^{-}$	BI			
5	Substitute values $V = 5 A A = 30^{\circ} x = 5\cos 30^{\circ}$			all 3 correct	
marks	$v = 2.5 - 9.8x25x3/4x4/3 / (2x5.44^2)$	Al			
of (ii)	y = -1.6 (or better)	A1			
	· · · · · · · · · · · · · · · · · · ·				
OR (ii)	$u = 5.44 \sin 30^\circ (= 2.72)_2$	B1			
	$-2.5 = 5.44 \sin 30t - 4.9t^2$	M1			
	t = 1.04	Al		aet	
	t = 1.04 $x = 5.44\cos 30 x + 1.04 = 4.9$ (or better)			time to position level with AC	
	Horizontal distance from B to $C =$	111			
	$5\cos 30 = 4.3$ (or better)	B1			
	Ball does not hit the roof	A1	7		
OR (ii)	$y = x \tan \theta - g x^2 \sec^2 \theta / 2 V^2$	B1			
	substitute values $2.5 - 0.577x = 0.221x^2$			aaf	
	-2.3 = 0.377x = 0.221x Attempt to solve quadratic for x	M1		aei	
	x = 4.9 (or better)	A1			
	Horizontal distance from B to $C =$				
	$5\cos 30 = 4.3$ (or better)	B1			
	Ball does not hit the roof	A1	7		
	5.44 : 200 - 2.72	D1			
OK (II)	$u = 5.44 \sin 30^\circ = 2.72$	BI			
	-2.3 – 3.448111301 – 4.91			aef	
	t = 1.0 (or better)	A		time to position level with AC	
	$T = 5\cos(30^{\circ}/5.44\cos(30^{\circ}))$	M1			
	T = 0.92 (or better)	A1		time to lateral position over C	
	Ball does not hit the roof	A1	7	-	

4729	Mark Sch	neme	•	June 2010
OR (ii)	Attempt at equation of trajectory	M1		
	$y = 0.577x - 0.221x^2$	A1		
	y = -0.577x	B1		Equation of BC
	Solving their quadratic and linear			
	equations to get at least x or y	M1		
	x = 5.2 (or better) or $y = -3.0$ (or better)	A1		
	Horizontal distance from B to C =			Must be the one needed for
	$5\cos 30 = 4.3$ (or better)			comparison
	Or Ht drop to $C = 5\sin 30^\circ = 2.5$	B1		
	Ball does not hit the roof	A1	7	
OR (ii)	Attempt at equation of trajectory	M1		
	$y = 0.577x - 0.221x^2$	A1		
	y = -0.577x	B1		
	Solving their quadratic and linear			
	equations	M1		
	x = 5.2 (or better) and $y = -3.0$ (or	A1		
	better)			
	Distance = 6.0 (or better)	B1		Distance from B to point of
				intersection
	Ball does not hit the roof	A1	7	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010

