Tuesday 11 June 2013 – Morning

GCSE MATHEMATICS B

J567/03 Paper 3 (Higher Tier)

Candidates answer on the Question Paper.

OCR supplied materials:
None

Other materials required:
• Geometrical instruments
• Tracing paper (optional)

Duration: 1 hour 45 minutes

INSTRUCTIONS TO CANDIDATES

• Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
• Use black ink. HB pencil may be used for graphs and diagrams only.
• Answer all the questions.
• Read each question carefully. Make sure you know what you have to do before starting your answer.
• Your answers should be supported with appropriate working. Marks may be given for a correct method even if the answer is incorrect.
• Write your answer to each question in the space provided. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
• Do not write in the bar codes.

INFORMATION FOR CANDIDATES

• The number of marks is given in brackets [] at the end of each question or part question.
• Your Quality of Written Communication is assessed in questions marked with an asterisk (*).
• The total number of marks for this paper is 100.
• This document consists of 24 pages. Any blank pages are indicated.
Area of trapezium
\[
\text{Area of trapezium} = \frac{1}{2} (a + b)h
\]

Volume of prism
\[
\text{Volume of prism} = \text{(area of cross-section)} \times \text{length}
\]

In any triangle ABC

Sine rule
\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
\]

Cosine rule
\[
a^2 = b^2 + c^2 - 2bc \cos A
\]

Area of triangle
\[
\text{Area of triangle} = \frac{1}{2} \text{absin } C
\]

Volume of sphere
\[
\text{Volume of sphere} = \frac{4}{3} \pi r^3
\]

Surface area of sphere
\[
\text{Surface area of sphere} = 4\pi r^2
\]

Volume of cone
\[
\text{Volume of cone} = \frac{1}{3} \pi r^2h
\]

Curved surface area of cone
\[
\text{Curved surface area of cone} = \pi rl
\]

The Quadratic Equation
The solutions of $ax^2 + bx + c = 0$, where $a \neq 0$, are given by
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
The table shows the number of games won and the number of goals scored by 12 teams in one season in a football league.

<table>
<thead>
<tr>
<th>Games won</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>13</th>
<th>13</th>
<th>13</th>
<th>15</th>
<th>17</th>
<th>25</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goals scored</td>
<td>31</td>
<td>36</td>
<td>29</td>
<td>36</td>
<td>57</td>
<td>35</td>
<td>39</td>
<td>52</td>
<td>58</td>
<td>55</td>
<td>75</td>
<td>82</td>
</tr>
</tbody>
</table>

The information for the first eight teams is plotted on the scatter graph.

(a) Complete the scatter graph. [2]

(b) (i) Draw a line of best fit. [1]

(ii) Use your line of best fit to estimate the number of goals scored by a team that won 20 games in the season.

(b)(ii)_____________________________ [1]
2 (a) Work out the value of $x^2 - 3x$ when

(i) $x = 5,$

(a)(i) __________________________ [1]

(ii) $x = -4.$

(ii) __________________________ [2]

(b) Multiply out.

$y(y + 5)$

(b) __________________________ [1]

(c) Factorise fully.

$4p^2 - 8p$

(c) __________________________ [2]
3 The scale diagram shows the positions of two towns, A and B.

Scale: 1 cm represents 2 km

A new business park is to be built near to these towns.

The business park will be:

- closer to town A than town B
- no more than 14 km from town B.

Construct and shade the region where the business park could be built. Leave in all your construction lines.
4 (a) On weekdays it costs £6.50 per hour to hire a tennis court at Meadway Tennis Club. On Saturdays the cost is 30% more.

How much does it cost to hire a court for 2 hours on a Saturday?

(a) £ _____________________________ [3]

(b) At a junior coaching session the ratio of boys to girls is 3 : 5. There are 40 children at the coaching session.

Work out the number of boys and the number of girls at the coaching session.

(b) ___________ boys ___________ girls [2]
(c) Rosie is doing a survey of the members of Meadway Tennis Club.

(i) Rosie wants to find out how often the members visit the club in a month.

Write a suitable question she could ask with response boxes.

(ii) Rosie does her survey one Friday morning at the tennis club.

Explain why this will not give a random sample of the members.

(iii) Describe how Rosie could select a random sample of the members.

[2]
Catalin works in an office. One week he divides his time between these tasks:

- \(\frac{1}{4}\) of his time in meetings
- \(\frac{5}{8}\) of his time writing reports
- the rest of his time doing the accounts.

He spends a total of 6 hours doing the accounts.

Find the total number of hours he works in the week.
6 (a) Draw the graph of $2y + 3x = 9$ on the grid below.

(b) The line L is a reflection of the line $2y + 3x = 9$ in the y-axis.

Find the gradient of the line L.

(b) ______________________________ [3]
7 This solid is made from six one-centimetre cubes.

(a) On the grids below, draw the plan view and the front view of the solid.

(b) The volume of the solid is 6 cubic centimetres.

Write this volume in cubic millimetres.

(b) ________________________ mm3 [1]
(c) The solid is placed on a set of axes as shown.

The coordinates of point A are (0, 0, 0).
The coordinates of point B are (3, 0, 1).

(i) Which point has coordinates (1, 2, 1)?

(c)(i) _________________________ [1]

(ii) Write down the coordinates of point F.

(ii)(_______, ________, ________) [1]

(iii) The solid is moved so that the new coordinates of point A are (0, 1, 1) and the new coordinates of point B are (3, 1, 2).

Find the new coordinates of point F.

(iii)(_______, ________, ________) [1]
8 (a) Solve.

\[4(3x + 5) = 28 \]

(a) \(x = \) _____________________________ [3]

(b) Write down all the integers that satisfy this inequality.

\[-3 \leq x < 2 \]

__ [2]

(c) Solve this inequality.

\[2x - 7 < 9 \]

(c) ______________________________ [2]

(d) Rearrange the formula \(A = 2\pi r^2 \) to make \(r \) the subject.

(d) ______________________________ [2]
9 (a) Work out.

\[
3 \frac{3}{4} \times 1 \frac{1}{5}
\]

Give your answer as a mixed number in its lowest terms.

(a) ________________________ [3]

(b) Express \(\frac{1}{6} \) as a decimal.

(b) ________________________ [1]

(c) Express 0.5\& as a fraction.

(c) ________________________ [2]
Here are the first three matchstick patterns in a sequence.

Find an expression, in terms of \(n \), for the number of matchsticks in pattern \(n \). Show clearly how you get your answer.
11 The table below shows the areas of some countries.

<table>
<thead>
<tr>
<th>Country</th>
<th>Area (square kilometres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>9.33×10^6</td>
</tr>
<tr>
<td>India</td>
<td>2.97×10^6</td>
</tr>
<tr>
<td>Mongolia</td>
<td>1.55×10^6</td>
</tr>
<tr>
<td>Tunisia</td>
<td>1.55×10^5</td>
</tr>
<tr>
<td>Turkey</td>
<td>7.70×10^5</td>
</tr>
</tbody>
</table>

(a) The area of Brazil is 8459417 square kilometres.

Complete the table to show the area of Brazil.
Give the area in standard form, correct to three significant figures. [1]

(b) Complete the following sentences.

The area of ____________________ is about twice the area of Turkey.

The area of China is about three times the area of ____________________. [2]

(c) The population of India in 2011 was approximately 1.19×10^9.

Estimate the population density of India in people per square kilometre.

(c) ____________________ people/km2 [2]
Carlos travels to work and back home each day by bus. The probability that the bus is late on the way to work is 0.2. The probability that the bus is late on the way home is 0.4. These events are independent.

(a) Complete the tree diagram to represent this information.

(b) Calculate the probability that on one particular day only one of the buses that Carlos travels on is late.
13 Triangle A is drawn on the grid below.

(a) Enlarge triangle A with scale factor $\frac{1}{2}$ and centre of enlargement (-4, 6). Label the image B.

(b) Describe fully the single transformation that is equivalent to a reflection in $y = -1$ followed by a reflection in the y-axis.

You may use the grid to help you.
This table summarises the ages of the members of the audience at a cinema one Saturday afternoon.

<table>
<thead>
<tr>
<th>Age (a years)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>$15 \leq a < 20$</td>
<td>25</td>
</tr>
<tr>
<td>$20 \leq a < 30$</td>
<td>32</td>
</tr>
<tr>
<td>$30 \leq a < 40$</td>
<td>16</td>
</tr>
<tr>
<td>$40 \leq a < 60$</td>
<td>15</td>
</tr>
<tr>
<td>$60 \leq a < 90$</td>
<td>12</td>
</tr>
</tbody>
</table>

(a) Draw a histogram to represent this distribution.
(b) The histogram below represents the distribution of the ages of the members of the audience at the cinema on Saturday evening.

Make two comparisons between the distributions for the afternoon and the evening.

1. ___

2. ___
 ___ [2]
A, B, C and D are points on a circle.
The lines AC and BD intersect at X.
Angle ABD = 48° and angle CXD = 110°.
AXD is an isosceles triangle.

(a) Show that angle CDX = 22°.
Give a reason for each step of your working.

__ [2]

(b) Prove that triangles ABD and DCA are congruent.

[3]
16 Write \(x^2 + 10x + 9 \) in the form \((x + a)^2 + b \).
17 The cost, £\(C\), of building a circular pond is proportional to the square of its diameter, \(d\) metres. A pond with diameter 2 metres costs £52.

Find the formula for \(C\) in terms of \(d\).
18 (a) Write \(\frac{\sqrt{2}}{\sqrt{18}} \) in its simplest form.

(b) Simplify.

\[
\frac{4x^2 - 9}{2x^2 - 3x}
\]

(a) ________________________ [2]

(b) ________________________ [3]

TURN OVER FOR QUESTION 19
19* A sphere and a cylinder have equal volumes.
The sphere has radius $3r$.
The cylinder has radius $2r$ and height h.

Find h in terms of r.