Mathematics

Advanced GCE 4729

Mechanics 2

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

$\mathbf{1}$	$v^{2}=2 \times 9.8 \times 10$	M1	Using $v^{2}=u^{2}+2$ as with $u=0$
	$v=14 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
	speed $=\sqrt{ }\left(7^{2}+14^{2}\right)$	M1	Method to find speed using their " v "
	15.7 or $7 \sqrt{ } 5 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
	$\tan ^{-1}(14 / 7)$ or $\tan ^{-1}(7 / 14)$	M1	Method to find angle using their " v "
	$63.4^{\circ} \quad$ to the horizontal	A1 6	26.6° to vertical
			$\mathbf{6}$

2 (i)	$\begin{aligned} & (6 \sin \Pi / 2) \div(\Pi / 2) \\ & 3.82 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	Use of correct formula AG
(ii)	$\begin{aligned} & 8 \mathrm{~d}=3(6-3.82)+5 \mathrm{x} 9.82 \\ & \text { or } 8 \mathrm{x}= \pm\{3(-3.82)+5 \mathrm{x} 3.82\} \\ & \mathrm{d}=6.95 \text { or } 6.96 \text { or } \mathrm{x}=+/-0.955 \\ & \tan \theta=0.96 / 6 \\ & \theta=9^{\circ} \end{aligned}$	M1 A1 A1 M1 A1 5	Method to find centre of mass Attempt to find the required angle 7

3 (i)	$\begin{aligned} & \mathrm{D}=128000 / 80(=1600) \\ & \mathrm{k}(80)^{2}=128000 / 80 \end{aligned}$ $\begin{aligned} & \mathrm{k}=1 / 4 \\ & \mathrm{R}=900 \mathrm{~N} \end{aligned}$	$\begin{array}{ll} \text { B1 } \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ \text { B1 } & 5 \end{array}$	Driving force $=$ resistance FT on their $\mathrm{k}(\mathrm{R}=3600 \mathrm{k})$
(ii)	$\begin{aligned} & \mathrm{D}=128000 / 60(=21331 / 3) \\ & 2000 \times 9.8 \times \sin 2^{\circ} \\ & 6400 / 3-900-2000 \times 9.8 \times \sin 2^{\circ}=2000 \mathrm{a} \\ & \mathrm{a}=0.275 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	B1 B1 M1 A1 4	4 terms required 9

4 (i)	$\begin{aligned} & 4 \mathrm{~T} \cos 20^{\circ}=5 \times \mathrm{g} \times 2.5 \\ & \mathrm{~T}=32.6 \mathrm{~N} \end{aligned}$	$\begin{array}{\|ll} \hline \text { M1 } \\ \text { A1 } & \\ \text { A1 } & \end{array}$	Using moments; allow sin/cos mix Allow with omission of g
(ii)	$\begin{aligned} & \mathrm{X}=\mathrm{T} \sin 20^{\circ} \\ & \mathrm{X}=11.1 \\ & \mathrm{Y}+\mathrm{T} \cos 20^{\circ}=5 \times \mathrm{g} \\ & \text { or } 2.5 \mathrm{Y}=1.5 \times \mathrm{T} \cos 20 \text { or } 4 \mathrm{Y}=1.5 \times 5 \mathrm{~g} \\ & \mathrm{Y}=18.4 \\ & \mathrm{R}=\sqrt{ }\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right){\text { or } \tan ^{-1}(\mathrm{Y} / \mathrm{X})}^{\mathrm{FT}} \\ & \text { or } \tan ^{-1}(\mathrm{X} / \mathrm{Y}) \\ & \mathrm{R}=21.5 \mathrm{~N} \\ & \theta=58.8^{\circ} \text { above the horizontal } \end{aligned}$	M1 A1 M1 A1 M1 A1 A1 7	allow sin/cos mix FT their T FT their T, but not from omission of g $X \neq 0, Y \neq 0$ or 31.2° to left of vertical 10

5 (i)	$\begin{aligned} & \mathrm{T} \cos 45^{\circ}+\mathrm{R} \sin 45^{\circ}=\mathrm{mg} \\ & \mathrm{~T} \sin 45^{\circ}-\mathrm{R} \cos 45^{\circ}=\mathrm{ml} \sin 45^{\circ} \omega^{2} \\ & 2 \mathrm{~T}=\sqrt{ } 2 \mathrm{mg}+\mathrm{ml} \omega^{2} \\ & \mathrm{~T}=\mathrm{m} / 2\left(\sqrt{ } 2 \mathrm{~g}+1 \omega^{2}\right) \end{aligned}$	*M1 A1 *M1 A1 Dep*M1 A1 6	3 terms 3 terms; $a=r \omega^{2}$ Method to eliminate R AG www
(ii)	$\begin{aligned} & \mathrm{R}=0 \\ & 2 \mathrm{R}=\sqrt{ } 2 \mathrm{mg}-\mathrm{ml} \omega^{2} \\ & \text { or } \mathrm{T} \cos 45^{\circ}=\mathrm{mg} \\ & \text { or } \mathrm{T}=\mathrm{m} 1 \omega^{2} \\ & \text { Solve to find } \omega \\ & \\ & \omega=4.16 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	B1 B1 M1 A1 4	may be implied 10

6 (i)	$\begin{aligned} & 2 m u=2 m v+3 m v \\ & v=2 / 5 u \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } & \\ \text { A1 } & 3 \end{array}$	Conservation of momentum Must be $v=$
(ii)	$\begin{aligned} & \mathrm{e}=(3 v-v) / u \\ & \mathrm{e}=4 / 5 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	Using restitution AG
(iii)	$\begin{aligned} & \text { Initial K.E. }=9 m v^{2} / 2=18 m u^{2} / 25 \\ & \text { Final K.E. }=9 m v^{2} / 8=9 m u^{2} / 50 \\ & 1 / 2 m(V)^{2}=\text { Final K.E. } \\ & V=3 u / 5 \end{aligned}$	$\begin{aligned} & \text { B1 FT } \\ & \text { B1 FT } \\ & \text { M1 } \\ & \text { A1 } 4 \end{aligned}$	FT on their v from (i) FT on their v from (i) AG
(iv)	$\begin{aligned} & 4 m u / 5-3 m u / 5=2 m x+m y \\ & u / 5=2 x+y \\ & \mathrm{e}=4 / 5=(y-x) / u \\ & 4 u=5 y-5 x \end{aligned}$ solving 2 relevant equations $\begin{aligned} & x=-u / 5 y=3 u / 5 \\ & y=3 u / 5 \end{aligned}$ away from wall $(x)+$ towards wall (y)	M1 A1 FT M1 FT A1 M1 A1 A1 A1 8	Conservation of momentum FT on their v from (i); aef Using restitution FT on their v from (i); aef both 17

7 (i) Or last 4 marks of (i)	$\begin{aligned} & \mathrm{R}=0.2 \times 9.8 \times \cos 30^{\circ}(=1.70) \\ & \mathrm{F}=0.1 \times 9.8 \times \cos 30^{\circ}(=0.849) \\ & \\ & 1 / 2 \times 0.2 \times 11^{2}-1 / 2 \times 0.2 \mathrm{v}^{2}= \\ & 0.2 \times 9.8 \times 55 \sin 30+5 \times 0.849 \\ & \mathrm{v}=5.44 \mathrm{~m} \mathrm{~s}^{-1} \\ & \mathrm{~F}+0.2 \mathrm{~g} \sin 30= \pm 0.2 \mathrm{a} \\ & \mathrm{a}= \pm 9.1 \\ & \mathrm{v}^{2}=11^{2}+2 \times \mathrm{a} \times 5 \\ & \mathrm{v}=5.44 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	B1 B1 M1 A1 A1 A1 6 M1 A1 M1 A1	FT on their R, but not $R=0.2 \mathrm{~g}$ Use of conservation of energy AG Use of N2L, 3 terms Complete method to find v
(ii) Or first 5 marks of (ii)	$\begin{aligned} & \mathrm{t}=5 \cos 30^{\circ} / 5.44 \cos 30^{\circ} \\ & \mathrm{t}=0.919 \mathrm{~s} \\ & \mathrm{u}=5.44 \sin 30^{\circ}(=2.72) \\ & \mathrm{s}=2.72 \times 0.919-4.9 \times 0.919^{2} \\ & \mathrm{~s}=-1.6 \text { (or better) } \end{aligned}$ Ht drop to $C=5 \sin 30^{\circ}=2.5 \mathrm{~m}$ Ball does not hit the roof $y=x \tan \theta-g x^{2} \sec ^{2} \theta / 2 V^{2}$ substitute values $\begin{array}{\|l} V=5.44 \quad \theta=30^{\circ} \quad x=5 \cos 30^{\circ} \\ y=2.5-9.8 \times 25 \times 3 / 4 \times 4 / 3 /\left(2 \times 5.44^{2}\right) \\ y=-1.6 \text { (or better) } \end{array}$	M1 A1 B1 M1 A1 B1 A1 7 B1 M1 A1 A1 A1	time to lateral position over C Ht dropped all 3 correct
OR (ii)	$\begin{aligned} & \mathrm{u}=5.44 \sin 30^{\circ}(=2.72) \\ & -2.5=5.44 \sin 30 \mathrm{t}-4.9 \mathrm{t}^{2} \end{aligned}$ $t=1.04$ $x=5.44 \cos 30 \times 1.04=4.9 \text { (or better })$ Horizontal distance from B to $\mathrm{C}=$ $5 \cos 30=4.3$ (or better) Ball does not hit the roof	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \\ & \text { B1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	aef time to position level with $A C$
OR (ii)	$\mathrm{y}=\mathrm{xtan} \theta-\mathrm{gx}^{2} \sec ^{2} \theta / 2 \mathrm{~V}^{2}$ substitute values $-2.5=0.577 \mathrm{x}-0.221 \mathrm{x}^{2}$ Attempt to solve quadratic for x $\mathrm{x}=4.9$ (or better) Horizontal distance from B to $\mathrm{C}=$ $5 \cos 30=4.3$ (or better) Ball does not hit the roof	B1 M1 A1 M1 A1 B1 A1 7	aef
OR (ii)	$\begin{aligned} & \mathrm{u}=5.44 \sin 30^{\circ}=2.72 \\ & -2.5=5.44 \sin 30 \mathrm{t}-4.9 \mathrm{t}^{2} \\ & \mathrm{t}=1.0 \text { (or better) } \\ & \mathrm{T}=5 \cos 30^{\circ} / 5.44 \cos 30^{\circ} \\ & \mathrm{T}=0.92 \text { (or better) } \\ & \text { Ball does not hit the roof } \end{aligned}$	B1 M1 A1 A1 M1 A1 A1 7	aef time to position level with $A C$ time to lateral position over C

OR (ii)	Attempt at equation of trajectory $\begin{aligned} & y=0.577 x-0.221 x^{2} \\ & y=-0.577 x \end{aligned}$ Solving their quadratic and linear equations to get at least x or y $\mathrm{x}=5.2$ (or better) or $\mathrm{y}=-3.0$ (or better) Horizontal distance from B to $\mathrm{C}=$ $5 \cos 30=4.3$ (or better) Or Ht drop to $C=5 \sin 30^{\circ}=2.5$ Ball does not hit the roof	M1 A1 B1 M1 A1 B1 A1 7	Equation of BC Must be the one needed for comparison
OR (ii)	Attempt at equation of trajectory $\begin{aligned} & y=0.577 x-0.221 x^{2} \\ & y=-0.577 x \end{aligned}$ Solving their quadratic and linear equations $\mathrm{x}=5.2$ (or better) and $\mathrm{y}=-3.0$ (or better) Distance $=6.0$ (or better) Ball does not hit the roof	M1 A1 B1 M1 A1 B1 A1 7	Distance from B to point of intersection

OCR (Oxford Cambridge and RSA Examinations)

1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553
© OCR 2010

