

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- This document consists of 4 pages. Any blank pages are indicated.

1 Find
(i) $\int 8 \mathrm{e}^{-2 x} \mathrm{~d} x$,
(ii) $\int(4 x+5)^{6} \mathrm{~d} x$.

2 (i) Use Simpson's rule with four strips to find an approximation to

$$
\int_{4}^{12} \ln x \mathrm{~d} x
$$

giving your answer correct to 2 decimal places.
(ii) Deduce an approximation to $\int_{4}^{12} \ln \left(x^{10}\right) \mathrm{d} x$.

3 (i) Express $2 \tan ^{2} \theta-\frac{1}{\cos \theta}$ in terms of $\sec \theta$.
(ii) Hence solve, for $0^{\circ}<\theta<360^{\circ}$, the equation

$$
\begin{equation*}
2 \tan ^{2} \theta-\frac{1}{\cos \theta}=4 . \tag{4}
\end{equation*}
$$

4 For each of the following curves, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and determine the exact x-coordinate of the stationary point:
(i) $y=\left(4 x^{2}+1\right)^{5}$,
(ii) $y=\frac{x^{2}}{\ln x}$.

5 The mass, M grams, of a certain substance is increasing exponentially so that, at time t hours, the mass is given by

$$
M=40 \mathrm{e}^{k t}
$$

where k is a constant. The following table shows certain values of t and M.

t	0	21	63
M		80	

(i) In either order,
(a) find the values missing from the table,
(b) determine the value of k.
(ii) Find the rate at which the mass is increasing when $t=21$.

The function f is defined for all real values of x by

$$
\mathrm{f}(x)=\sqrt[3]{\frac{1}{2} x+2}
$$

The graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$ meet at the point P, and the graph of $y=\mathrm{f}^{-1}(x)$ meets the x-axis at Q (see diagram).
(i) Find an expression for $\mathrm{f}^{-1}(x)$ and determine the x-coordinate of the point Q.
(ii) State how the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$ are related geometrically, and hence show that the x-coordinate of the point P is the root of the equation

$$
\begin{equation*}
x=\sqrt[3]{\frac{1}{2} x+2} \tag{2}
\end{equation*}
$$

(iii) Use an iterative process, based on the equation $x=\sqrt[3]{\frac{1}{2} x+2}$, to find the x-coordinate of P, giving your answer correct to 2 decimal places.

The diagram shows the curve $y=\mathrm{e}^{k x}-a$, where k and a are constants.
(i) Give details of the pair of transformations which transforms the curve $y=\mathrm{e}^{x}$ to the curve $y=\mathrm{e}^{k x}-a$.
(ii) Sketch the curve $y=\left|\mathrm{e}^{k x}-a\right|$.
(iii) Given that the curve $y=\left|\mathrm{e}^{k x}-a\right|$ passes through the points $(0,13)$ and $(\ln 3,13)$, find the values of k and a.

The diagram shows the curve with equation

$$
y=\frac{6}{\sqrt{x}}-3
$$

The point P has coordinates $(0, p)$. The shaded region is bounded by the curve and the lines $x=0$, $y=0$ and $y=p$. The shaded region is rotated completely about the y-axis to form a solid of volume V.
(i) Show that $V=16 \pi\left(1-\frac{27}{(p+3)^{3}}\right)$.
(ii) It is given that P is moving along the y-axis in such a way that, at time t, the variables p and t are related by

$$
\begin{equation*}
\frac{\mathrm{d} p}{\mathrm{~d} t}=\frac{1}{3} p+1 \tag{4}
\end{equation*}
$$

Find the value of $\frac{\mathrm{d} V}{\mathrm{~d} t}$ at the instant when $p=9$.

9 (i) By first expanding $\cos (2 \theta+\theta)$, prove that

$$
\begin{equation*}
\cos 3 \theta \equiv 4 \cos ^{3} \theta-3 \cos \theta \tag{4}
\end{equation*}
$$

(ii) Hence prove that

$$
\begin{equation*}
\cos 6 \theta \equiv 32 \cos ^{6} \theta-48 \cos ^{4} \theta+18 \cos ^{2} \theta-1 \tag{3}
\end{equation*}
$$

(iii) Show that the only solutions of the equation

$$
1+\cos 6 \theta=18 \cos ^{2} \theta
$$

are odd multiples of 90°.

$O C R^{\text {T }}$
 RECOGNISING ACHIEVEMENT

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

