INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Your answers should be supported with appropriate working. Marks may be given for a correct method even if the answer is incorrect.
- Write your answer to each question in the space provided. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the bar codes.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [ ] at the end of each question or part question.
- Use the π button on your calculator or take π to be 3.142 unless the question says otherwise.
- Your quality of written communication is assessed in questions marked with an asterisk (*).
- The total number of marks for this paper is 100.
- This document consists of 24 pages. Any blank pages are indicated.
Formulae Sheet: Higher Tier

Area of trapezium = \( \frac{1}{2} (a + b)h \)

Volume of prism = (area of cross-section) × length

In any triangle \( ABC \)

Sine rule \( \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \)

Cosine rule \( a^2 = b^2 + c^2 - 2bc \cos A \)

Area of triangle = \( \frac{1}{2} ab \sin C \)

Volume of sphere = \( \frac{4}{3} \pi r^3 \)

Surface area of sphere = \( 4\pi r^2 \)

Volume of cone = \( \frac{1}{3} \pi r^2 h \)

Curved surface area of cone = \( \pi rl \)

The Quadratic Equation

The solutions of \( ax^2 + bx + c = 0, \) where \( a \neq 0, \) are given by

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
Answer all the questions.

1 (a) Calculate.

\[
\frac{6.3^2 - 3.7}{5.8}
\]

Write your answer correct to 2 decimal places.

(a) ____________________________ [2]

(b) Calculate.

\[
\sqrt{4.5 \times 6.7 + 1.8 \times 2.4}
\]

Write your answer correct to 2 significant figures.

(b) ____________________________ [2]

2 Samuel has six types of coin in a bag. The table shows the probability of each type of coin being picked.

<table>
<thead>
<tr>
<th>Coin</th>
<th>1p</th>
<th>2p</th>
<th>5p</th>
<th>10p</th>
<th>20p</th>
<th>50p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.07</td>
<td>0.23</td>
<td>0.18</td>
<td>0.28</td>
<td>0.19</td>
<td>x</td>
</tr>
</tbody>
</table>

(a) Work out x.

(a) ____________________________ [2]

(b) Samuel picks one coin out of the bag at random.

Work out the probability that he picks a coin worth 5p or less.

(b) ____________________________ [2]
A train travels from Kelford to Brightwood. The graph shows the first ten minutes of the train's journey.

The two stations are 70 kilometres apart. The train is due to arrive at Brightwood at 10:00 am.

Will it arrive on time if it continues to travel at the same speed? Show clearly how you decide.
4 (a) Here are the first four terms of a sequence.

\[ 7 \quad 12 \quad 17 \quad 22 \]

Write an expression for the \( n \)th term of this sequence.

(a) ______________________________ [2]

(b) The \( n \)th term of another sequence is given by the expression \( 100 - 8n \).

Write down the first three terms of this sequence.

(b) _______ , _______ , _______ [2]

5 Solve.

\[ 6(2x - 3) = 24 \]

\[ x = \______________________________ \] [3]
The Bilberry Telephone Company records the lengths of telephone calls in one day. The information is summarised in the frequency polygon below.

(i) Estimate how many calls lasted less than 20 minutes.

(a)(i) ______________________ thousand [2]

(ii) Write down the modal class.

(ii) _________________________ minutes [1]
(b) The lengths of Desmond's telephone calls, in minutes, are summarised in the table below.

<table>
<thead>
<tr>
<th>Length of call (t minutes)</th>
<th>Number of calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 &lt; t ≤ 10</td>
<td>0</td>
</tr>
<tr>
<td>10 &lt; t ≤ 20</td>
<td>3</td>
</tr>
<tr>
<td>20 &lt; t ≤ 30</td>
<td>3</td>
</tr>
<tr>
<td>30 &lt; t ≤ 40</td>
<td>6</td>
</tr>
<tr>
<td>40 &lt; t ≤ 50</td>
<td>8</td>
</tr>
<tr>
<td>50 &lt; t ≤ 60</td>
<td>5</td>
</tr>
</tbody>
</table>

Calculate an estimate of the mean length of Desmond's calls.

(b) ______________________ minutes [4]

(c) The table below summarises the lengths, in minutes, of Harriet's calls in November and December.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>November</td>
<td>34.2</td>
<td>67.4</td>
</tr>
<tr>
<td>December</td>
<td>39.7</td>
<td>43.8</td>
</tr>
</tbody>
</table>

(i) In which month were Harriet's calls longer on average? Explain how you decide.

_____________________________________________________________________

_____________________________________________________________________

[1]

(ii) In which month were the lengths of Harriet's calls more spread out? Explain how you decide.

_____________________________________________________________________

_____________________________________________________________________

[1]
A tower is in the shape of a cuboid with a pyramid on top. The base of the tower is a square of side 8 m and it has a total height of 18 m.

On the grids below draw accurately the plan and the front elevation of the tower. Use a scale of 1 cm to 2 m.
(a) Riverside Tennis Club has 24 members. They have four types of membership.

<table>
<thead>
<tr>
<th>SM</th>
<th>Senior Male</th>
<th>JM</th>
<th>Junior Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF</td>
<td>Senior Female</td>
<td>JF</td>
<td>Junior Female</td>
</tr>
</tbody>
</table>

The membership information is recorded below.

<table>
<thead>
<tr>
<th>SM</th>
<th>JM</th>
<th>SM</th>
<th>JM</th>
<th>SF</th>
<th>JM</th>
<th>SM</th>
<th>JF</th>
</tr>
</thead>
<tbody>
<tr>
<td>JM</td>
<td>SF</td>
<td>JF</td>
<td>SM</td>
<td>SM</td>
<td>JF</td>
<td>SF</td>
<td>SM</td>
</tr>
<tr>
<td>SF</td>
<td>SM</td>
<td>JM</td>
<td>JM</td>
<td>JF</td>
<td>SM</td>
<td>JM</td>
<td>SF</td>
</tr>
</tbody>
</table>

(i) On the grid below, design and draw a two-way table to show this information.

(ii) One member is selected at random. Write down the probability that the member is a Junior.

(a)(ii) ________________________ [1]

(b) In 2011, Greenmeadows Tennis Club had 25 members and in 2012 it had 31 members. Calculate the percentage increase in the number of members.

(b) ________________________% [3]
The diagram shows a coastline, CL.
A and B are two rocks in the sea.

Scale: 1 cm represents 500 m

Rosie is sailing her boat.
She sails on a course towards the coast so that she is an equal distance from the rocks, A and B.

When she is less than 1 km from the coast she turns and sails due West.
She now sails so that she is between 500 m and 1 km from the coast.

Construct a route that Rosie could take.
You must leave in all your construction lines.

[4]
10 Gwen is taking her class of 28 pupils to a pantomime. The total cost of the trip is £575.

Use estimation to find an approximate cost of this trip for each pupil. Show your working clearly.

\[
\frac{\text{Total cost}}{\text{Number of pupils}} = \text{Cost per pupil} [2]
\]

11 Here are six equations of straight lines, each labelled with a letter.

A \hspace{1cm} B \hspace{1cm} C
\[
\begin{align*}
A & : \ y = 4x - 7 \\
B & : \ y = 3x + 14 \\
C & : \ y = 2x + 5 \\
\end{align*}
\]

D \hspace{1cm} E \hspace{1cm} F
\[
\begin{align*}
D & : \ y = -3x + 1 \\
E & : \ y = 14x - 7 \\
F & : \ y = 4x + 3 \\
\end{align*}
\]

Choose the correct letters to make each statement true.

Line ______ is the steepest line.

Lines ______ and _______ are parallel.

Lines _______ and ______ meet on the y-axis. [3]
In Westercote, house prices rose by 6% from 2010 to 2011.

(a) On 1 January 2010 a house was priced at £180 000.

Calculate its price on 1 January 2011.

(b) On 1 January 2011 another house was priced at £371 000.

Calculate its price on 1 January 2010.
13  (a) Multiply out and simplify.

\[(x + 7)(x - 3)\]

(a) \[\] [2]

(b) Factorise fully.

\[6xy - 12x^2\]

(b) \[\] [2]

(c) Rearrange this formula to make \(x\) the subject.

\[A = x^2 - 4y\]

(c) \[\] [2]

(d) \(y\) is inversely proportional to \(x\) and \(y = 30\) when \(x = 4\).

Write an equation linking \(x\) and \(y\).

(d) \[\] [3]
14 In the diagram B, C, D and E are points on the circumference of a circle.
AT is the tangent to the circle at B.
Angle BCE = 48° and angle BEC = 54°.

(a) Find angle a.
Give a reason for your answer.

(a) Angle a = _____________°
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________ [2]

(b) Calculate angle b.
Give a reason for each step of your working.

(b) Angle b = ____________° [3]
A town has a population of 120,000, correct to the nearest ten thousand, and an area of 54 km², correct to the nearest whole number.

(a) Write down the upper bound of the population.

\[
\text{(a) } \underline{120\,000} \quad [1]
\]

(b) Calculate the upper bound of the population density.

\[
\text{(b) } \underline{0.0222} \, \text{people/km}^2 \quad [3]
\]
16 (a) The diagram shows a triangle ABC. AB = 14.7 cm, BC = 11.5 cm and AC = 19.4 cm.

(i) Show that triangle ABC is not a right-angled triangle. [3]

(ii) Calculate angle x.

(a)(ii) ____________________ ° [3]
(b) Calculate the area of this triangle.

Not to scale

(b) \[ \text{cm}^2 \] [2]
A teacher records the times taken for pupils to complete a cross-country course. The results are summarised in the table below.

<table>
<thead>
<tr>
<th>Time ($t$ minutes)</th>
<th>Number of pupils</th>
</tr>
</thead>
<tbody>
<tr>
<td>$40 &lt; t \leq 50$</td>
<td>8</td>
</tr>
<tr>
<td>$50 &lt; t \leq 60$</td>
<td>15</td>
</tr>
<tr>
<td>$60 &lt; t \leq 80$</td>
<td>6</td>
</tr>
<tr>
<td>$80 &lt; t \leq 120$</td>
<td>4</td>
</tr>
</tbody>
</table>

Draw a histogram on the grid below to show this data.
18  (a) Solve algebraically.

\[ 5x - 2y = 22 \]
\[ 2x + 3y = 5 \]

(a) \( x = \) ______________________________ \\
\( y = \) ______________________________ [4]

(b) (i) Write \( x^2 - 6x + 4 \) in the form \( (x + a)^2 + b \).

(b)(i) ______________________________ [3]

(ii) Using your answer to (b)(i), or otherwise, solve \( x^2 - 6x + 4 = 0 \). Write your answers correct to 1 decimal place.

(ii) \( x = \) ______________ or \( x = \) ______________ [2]
On Finch Island there are bullfinches and chaffinches.
In the spring of 2013:

- the population of bullfinches was 6700 and was **decreasing** by 3% each year
- the population of chaffinches was 4800 and was **increasing** by 4% each year.

In the spring of which year will the population of chaffinches first be greater than that of the bullfinches?
Show your working clearly.
20* Assume that the Earth is a sphere with radius 6371 km. The land area on the surface of the Earth is 148,940,000 km$^2$.

Use this information to show that the ratio of land area to water area is approximately 3 : 7. [5]