Mark Scheme for January 2013
OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2013
<table>
<thead>
<tr>
<th>Annotation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBD</td>
<td>Benefit of doubt given</td>
</tr>
<tr>
<td>CON</td>
<td>Contradiction</td>
</tr>
<tr>
<td>X</td>
<td>Incorrect response</td>
</tr>
<tr>
<td>ECF</td>
<td>Error carried forward</td>
</tr>
<tr>
<td>I</td>
<td>Ignore</td>
</tr>
<tr>
<td>NAD</td>
<td>Not answered question</td>
</tr>
<tr>
<td>NBD</td>
<td>Benefit of doubt not given</td>
</tr>
<tr>
<td>POT</td>
<td>Power of 10 error</td>
</tr>
<tr>
<td>O</td>
<td>Omission mark</td>
</tr>
<tr>
<td>R</td>
<td>Rounding error</td>
</tr>
<tr>
<td>OFE</td>
<td>Error in number of significant figures</td>
</tr>
<tr>
<td>✓</td>
<td>Correct response</td>
</tr>
</tbody>
</table>
Subject-specific Marking Instructions

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO NOT ALLOW</td>
<td>Answers which are not worthy of credit</td>
</tr>
<tr>
<td>IGNORE</td>
<td>Statements which are irrelevant</td>
</tr>
<tr>
<td>ALLOW</td>
<td>Answers that can be accepted</td>
</tr>
<tr>
<td>()</td>
<td>Words which are not essential to gain credit</td>
</tr>
<tr>
<td>—</td>
<td>Underlined words must be present in answer to score a mark</td>
</tr>
<tr>
<td>ECF</td>
<td>Error carried forward</td>
</tr>
<tr>
<td>AW</td>
<td>Alternative wording</td>
</tr>
<tr>
<td>ORA</td>
<td>Or reverse argument</td>
</tr>
</tbody>
</table>

The following questions should be fully annotated with ticks, crosses, ecf etc to show where marks have been awarded in the body of the text:

3(c), 4(e)(iii) and 5(a)
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
</table>
| 1 | **(a) (i)** Atom(s) of an element | 1 | **ALLOW** for ‘atoms of an element’:
Atoms of the same element
OR atoms with the same number of protons
OR atoms with the same atomic number
IGNORE ‘different relative atomic masses’
IGNORE different mass number
IGNORE same number of electrons
DO NOT ALLOW different numbers of electrons
DO NOT ALLOW ‘atoms of elements’ for ‘atoms of an element’
DO NOT ALLOW ‘an element with different numbers of neutrons’ (ie atom(s) is essential) |
| | **AND** | | **ALLOW** for ‘atoms of an element’:
Atoms of the same element
OR atoms with the same number of protons
OR atoms with the same atomic number
IGNORE ‘different relative atomic masses’
IGNORE different mass number
IGNORE same number of electrons
DO NOT ALLOW different numbers of electrons
DO NOT ALLOW ‘atoms of elements’ for ‘atoms of an element’
DO NOT ALLOW ‘an element with different numbers of neutrons’ (ie atom(s) is essential) |
| | with different numbers of neutrons (and with different masses) ✔ | | **ALLOW** for ‘atoms of an element’:
Atoms of the same element
OR atoms with the same number of protons
OR atoms with the same atomic number
IGNORE ‘different relative atomic masses’
IGNORE different mass number
IGNORE same number of electrons
DO NOT ALLOW different numbers of electrons
DO NOT ALLOW ‘atoms of elements’ for ‘atoms of an element’
DO NOT ALLOW ‘an element with different numbers of neutrons’ (ie atom(s) is essential) |
| | **(ii)** Protons | 1 | **ALLOW** for ‘atoms of an element’:
Atoms of the same element
OR atoms with the same number of protons
OR atoms with the same atomic number
IGNORE ‘different relative atomic masses’
IGNORE different mass number
IGNORE same number of electrons
DO NOT ALLOW different numbers of electrons
DO NOT ALLOW ‘atoms of elements’ for ‘atoms of an element’
DO NOT ALLOW ‘an element with different numbers of neutrons’ (ie atom(s) is essential) |
| | Neutrons | | **ALLOW** for ‘atoms of an element’:
Atoms of the same element
OR atoms with the same number of protons
OR atoms with the same atomic number
IGNORE ‘different relative atomic masses’
IGNORE different mass number
IGNORE same number of electrons
DO NOT ALLOW different numbers of electrons
DO NOT ALLOW ‘atoms of elements’ for ‘atoms of an element’
DO NOT ALLOW ‘an element with different numbers of neutrons’ (ie atom(s) is essential) |
| | Electrons | | **ALLOW** for ‘atoms of an element’:
Atoms of the same element
OR atoms with the same number of protons
OR atoms with the same atomic number
IGNORE ‘different relative atomic masses’
IGNORE different mass number
IGNORE same number of electrons
DO NOT ALLOW different numbers of electrons
DO NOT ALLOW ‘atoms of elements’ for ‘atoms of an element’
DO NOT ALLOW ‘an element with different numbers of neutrons’ (ie atom(s) is essential) |
| | **Protons Neutrons Electrons** | | **ALLOW** for ‘atoms of an element’:
Atoms of the same element
OR atoms with the same number of protons
OR atoms with the same atomic number
IGNORE ‘different relative atomic masses’
IGNORE different mass number
IGNORE same number of electrons
DO NOT ALLOW different numbers of electrons
DO NOT ALLOW ‘atoms of elements’ for ‘atoms of an element’
DO NOT ALLOW ‘an element with different numbers of neutrons’ (ie atom(s) is essential) |
| | 74 110 74 ✔ | | **ALLOW** for ‘atoms of an element’:
Atoms of the same element
OR atoms with the same number of protons
OR atoms with the same atomic number
IGNORE ‘different relative atomic masses’
IGNORE different mass number
IGNORE same number of electrons
DO NOT ALLOW different numbers of electrons
DO NOT ALLOW ‘atoms of elements’ for ‘atoms of an element’
DO NOT ALLOW ‘an element with different numbers of neutrons’ (ie atom(s) is essential) |
| | **(iii)** | 1 | **ALLOW** for ‘atoms of an element’:
Atoms of the same element
OR atoms with the same number of protons
OR atoms with the same atomic number
IGNORE ‘different relative atomic masses’
IGNORE different mass number
IGNORE same number of electrons
DO NOT ALLOW different numbers of electrons
DO NOT ALLOW ‘atoms of elements’ for ‘atoms of an element’
DO NOT ALLOW ‘an element with different numbers of neutrons’ (ie atom(s) is essential) |
| | ¹²C OR C-12 OR carbon 12 OR carbon-12 ✔ | | **ALLOW** for ‘atoms of an element’:
Atoms of the same element
OR atoms with the same number of protons
OR atoms with the same atomic number
IGNORE ‘different relative atomic masses’
IGNORE different mass number
IGNORE same number of electrons
DO NOT ALLOW different numbers of electrons
DO NOT ALLOW ‘atoms of elements’ for ‘atoms of an element’
DO NOT ALLOW ‘an element with different numbers of neutrons’ (ie atom(s) is essential) |
| | **(b) (i)** | 2 | **ALLOW** 6+ OR 6 OR 1+ OR 1
ALLOW one mark for correct oxidation number changes
H = 0 to H = +1 ✔
(Reduced):
W (oxidation number has decreased) from W = +6 to W = 0 ✔
ALLOW oxidation states written above the equation if not seen in the text BUT **IGNORE** oxidation states written above the equation if seen in the text
ALLOW for one mark: (Oxidised) H has increased by 1 AND (Reduced) W has decreased by 6
IGNORE WO₃ is reduced
IGNORE references to electron loss / gain if correct
DO NOT ALLOW incorrect references to electron loss / gain
DO NOT ALLOW ‘H oxidised and W reduced’ without reference to oxidation number changes
ALLOW for ‘atoms of an element’:
Atoms of the same element
OR atoms with the same number of protons
OR atoms with the same atomic number
IGNORE ‘different relative atomic masses’
IGNORE different mass number
IGNORE same number of electrons
DO NOT ALLOW different numbers of electrons
DO NOT ALLOW ‘atoms of elements’ for ‘atoms of an element’
DO NOT ALLOW ‘an element with different numbers of neutrons’ (ie atom(s) is essential) |
| | (Oxidised): H (oxidation number has increased) from H = 0 to H = +1 ✔ | | **ALLOW** for ‘atoms of an element’:
Atoms of the same element
OR atoms with the same number of protons
OR atoms with the same atomic number
IGNORE ‘different relative atomic masses’
IGNORE different mass number
IGNORE same number of electrons
DO NOT ALLOW different numbers of electrons
DO NOT ALLOW ‘atoms of elements’ for ‘atoms of an element’
DO NOT ALLOW ‘an element with different numbers of neutrons’ (ie atom(s) is essential) |
| | (Reduced): W (oxidation number has decreased) from W = +6 to W = 0 ✔ | | **ALLOW** for ‘atoms of an element’:
Atoms of the same element
OR atoms with the same number of protons
OR atoms with the same atomic number
IGNORE ‘different relative atomic masses’
IGNORE different mass number
IGNORE same number of electrons
DO NOT ALLOW different numbers of electrons
DO NOT ALLOW ‘atoms of elements’ for ‘atoms of an element’
DO NOT ALLOW ‘an element with different numbers of neutrons’ (ie atom(s) is essential) |
| | WO₃ is reduced
IGNORE references to electron loss / gain if correct
DO NOT ALLOW incorrect references to electron loss / gain
DO NOT ALLOW ‘H oxidised and W reduced’ without reference to oxidation number changes
ALLOW for ‘atoms of an element’:
Atoms of the same element
OR atoms with the same number of protons
OR atoms with the same atomic number
IGNORE ‘different relative atomic masses’
IGNORE different mass number
IGNORE same number of electrons
DO NOT ALLOW different numbers of electrons
DO NOT ALLOW ‘atoms of elements’ for ‘atoms of an element’
DO NOT ALLOW ‘an element with different numbers of neutrons’ (ie atom(s) is essential) |
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
</table>
| 1 (b) (ii) | **FIRST CHECK THE ANSWER ON ANSWER LINE**
IF answer = 3.6(0) (dm³) award 3 marks | 3 | If there is an alternative answer, check to see if there is any ECF credit possible using working below
ALLOW calculator value or rounding to 2 significant figures or more BUT **IGNORE** ‘trailing’ zeroes, eg 0.200 allowed as 0.2 if wrong M, produces such numbers throughout.
IF answer = 1.2(0) dm³ award 2 marks (not multiplying by 3)
ALLOW use of inexact Mₐ (eg 232) – if it still gives 0.05
ALLOW amount of WO₃ x 3 correctly calculated for 2nd mark
ALLOW amount of H₂ x 24.0 correctly calculated for 3rd mark
ALLOW 1 mark for incorrect amount of WO₃ x 24.0 (not multiplied by 3 ie scores third mark only) |
<p>| | Amount of WO₃ = (11.59 / 231.8 =) 0.05(00) (mol) ✓ | | |
| | Amount of H₂ = 0.0500 x 3 = 0.15(0) (mol) ✓ | | |
| | Volume of H₂ = 0.150 x 24.0 = 3.6(0) (dm³) ✓ | | |
| Total | 8 | | |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (a)</td>
<td>A shared pair of electrons √</td>
<td>1</td>
<td>DO NOT ALLOW ‘shared electrons’</td>
</tr>
<tr>
<td>(b) (i)</td>
<td>Pairs of (electrons surrounding a central atom) repel √</td>
<td>2</td>
<td>ALLOW alternative phrases/words to repel eg ‘push apart’</td>
</tr>
<tr>
<td></td>
<td>The shape is determined by the number of bond pairs AND the number of lone pairs (of electrons) √</td>
<td></td>
<td>ALLOW lone pairs repel OR bond(ing) pairs repel</td>
</tr>
<tr>
<td></td>
<td>ALLOW ‘the number of bonding pairs and number of lone pairs decides the orientation of the surrounding atoms’</td>
<td></td>
<td>ALLOW ‘how many’ for ‘number of’</td>
</tr>
<tr>
<td></td>
<td>ALLOW the second mark for a response which has 2 of the following including at least one shape involving lone pairs (of electrons) BUT mark incorrect responses first</td>
<td></td>
<td>ALLOW the second mark for a response which has 2 of the following including at least one shape involving lone pairs (of electrons) BUT mark incorrect responses first</td>
</tr>
<tr>
<td></td>
<td>2 bonding pairs = linear</td>
<td></td>
<td>2 bonding pairs = linear</td>
</tr>
<tr>
<td></td>
<td>3 bonding pairs = trigonal planar</td>
<td></td>
<td>3 bonding pairs = trigonal planar</td>
</tr>
<tr>
<td></td>
<td>4 bonding pairs = tetrahedral</td>
<td></td>
<td>4 bonding pairs = tetrahedral</td>
</tr>
<tr>
<td></td>
<td>6 bonding pairs = hexagonal</td>
<td></td>
<td>6 bonding pairs = hexagonal</td>
</tr>
<tr>
<td></td>
<td>3 bonding pairs and 1 lone pair = pyramidal</td>
<td></td>
<td>3 bonding pairs and 1 lone pair = pyramidal</td>
</tr>
<tr>
<td></td>
<td>2 bonding pairs and 2 lone pairs = non-linear</td>
<td></td>
<td>2 bonding pairs and 2 lone pairs = non-linear</td>
</tr>
<tr>
<td></td>
<td>IGNORE ‘number of electron pairs decides shape of molecule’ as this is in the question</td>
<td></td>
<td>IGNORE ‘number of electron pairs decides shape of molecule’ as this is in the question</td>
</tr>
<tr>
<td>(ii)</td>
<td>O–B–O = 120° √</td>
<td>2</td>
<td>ALLOW 104–105°</td>
</tr>
<tr>
<td></td>
<td>B–O–H = 104.5° √</td>
<td></td>
<td>ALLOW 104–105°</td>
</tr>
<tr>
<td>(c)</td>
<td>SF₆ OR sulfur hexafluoride OR sulfur(VI) fluoride √</td>
<td>1</td>
<td>ALLOW XeF₄</td>
</tr>
<tr>
<td></td>
<td>DO NOT ALLOW SCl₆</td>
<td></td>
<td>DO NOT ALLOW stated complexes (simple molecule is asked for)</td>
</tr>
<tr>
<td></td>
<td>DO NOT ALLOW stated complexes (simple molecule is asked for)</td>
<td></td>
<td>DO NOT ALLOW stated complexes (simple molecule is asked for)</td>
</tr>
</tbody>
</table>

Total 6
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (a)</td>
<td>Energy (needed) to remove an electron ✓ from each atom in one mole ✓ of gaseous atoms ✓</td>
<td>3</td>
<td>ALLOW 'energy to remove one mole of electrons from one mole of gaseous atoms' for three marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IGNORE 'element'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ALLOW 'energy needed to remove an electron from one mole of gaseous atoms to form one mole of gaseous 1+ ions' for two marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For third mark:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ALLOW ECF if wrong particle is used in second marking point but is described as being gaseous eg 'molecule' instead of 'atom'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IGNORE equations</td>
</tr>
<tr>
<td>(b) (i)</td>
<td>O⁺(g) → O²⁺(g) + e⁻ ✓</td>
<td>1</td>
<td>ALLOW O⁺(g) – e⁻ → O²⁺(g)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ALLOW e for electron (ie charge omitted)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IGNORE states on the electron</td>
</tr>
<tr>
<td>(b) (ii)</td>
<td></td>
<td>2</td>
<td>IGNORE the 2p/2s true jump</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IGNORE line if seen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IGNORE 0, if included by candidate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IGNORE missing 1st IE point BUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DO NOT ALLOW first ionisation energy higher than second</td>
</tr>
<tr>
<td></td>
<td>All eight ionisation energies showing an increase ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The biggest increase between the sixth and seventh ionisation energy AND 8th ionisation energy is higher than 7th ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Place tick for second mark on the x-axis between 6 and 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
<td>Marks</td>
<td>Guidance</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>3 (c)</td>
<td></td>
<td>3</td>
<td>Use annotations ie ticks crosses ECF ^ etc for this part</td>
</tr>
</tbody>
</table>

Nuclear charge mark
O has (one) less proton(s)
OR
O has smaller nuclear charge
OR
F has (one) more proton(s)
OR
F has greater nuclear charge ✓

Atomic radius/shielding mark
(Outermost) electrons are in the same shell OR energy level
OR
(Outermost) electrons experience the same shielding
OR
Atomic radius of O is larger
OR
Atomic radius of F is smaller ✓

Nuclear attraction mark
Less nuclear attraction (on outermost electrons) in O
OR
(outer) electrons are attracted less strongly (to the nucleus) in O
OR
More nuclear attraction (on outermost electrons) in F
OR
(outer) electrons are attracted more strongly (to the nucleus) in F ✓

Comparison should be used for each mark.
Look for ORA from perspective of F throughout.
ALLOW all three marks applied to ‘as you go across the period’ BUT assume the response refers to ‘as you go across the period’ if not stated
ALLOW O has lower proton number BUT IGNORE O has lower atomic number
IGNORE O has a smaller nucleus
IGNORE ‘O has a smaller charge’ ie must be nuclear charge
IGNORE ‘O has smaller effective nuclear charge’

ALLOW sub-shell for shell but IGNORE orbitals
ALLOW shielding is similar
ALLOW outermost electrons of O are further
DO NOT ALLOW ‘distance is the same’ for second mark

ALLOW ‘less nuclear pull’ for ‘less nuclear attraction’
DO NOT ALLOW ‘less nuclear charge’ instead of ‘less nuclear attraction’ for the third mark
IGNORE ‘not pulled as close’ for ‘pulled less strongly’
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3(d)</td>
<td>$1s^2\ 2s^2\ 2p^4$ AND $1s^2\ 2s^2\ 2p^6$ ✔</td>
<td>2</td>
<td>ALLOW subscripts, capitals ALLOW oxidation number of oxygen has decreased ALLOW non metals form negative ions IGNORE oxygen has gained electrons (this is shown in the electron configurations)</td>
</tr>
<tr>
<td>(e)(i)</td>
<td>SO_3^{2-} ✔</td>
<td>2</td>
<td>ALLOW subscripts, capitals ALLOW oxidation number of oxygen has decreased ALLOW non metals form negative ions IGNORE oxygen has gained electrons (this is shown in the electron configurations)</td>
</tr>
<tr>
<td></td>
<td>ClO_2^- ✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii)</td>
<td>$\text{Al(NO}_3)_3$ ✔</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(iii)</td>
<td>Aluminium oxide OR aluminium hydroxide ✔</td>
<td>2</td>
<td>IGNORE correct formula (ie Al$_2$O$_3$ or Al(OH)$_3$) DO NOT ALLOW correct name with incorrect formula IGNORE correct name (ie nitric acid or nitric(V) acid) DO NOT ALLOW correct formula with incorrect name ALLOW one mark for Al$_2$O$_3$ or Al(OH)$_3$ AND nitric acid or nitric(V) acid (ie name answer and formulae answer has been transposed)</td>
</tr>
<tr>
<td>HNO$_3$ ✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
<td>Marks</td>
<td>Guidance</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 4 (a) | ![Diagram](image) | 3 | Diagram showing a regular arrangement of **labelled `Ba^{2+}` ions or `2+ ions`** and some attempt to show electrons ✓

Scattering of labelled electrons between other species **AND** statement anywhere of **delocalised** electrons (can be in text or in diagram) ✓

The attraction between (positive) ions and (delocalised) electrons is strong ✓

Regular arrangement must have at least two rows of correctly charged ions and a minimum of two ions per row

ALLOW as label: positive ions, cations if correct charge is seen within circle
ALLOW for labelled Ba$^{2+}$ ions: circles with Ba$^{2+}$ inside
DO NOT ALLOW incorrect charge for ions eg +, 3+ etc
DO NOT ALLOW for label of ions: nuclei OR positive atom OR protons
ALLOW e⁻ or 'e' or – as symbol for electron within the lattice for first marking point if not labelled as 'electrons'.

ALLOW mobile or 'sea of' for delocalised

Quality of written communication: 'electron(s)' spelled correctly and used in context for the third marking point
ALLOW a lot of energy is needed to break OR overcome the attraction between (positive) ions and (delocalised) electrons
IGNORE 'heat' but **ALLOW** 'heat energy'
DO NOT ALLOW references to incorrect particles or incorrect attractions eg 'intermolecular attraction' OR 'nuclear attraction'

IGNORE 'strong metallic bonds' without seeing correct description of metallic bonding
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (b) (i)</td>
<td>Ba(s) + 2H₂O(l) → Ba(OH)₂(aq) + H₂(g)</td>
<td>2</td>
<td>ALLOW multiples</td>
</tr>
<tr>
<td></td>
<td>Ba(OH)₂ as product ✓ Rest of equation + state symbols ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii)</td>
<td>Any value or the range 7 < pH ≤ 14 ✓</td>
<td>1</td>
<td>DO NOT ALLOW if pH 7 is in a quoted range</td>
</tr>
</tbody>
</table>
| (iii) | OH⁻ OR HO⁻ ✓ | 1 | DO NOT ALLOW Ba²⁺
| | DO NOT ALLOW any reference to electrons | | |
| (c) | Magnesium hydroxide OR magnesium oxide ✓ | 1 | ALLOW magnesium carbonate
| | ALLOW correct formulae: Mg(OH)₂, MgO, MgCO₃
| | IGNORE 'milk of magnesia' | | |
| (d) (i) | Effervescence OR fizzing OR bubbling OR gas produced AND | 2 | DO NOT ALLOW 'carbon dioxide produced' without 'gas'
| | Strontium carbonate OR solid dissolves OR disappears OR a colourless solution is formed ✓ | | DO NOT ALLOW 'hydrogen gas produced' OR any other named gas
| | SrCO₃ + 2HCl → SrCl₂ + H₂O + CO₂ ✓ | | ALLOW 'it' for strontium carbonate
| | ALLOW strontium for strontium carbonate if SrCO₃ seen in equation | | IGNORE 'reacts'
| | IGNORE references to temperature change | | IGNORE 'steam produced'
<p>| | IGNORE state symbols | | |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (d) (ii)</td>
<td></td>
<td>2</td>
<td>For first mark, if eight electrons are shown in the cation then the ‘extra’ electron in the anion must match symbol chosen for electrons in the cation. IGNORE inner shell electrons. Circles not essential. ALLOW One mark if both electron arrangement and charges are correct but only one Cl is drawn. ALLOW 2[Cl(^-)](^-) 2[Cl(^-)](^-) [Cl(^-)](^-) (brackets not required). DO NOT ALLOW [Cl(_2)](^-) [Cl(_2)](^-) [2Cl(^-)](^-) [Cl(^-)](^-).</td>
</tr>
<tr>
<td>(e) (i)</td>
<td>The mixture would turn orange</td>
<td>1</td>
<td>ALLOW shades and colours containing (eg dark orange, yellow-orange). ALLOW the following: yellow, yellow-brown, brown, brown-red BUT DO NOT ALLOW red alone. IGNORE initial colours. DO NOT ALLOW any response that includes ‘precipitate’ OR solid.</td>
</tr>
<tr>
<td>(ii)</td>
<td>Cl(_2) + 2Br(^-) → Br(_2) + 2Cl(^-)</td>
<td>1</td>
<td>ALLOW multiples. IGNORE state symbols.</td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
<td>Marks</td>
<td>Guidance</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>4</td>
<td>e (iii)</td>
<td>4</td>
<td>Use annotations ie ticks crosses ECF ^ etc for this part
Look for ORA from perspective of Br throughout.
ALLOW all four marks applied to ‘as you go up OR as you down the group’
ALLOW C/ for chlorine AND Br for bromine
ALLOW ORA
DO NOT ALLOW the use of ‘ide’ BUT
ALLOW use of ‘ide’ as an ECF
ALLOW chlorine is better at electron capture
ALLOW chlorine has greater electron affinity
IGNORE chlorine is more electronegative
IGNORE chlorine has more oxidising power than bromine
ALLOW explanations given in terms of displacement
ALLOW chlorine has fewer shells
ALLOW the electron is added to the (outer) shell closer to the nucleus
IGNORE ‘easily’ for ‘greater’ or for ‘stronger’
ALLOW ‘chlorine has greater nuclear attraction (on its outermost electrons)’
OR
‘(the outermost) electrons in chlorine are more attracted (to the nucleus)’</td>
</tr>
</tbody>
</table>

The electron GAIN mark
Chlorine will form a negative ion more easily than bromine OR
Chlorine will gain an electron more easily than bromine ✓

Atomic size mark
(An atom of) chlorine is smaller (than bromine) ✓

Shielding mark
(Outermost shell of) chlorine is less shielded (than bromine) ✓

Stronger nuclear attraction mark
Nuclear attraction (on the electron to be gained) by chlorine is greater (than bromine) OR
the electron (to be gained) is attracted more strongly (to the nucleus) in chlorine ✓

Total 18
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (a)</td>
<td></td>
<td>4</td>
<td>Use annotations ie ticks crosses ECF ^ etc for this part</td>
</tr>
</tbody>
</table>

F₂ forces mark
- F₂ has van der Waals’ (forces)
- OR
- F₂ has induced dipole attractions OR interactions
- OR
- F₂ has temporary OR instantaneous dipole(–dipole) attraction OR interactions ✓

HCl forces mark
- HCl has permanent dipole(–dipole) attractions OR interactions ✓

Comparison of strength of forces between molecules mark
- intermolecular force in HCl is stronger than that in F₂
- OR
- permanent dipoles are stronger (than induced dipoles) ✓

Boiling point mark
- more energy is required to break stronger (intermolecular) forces ✓

Guidance

- ALLOW vdWs for van der Waals’
- IGNORE F₂ has covalent bond for this mark
- IGNORE F₂ has ‘intermolecular forces’

Quality of written communication: ‘dipole(s)’ spelled correctly and used in context for the second marking point
- IGNORE HCl has ‘intermolecular forces’
- IGNORE van der Waals’ forces in HCl
- DO NOT ALLOW hydrogen bonding
- DO NOT ALLOW ionic bonding

Look for strength of force comparison anywhere in the answer
- ALLOW ECF for hydrogen bonding in HCl being stronger than the stated intermolecular forces in F₂
- BUT DO NOT ALLOW this mark if HCl or F₂ has covalent bonds broken OR if HCl has ionic bonds broken (the question asks for forces between molecules)
- IGNORE HCl has stronger van der Waals’ (forces) than F₂ (as they both have the same number of electrons)

DO NOT ALLOW fourth mark if covalent bonds are broken in HCl or F₂ OR if ionic bonds are broken in HCl
- IGNORE ‘heat’ but ALLOW ‘heat energy’
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
</table>
| 5 (b) (i) | ![Diagram](image) | 2 | Must be ‘dot-and-cross’
| | | | Must be H₂O for either mark
| | | | Circles for shells not needed
| | | | IGNORE inner shells
| | | | IGNORE lack of positive charge and square brackets
| | | | DO NOT ALLOW second marking point if negative charge is shown on the ion
| | | | Non-bonding electrons do not have to be seen as a pair
| | | | ALLOW second mark for one non-bonding pair of electrons and three dot-and-cross bonding pairs of electrons

Two *dot-and-cross* bonding pairs of electrons and one dative covalent bond pair of electrons consisting of either two dots or two crosses

One non-bonding pair of electrons

AND

which match the dative covalent bond pair of electrons
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (c) (i)</td>
<td>FIRST CHECK THE ANSWER ON ANSWER LINE IF answer = 7.624 OR 7.62 (g) award 3 marks</td>
<td>3</td>
<td>If there is an alternative answer, check to see if there is any ECF credit possible using working below</td>
</tr>
<tr>
<td></td>
<td>Molar mass of borax = 381.2 (g mol(^{-1})) ✓</td>
<td></td>
<td>ALLOW 381 DO NOT ALLOW 380</td>
</tr>
<tr>
<td></td>
<td>Correctly calculates the mass of borax in 1000 cm(^3) = 0.0800 x 381.2 = 30.496 g OR 30.50 g OR 30.5g ✓</td>
<td></td>
<td>ALLOW 0.0800 x [molar mass of borax] correctly calculated for 2nd mark (ie mass of borax in 1000 cm(^3))</td>
</tr>
<tr>
<td></td>
<td>Correctly calculates the mass of borax in 250 cm(^3) = 30.496/4 = 7.624 g OR 7.62 g ✓</td>
<td></td>
<td>ALLOW [mass of borax in 1000 cm(^3)] / 4 correctly calculated for 3rd mark</td>
</tr>
<tr>
<td></td>
<td>OR Molar mass of borax = 381.2 (g mol(^{-1})) ✓</td>
<td></td>
<td>ALLOW calculator value or rounding to three significant figures or more</td>
</tr>
<tr>
<td></td>
<td>Amount of borax in 250 cm(^3) of solution = 0.0800 x 250 /1000 = 0.02(00) mol ✓</td>
<td></td>
<td>IGNORE (if seen) a second rounding error</td>
</tr>
<tr>
<td></td>
<td>Mass of borax = 0.02(00) x 381.2 of borax = 7.624 g OR 7.62 g ✓</td>
<td></td>
<td>ALLOW 381 DO NOT ALLOW 380</td>
</tr>
<tr>
<td></td>
<td>OR [incorrect amount of borax] x 381.2 OR [incorrect amount of borax] x [incorrect molar mass of borax] OR 0.02(00) x [incorrect molar mass of borax] correctly calculated for this mark</td>
<td></td>
<td>ALLOW [incorrect amount of borax] x 381.2</td>
</tr>
<tr>
<td></td>
<td>ALLOW calculator value or rounding to three significant figures or more</td>
<td></td>
<td>ALLOW calculator value or rounding to three significant figures or more</td>
</tr>
<tr>
<td></td>
<td>IGNORE (if seen) a second rounding error</td>
<td></td>
<td>IGNORE (if seen) a second rounding error</td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
<td>Marks</td>
<td>Guidance</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>5 (d)</td>
<td>(i) Correctly calculates the amount of borax used = 0.0800 x 22.5/1000
 = 1.8(0) x 10(^{-3}) mol OR 0.0018(0) mol ✓</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(ii) Correctly calculates the amount of HCl used = 1.8(0) x 10(^{-3}) x 2 mol
 = 3.6(0) x 10(^{-3}) mol OR 0.0036(0) mol ✓</td>
<td>1</td>
<td>ALLOW [incorrect amount of borax] x 2 correctly calculated for the 2nd mark. ALLOW calculator value or rounding to 3 significant figures or more BUT IGNORE ‘trailing’ zeroes, eg 0.200 allowed as 0.2</td>
<td></td>
</tr>
<tr>
<td>(iii) Correctly calculates the concentration of HCl
 = 3.6(0) x 10(^{-3}) / (25 / 1000) = 0.144 (mol dm(^{-3})) ✓</td>
<td>1</td>
<td>ALLOW [incorrect amount of HCl] / (25/1000) correctly calculated for the 3rd mark given to 3 SF</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>12</td>
</tr>
</tbody>
</table>
OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning
Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored