OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today’s society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners’ meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk
Annotations used in the detailed Mark Scheme.

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>Correct</td>
</tr>
<tr>
<td>×</td>
<td>Incorrect</td>
</tr>
<tr>
<td>BOD</td>
<td>Benefit of doubt</td>
</tr>
<tr>
<td>FT</td>
<td>Follow through</td>
</tr>
<tr>
<td>ISW</td>
<td>Ignore subsequent working (after correct answer obtained), provided method has been completed</td>
</tr>
<tr>
<td>M0</td>
<td>Method mark awarded 0</td>
</tr>
<tr>
<td>M1</td>
<td>Method mark awarded 1</td>
</tr>
<tr>
<td>M2</td>
<td>Method mark awarded 2</td>
</tr>
<tr>
<td>A1</td>
<td>Accuracy mark awarded 1</td>
</tr>
<tr>
<td>B1</td>
<td>Independent mark awarded 1</td>
</tr>
<tr>
<td>B2</td>
<td>Independent mark awarded 2</td>
</tr>
<tr>
<td>MR</td>
<td>Misread</td>
</tr>
<tr>
<td>SC</td>
<td>Special case</td>
</tr>
<tr>
<td>^</td>
<td>Omission sign</td>
</tr>
</tbody>
</table>

These should be used whenever appropriate during your marking.

The **M, A, B** etc annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate these scripts to show how the marks have been awarded. It is not mandatory to use annotations for any other marking, though you may wish to use them in some circumstances.
Subject-Specific Marking Instructions

1. **M** marks are for using a correct method and are not lost for purely numerical errors. **A** marks are for an accurate answer and depend on preceding **M** (method) marks. Therefore **M0 A1** cannot be awarded. **B** marks are independent of **M** (method) marks and are awarded for a correct final answer or a correct intermediate stage. **SC** marks are for special cases that are worthy of some credit.

2. Unless the answer and marks columns of the mark scheme specify **M** and **A** marks etc, or the mark scheme is ‘banded’, then if the correct answer is clearly given and is not from wrong working **full marks** should be awarded. Do not award the marks if the answer was obtained from an incorrect method, ie incorrect working is seen and the correct answer clearly follows from it.

3. Where follow through (**FT**) is indicated in the mark scheme, marks can be awarded where the candidate’s work follows correctly from a previous answer whether or not it was correct.

 Figures or expressions that are being followed through are sometimes encompassed by single quotation marks after the word their for clarity, eg FT 180 × (their ‘37’ + 16), or FT 300 – √(their ‘5² + 7²’). Answers to part questions which are being followed through are indicated by eg FT 3 × their (a).

 For questions with FT available you must ensure that you refer back to the relevant previous answer. You may find it easier to mark these questions candidate by candidate rather than question by question.

4. Where dependent (**dep**) marks are indicated in the mark scheme, you must check that the candidate has met all the criteria specified for the mark to be awarded.

5. The following abbreviations are commonly found in GCSE Mathematics mark schemes.

 - **cao** means correct answer only.
 - **figs** 237, for example, means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point eg 237000, 2.37, 2.370, 0.00237 would be acceptable but 23070 or 2374 would not.
 - **isw** means ignore subsequent working (after correct answer obtained).
 - **nfww** means not from wrong working.
 - **oe** means or equivalent.
 - **rot** means rounded or truncated.
 - **seen** means that you should award the mark if that number/expression is seen anywhere in the answer space, including the answer line, even if it is not in the method leading to the final answer.
 - **soi** means seen or implied.
6 Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise, indicated for example by the instruction ‘mark final answer’.

7 As a general principle, if two or more methods are offered, mark only the method that leads to the answer on the answer line. If two (or more) answers are offered, mark the poorer (poorest).

8 When the data of a question is consistently misread in such a way as not to alter the nature or difficulty of the question, please follow the candidate’s work and allow follow through for A and B marks. Deduct 1 mark from any A or B marks earned and record this by using the MR annotation. M marks are not deducted for misreads.

9 Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures even if this is rounded or truncated on the answer line. For example, an answer in the mark scheme is 15.75, which is seen in the working. The candidate then rounds or truncates this to 15.8, 15 or 16 on the answer line. Allow full marks for the 15.75.

10 If the correct answer is seen in the body and the answer given in the answer space is a clear transcription error allow full marks unless the mark scheme says ‘mark final answer’ or ‘cao’. Place the annotation ✓ next to the correct answer.

i If the answer space is blank but the correct answer is seen in the body allow full marks. Place the annotation ✓ next to the correct answer.

ii If the correct answer is seen in the working but a completely different answer is seen in the answer space, then accuracy marks for the answer are lost. Method marks would still be awarded. Use the M0, M1, M2 annotations as appropriate and place the annotation ✗ next to the wrong answer.

11 Ranges of answers given in the mark scheme are always inclusive.

12 For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your Team Leader.

13 Anything in the mark scheme which is in square brackets […] is not required for the mark to be earned, but if present it must be correct.
<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>BADC with correct working</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M1 for attempt to change any 2 fractions to a common denom, decimal or %</td>
<td>A1 for any 2 correctly changed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(A) = (\frac{12}{48})</td>
<td>(B) = (\frac{16}{48})</td>
<td>(C) = (\frac{9}{48})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>= 0.25</td>
<td>= 0.33(...)</td>
<td>= 0.18(...)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(D) = (\frac{10}{48})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>= 0.20(...)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Or</td>
<td>If converting to unit fractions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B1 for (C = \frac{1}{5.3(...)) or (D = \frac{1}{4.8})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Or</td>
<td>If a pictorial approach used:</td>
<td>B1 for 4 reasonable pictures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Or, if 0, SC1 for BADC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>They don’t add up to 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any 1 fraction increased by (\frac{1}{48})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Total = (\frac{47}{48}), 0.98, 98%</td>
<td>ft sum of their 4 terms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cao Or 0.02, 2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allow names or fractions for 3 marks</td>
<td>Condone 1 incorrect conversion with up to 2 correct for up to 3 marks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allow 0.33.., 0.34.., 0.18.., 0.19.., 0.20..0.21.. and equivalent %</td>
<td>Condone unconventional fractions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>eg (\frac{4.5}{24})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ie from wrong or no working</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 2 | (a) Correct rotation | 3 | **B2** for correct orientation, wrong position or for correct 90° acw rotation about O
Or **B1** for two correct vertices
[Overlays available] |
| | (b) Correct reflection | 2 | **B1** for reflection in $x = -1$
or **B1** for $y = -1$ drawn |
| | (c) (SF =) -2
Centre origin | 1 | Generally if >1 transformation, 0, 0
but **SC1** for (enlargement) SF=2 and rotation 180° about O
Allow ‘point’, ‘about’, ‘through’ etc for ‘centre’ |
| 3 | (a) $x < 4$ | 2 | **B1** for $x = 4$
or **M1** for $5x < 18 + 2$ or better |
| | (b) $p = 5, q = 17$ | 3 | **B2** if reversed
Or **M1** for either -1 or 5 substituted for x
A1 for either value correct
If 0, **SC1** for $p = -4, q = -1$
Condone ≤ for 1 or 2 marks
M1 not lost even if final answer comes from a different method.
Correct answer with no working scores 3
$q = 17$ only nfww scores **B2** but $p = 5$ alone scores 0 |
| 4 | 464.8 in either A or B | 1 | SC3 if 16.6 correct but in wrong box or intermediate steps wrong or missing |
| | 4 in C | 1 | For the next two marks no more than one of them can be ft |
| | 116.2 in D | 1(FT) | FT exact answer to their (non-integer) 464.8 ÷ 4 |
| | 16.6 in E | 1(FT) | FT exact answer to their (non-integer) 116.2 ÷ 7 |
| | | | If 0 or 1, allow SC2 for figs 166 seen |
| 5 | (a) 5 points correct | 2 | B1 for at least 2 points correct |
| | (b) Ruled line | 1 | ‘Touching’ overlay |
| | (c) Positive | 1 | Do not zoom from ‘fit width’ |
| | (d) Point with greatest vertical distance above $F = M$ ringed | 1 | Ignore any extra points |
| | | | Ignore strong, weak etc |

Exact answers may be fractions.
<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>(i) 50</td>
<td>Single ruled line within overlay</td>
<td>A1, 30 - 50</td>
<td>3 hrs 20 mins</td>
</tr>
<tr>
<td></td>
<td>(ii) 40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1+1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Any length M1 for any 2 points plotted or implied by eg line through (0, 0) and (1, 55)</td>
<td>If 0 scored M1 for 330 or 290</td>
<td>Allow anything (and any format) from 3h 10m to 3h 30m O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Or FT their crossing point ± 2 small squares, 12mins</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Line, if it were to be extended, must stay within tramlines. ½ square tolerance</td>
<td>Condone 3:1(0) but not 3.1, however 3.2 to 3.5 are in range so OK If lines (nearly) parallel allow the mark for 'No crossing point'. oe</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(i) 64</td>
<td>(ii) 1</td>
<td>(iii) 2 nfww</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>B1 for 4² seen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B2 for (\sqrt[3]{8} \times \frac{1}{8}) or 16×(\frac{1}{8}) or (4^4 \times \frac{1}{8})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Or B1 for (8^{-1} = \frac{1}{8}) or (8^\frac{4}{3} = (\sqrt[3]{8})^4) or (\sqrt[3]{8^2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>or (8^\frac{4}{3} = 2^4) or 16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Or (8^\frac{4}{3} \times 8^{-1} = 8^\frac{1}{3}) M1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(= \sqrt[3]{8}) A1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Correct answer, no working scores 3</td>
<td></td>
<td>If decimals used, 0.33, 1.33 or better.</td>
</tr>
<tr>
<td>Score</td>
<td>Description</td>
<td>Mark Scheme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Correct proof well explained and clearly laid out</td>
<td>Condone minor errors in spelling, punctuation or grammar</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Correct proof well explained with:</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• one reason missing</td>
<td>For lower mark –</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• layout not clear</td>
<td>Correct method leading to 117° with:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• some use of poor mathematical language</td>
<td>• significant omissions in calculation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• significant errors in spelling, punctuation or grammar</td>
<td>• more than one reason missing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any correct calculation with related reason seen</td>
<td>or correct method with one arithmetic error that would lead to answer other than 117°</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>eg Ext angle of pentagon $\frac{360}{5} = 72$ with</td>
<td>Any correct calculation, angle or reason seen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exterior angles of a polygon = 360</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Or any two angles seen from 72, 108, 45, 135, 243, 540, 720, 900, 1080</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nothing of any worth.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Interior angle method</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pentagon $180 - \frac{360}{5} = 108$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Octagon $180 - \frac{360}{8} = 135$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exterior angles of a polygon (= 360)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angles on a straight line (≈ 180)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$p = 360 - 108 - 135$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= 117$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angles round a point (≈ 360)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$[(n-2) \times 180] + n$ for $n = 5$ and 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Then as above</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Listing multiples of 180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Then as above</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exterior angle method</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Required angle clearly shown to be the sum of the two ext angles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\frac{360}{5} + \frac{360}{8} = 72 + 45$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= 117$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exterior angles of a polygon (= 360)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If this method not clear here then max 3 marks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\frac{360}{5} + \frac{360}{8} = 72 + 45$ gets 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= 117$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Mark Scheme</td>
<td>November 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>[x = \frac{1}{2} \text{ oe} \quad \text{nefww}] [y = -5]</td>
<td>3</td>
<td>M1 for multiplying one (or both) equation(s) to get either coefficient equal (allow 1 error) and adding or subtracting as appropriate (allow 1 (further) error) eg [4x + y = 1 \quad 12x + 3y = 3] [4x - 6y = 36 \quad 2x - 3y = 18] [7y = -35 \quad 14x = 21] A1FT for either (x) or (y) correct oe isw [y = -5 \quad x = \frac{3}{2} \quad \text{or} \quad 1\frac{1}{2} \quad \text{or} \quad 1.5] Or if substitution used M1 for rearranging and substituting eg [2x - 3(1 - 4x) = 18] or better (allow 1 error) then A mark as above. If no more than 1 error in multiplication (and no errors in addition/subtraction) follow through for a maximum of 2 marks If separate attempts made to eliminate (x) and (y) mark to the candidate’s benefit Correct (x) or (y) with no working implies M1A1 Correct answer with no working scores 3.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>(a) [4\sqrt{5}]</td>
<td>2</td>
<td>M1 for [\sqrt{16 \times 5} \quad \text{or} \quad \sqrt{16 \times 5} \quad \text{or} \quad \sqrt{4 \times \sqrt{20}} \quad \text{or} \quad \sqrt{4 \times 20} \quad \text{or} \quad 2\sqrt{20} \quad \text{or} \quad 4 \times \sqrt{5}] Condone extra (\times) signs for M mark eg [2\times \sqrt{20}]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) [4\sqrt{3}]</td>
<td>3</td>
<td>B2 for [\frac{12\sqrt{3}}{3} \quad \text{isw} \quad \frac{4\sqrt{3}}{1} \quad \text{or} \quad 4 \times \sqrt{3}] Or M1 for [\frac{12}{\sqrt{3}} \times \sqrt{3} \quad \text{or} \quad \frac{12\sqrt{3}}{\sqrt{9}} \quad \text{or} \quad \sqrt{48}] Condone extra (\times) signs for B and M marks eg [\frac{4 \times \sqrt{3}}{1}] scores B2</td>
<td></td>
</tr>
<tr>
<td>Problem</td>
<td>Mark Scheme</td>
<td>Solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>PQS or PSQ = (\frac{180 - 30}{2} = 75)°</td>
<td>M1 Allow Q, no label etc if unambiguous
A1FT their PQS or PSQ
Or
M1 QOS = 150°
1 (Angle between) tangent and radius = 90°
A1FT QRS = 75°
1 Angle at the centre/circumference
‘Isos triangle’ alone gets 0.
75° on answer line scores 2 if unambiguous
Condone ‘opposite’ segment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>(8)</td>
<td>3 Geometric method
B1 for both B and C marked on grid and
B1 for D marked anywhere on horizontal line level with A
Algebraic method
M2 for (\begin{pmatrix} 9 + m \ 1 + m \end{pmatrix} = \begin{pmatrix} x \ 0 \end{pmatrix}) oe
Or M1 for (\begin{pmatrix} 9 + m \ 1 + m \end{pmatrix}) or (\begin{pmatrix} x \ 0 \end{pmatrix}) or (\begin{pmatrix} 8 \ y \end{pmatrix}) oe
Labels not needed for B marks providing unambiguous</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>