
traffic lights led Recipe

A physical computing project for the
Raspberry Pi – No Soldering, Tools or
internet access Required!

. . . continued

Difficulty: Basic
This recipe will allow you to create a set of traffic lights by
turning LEDs into output devices for your Raspberry Pi – we will
guide you through writing a program to get them to light in the
correct sequence.

Ingredients needed in addition to your Raspberry Pi:

3 x LEDs (red, yellow, green)
3 x 220Ω Resistors
6 x Jumper Wires (female to female)
A small rectangular piece of black card –
with three holes for the LEDs

Method:
Turn the 3 x LEDs into outputs for your program
1.	T ake one end of the resistor and twist it around the

cathode of the LED (nearest flat edge and the shorter lead)
so that it forms a strong connection.

2.	P ush both the anode (longer lead) of the LED and the
other end of the resistor into each of the jumper wires.

	R epeat this for all 3 LEDs.

3. 	F or each LED take the
end of the jumper lead
connected to the cathode
of the LED (flat edge,
shorter wire) and push
onto pins 17, 20 and 25 of
the GPIO headers which
are connected to ground.

Raspberry Pi GPIO header pins. The diagram above the pins shows the pin numbers.
You will be using pins 3, 5, 7, 17, 20 and 25. Warning! You can damage your
Raspberry Pi if you do not use the GPIO pins correctly!

4. Then take the end of the other
jumper lead and push onto pin 3 for
the red LED, pin 5 for the yellow LED
and pin 7 for the green LED of the
General Purpose Input-Output (GPIO)
header which is connected to the GPIO
channels.

5. Push the LEDs through your black
card in the correct order for traffic
lights.

Congratulations! You have now attached the LEDs to your
Raspberry Pi which can be used as an output in your programs.

Write a program that LIGHTS UP THE LEDS
IN SEQUENCE

1.	 Open a command line text editor

	 nano TrafficLED.py

2.	 Type in the code below (Pro Tip: Any lines beginning with
a # symbol are comments so don’t need to be included
for the program to work - they will, however, help you to
understand the code)

First we need to import the libraries that
we need

Import the time library so that we can make
the program pause for a fixed amount of time
import time

Import the Raspberry Pi GPIO libraries that
allow us to connect the Raspberry Pi to
other physical devices via the General
Purpose Input-Output (GPIO) pins
import RPi.GPIO as GPIO

Now we need to set-up the General Purpose
Input-Ouput (GPIO) pins

Clear the current set-up so that we can
start from scratch
GPIO.cleanup()

Set up the GPIO library to use Raspberry Pi
board pin numbers
GPIO.setmode(GPIO.BOARD)

Set Pin 3 on the GPIO header to act as
an output
GPIO.setup(3,GPIO.OUT)

Set Pin 5 on the GPIO header to act as
an output
GPIO.setup(5,GPIO.OUT)

Set Pin 7 on the GPIO header to act as
an output
GPIO.setup(7,GPIO.OUT)

This loop runs forever and flashes the LED
while True:

Turn on the red LED
GPIO.output(3,GPIO.HIGH)

Wait for 2 seconds
time.sleep(2)

Turn on the yellow LED
GPIO.output(5,GPIO.HIGH)

Wait for 2 seconds
time.sleep(2)

Turn off the yellow LED
GPIO.output(5,GPIO.LOW)

Turn off the red LED
GPIO.output(3,GPIO.LOW)

Turn on the green LED
GPIO.output(7,GPIO.HIGH)

Wait for 2 seconds
time.sleep(2)

Turn off the green LED
GPIO.output(7,GPIO.LOW)

Turn on the yellow LED
GPIO.output(5,GPIO.HIGH)

Wait for 2 seconds
time.sleep(2)

3. Run the program.

sudo python TrafficLED.py

Congratulations! Now when you run the program your traffic lights
will work.

MAKE IT YOUR OWN!

There are many simple ways that you could create your own variations
of this recipe, some examples of which are listed below:

• Change the rate at which the LEDs flash

• Require a user input to trigger the LEDs – so it becomes a pedestrian 	
 crossing!

