

CAMBRIDGE TECHNICALS IN ENGINEERING

LEVEL 3 UNIT 2 - Science for Engineering

RESOURCES LINK

March 2015

Introduction

Resources Link is an e-resource, provided by OCR, for teachers of OCR qualifications. It provides descriptions of, and links to, a variety of independent teaching and learning resources that you may find helpful.

In Resources Link you will find details of independent resources, many of which are free: where this is the case this has been indicated.

If you know of other resources you would like to see included here, or discover broken links, please let us know. We would also like to hear from you if have any feedback about your use of these, or other, OCR resources. Please contact us at <u>resourcesfeedback@ocr.org.uk</u>.

We leave it to you, as a professional educator, to decide if any of these resources are right for you and your learners, and how best to use them.

Contents

Measurement units – SI Units	5
Accuracy, precision and Bias	6
Why calibrate an instrument?	7
Errors in Measurement	8
Standard Deviation	9
Standard Error	10
Beginners Guide to Measurement in Mechanical Engineering	11
Beginners Guide to Measurement in Electronic and Electrical Engineering	12
Introduction to the Language of Kinematics	13
The Kinematics Equations	14
One-dimensional motion	15
Weight, mass and gravity	16
Torque, Moments and Centre of Mass	17
Force, work energy and power	18
Conventional versus electron flow	19
Electric potential difference	20
How voltage, current and resistance relate	21
Resistors in Series and Parallel	22
Energy and Power	23

Resistance and Resistivity	24
Resistance variation with temperature	25
Electric field and capacitors	26
Energy of a charged capacitor	27
Inductors and inductance – energy in an inductor	28
Elastic behaviour of solids	29
Deformation of metal solids – atomic attraction and repulsion	30
Molecular separation (equilibrium)	31
Elastic and plastic deformation	32
Properties of materials	33
Malleability	34
Drift velocity and current	35
Stress and Strain	36
Hooke's Law	37
Stress strain, Young's Modulus and Hooke's Law	38
British Institute of Non-destructive Testing (BINDT)	39
Pressure is Force per unit Area	40
Fluid Statics – pressure in fluids	41
Gauge Pressure and Absolute Pressure	42

Resources Link

Contents

Archimedes' Principle	43
Archimedes' Principle	44
Laminar and Turbulent Flow	45
Laminar and Turbulent Flow – Ideal and Real Fluids	46
What is viscosity?	47
Dynamic (absolute) and Kinematic Viscosity	48
Internal energy	49
Absolute temperature and the Kelvin scale	50
Boyles' Law	51
Charles' Law	52
Pressure Law	53
Combined Gas Law	54
Characteristic (Ideal) Gas Equation	55
Heat energy (including heat capacity and specific heat capacity)	56
Sensible Heat	57
Efficiency	58
Latent Heat	59
First and Second Law of Thermodynamics	60
Heat of your hand Stirling Engine	61

Resources Link

4

Measurement units – SI Units

Description:

National Physical Laboratory (NPL) definition of the seven base SI units. Also defines SI derived quantities. Includes links explaining each of the units in detail – including videos.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Web page

5

Accuracy, precision and Bias

http://www.mathsisfun.com/accuracy-precision.html

Description:

Explanation of the terms accuracy, precision and bias with examples.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost: Free

Format: Web page

Resources Link

Why calibrate an instrument?

Why Calibrate an Instrument? Edword Simpson posted on July 31, 2013 | Comment | 15613 views in LinkedIn - More g^+ Google+ Facebook 🕤 Twitter Calibrating an instrument involves instruments; one with a known

comparing the measurements of two magnitude or correctness (standard device), against which you measure the unit under test.

Calibration has been defined by the International Bureau of Weights and

Measures as an "Operation that, under specified conditions, in the first step, establishes a

http://www.engineering.com/ElectronicsDesign/ElectronicsDesignArticles/ ArticleID/6098/Why-Calibrate-an-Instrument.aspx

Description:

Article provides an international definition of calibration, and explains why calibration is important.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Web page

Errors in Measurement

http://www.mathsisfun.com/measure/error-measurement.html

Description:

Explanation with worked examples of errors in measurement including absolute, relative and percentage error.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Web page

Standard Deviation

https://www.youtube.com/watch?v=09kiX3p5Vek

Description:

A YouTube video explaining standard deviation. Includes worked examples and student examples to calculate.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Youtube video

Standard Error

http://www.youtube.com/watch?v=BwYj69LAQOI

Description:

A YouTube video explaining standard error. Follows on from video on standard deviation. Includes worked examples and student examples to calculate.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Youtube video

OXFORD Cambridge and RSA

Beginners Guide to Measurement in Mechanical Engineering

http://www.npl.co.uk/upload/pdf/beg-guide-measurement-mech-eng.pdf

Description:

A PDF guide including case studies produced by NPL and the Institution of Mechanical Engineers (IMechE). Includes further useful illustration of accuracy, precision, relative and absolute error. Also discusses calibration.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost: Free

Format: Free PDF

Beginner's Guide to Measurement in Electronic and Electrical Engineering

http://www.npl.co.uk/upload/pdf/gpg-132-beg-guide-measurementelectronic-electrical-eng.pdf

Description:

A PDF guide including case studies produced by NPL and the Institution of Engineering and Technology (IET). Includes further useful illustration of accuracy, precision, relative and absolute error. Also discusses calibration.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost: Free

Format: Free PDF

Introduction to the Language of Kinematics

Introduction to the Language of Kinematics

Introduction Scalars and Vectors Distance and Displacement Speed and Velocity Acceleration

A typical physics course concerns itself with a variety of broad topics. One such topic is **mechanics** - the study o the motion of objects. The first six units of The Physics Classroom tutorial will involve an investigation into the physics of motion. As we focus on the language, principles, and laws that describe and explain the motion of objects, your efforts should center on internalizing the meaning of the information. Avoid memorizing the information; and avoid abstracting the information from the physical world that it describes and explains. Rather, contemplate the information, thinking about its meaning and its applications.

Kinematics is the science of describing the motion of objects using words, diagrams, numbers, graphs, and equations. Kinematics is a branch of mechanics. The goal of any study of kinematics is to develop sophisticated mental models that serve to describe (and ultimately, explain) the motion of real-world objects.

In this lesson, we will investigate the words used to describe the motion of objects. That is, we will focus on the *language* of kinematics. The hope is to gain a comfortable foundation with the language that is used throughout study of mechanics. We will study such terms as scalars, vectors, distance, displacement, speed, velocity and acceleration. These words are used with regularity to describe the motion of objects. Your goal should be to

http://www.physicsclassroom.com/class/1DKin/Lesson-1/Introduction

Description:

A good introduction to kinematics including scalars and vectors, displacement, speed, velocity, acceleration work energy and power. Includes animations and practice questions.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Web page

The Kinematics Equations

The Kinematic Equations

Kinematic Equations

Kinematic Equations and Problem-Solving Kinematic Equations and Free Fall Sample Problems and Solutions Kinematic Equations and Graphs

The goal of this first unit of The Physics Classroom has been to investigate the variety of means by which the motion of objects can be described. The variety of representations that we have investigated includes verbal representations, pictorial representations, numerical representations, and graphical representations (position-time graphs and velocity-time graphs). In Lesson 6, we will investigate the use of equations to describe and represent the motion of objects. These equations are known as kinematic equations.

There are a variety of quantities associated with the motion of objects - displacement (and distance), velocity (and speed), acceleration, and time. Knowledge of each of these quantities provides descriptive information about an object's motion. For example, if a car is known to move with a constant velocity of 22.0 m/s, North for 12.0 seconds for a northward displacement of 264 meters, then the motion of the car is fully described. And if a second car is known to accelerate from a rest position with an eastward acceleration of 3.0 m/s² for a time of 8.0 seconds, providing a final velocity of 24 m/s, East and an eastward displacement of 96 meters, then the motion of the motion of an object. However, such completeness is not always known. It is often the case that only a few parameters of an object's motion are known, while the rest are unknown. For example as you approach the stoplight, you might know that your car has a velocity of 22 m/s, East and is capable of a skidding acceleration of 8.0 m/s². West. However you do not know the displacement that your car would experience if you were to slam on your brakes and skid to a stop; and you do not

http://www.physics.ryerson.ca/sites/default/files/u11/guidelines/L5_RLC_ Circuits.pdf

Description:

Complete explanation with examples of the equations of motion.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost: Free

Format: Web page

One-dimensional motion

https://www.khanacademy.org/science/physics/one-dimensional-motion

Description:

Complete set of video resources explaining motion including scalars and vectors, displacement, velocity, acceleration and kinematics.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format:

Web page with video resources

OCR Oxford Cambridge and RSA

15

Weight, mass and gravity

KS3	Bitesize
Home	Home > Science > Energy, electricity and forces > Forces
Subjects	Forces
English Geography	Page 1 2 3 4 5 6 7 8
History	Weight, mass and gravity
ICT Maths	People often confuse mass and weight. Remember that weight is a force, and is measured in newtons. Mass is measured in kilograms (kg).
Science	Mass
Games	The mass of an object is the amount of matter or "stuff" it contains. The more matter an object contains, the greater its mass. An elephant contains more matter than a mouse, so it has a greater mass. Mass is measured in kilograms , kg , or grams , g .
More Bitesize	A 100 kg object has a greater mass than a 5 kg object. Remember an object's mass stays the same wherever it is.

http://www.bbc.co.uk/bitesize/ks3/science/energy_electricity_forces/ forces/revision/3/

Description:

Useful recap on the connection between weight, mass and gravity.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Web page

Torque, Moments and Centre of Mass

MOMENTS, TORQUE, AND ANGULAR MOMENTUM Torque, moments, and	Center of mass		Total energy points
Center of mass Introduction to loreave	10kg	- î 19%?	11043 1811 10N
Moments Moments (part 2)			
Relationship between angular velocity and speed			
Angular momentum			
Constant angular momentum when no net torque	▶ ¥() 428/935	•	● = ¢[]
Cross product and torque	Introduction to the center of mass		🍄 Options 👻 👉 Share 👻 🚯 Info
	Questions Tips & Thanks	Top Recent	Report a mistake in the video
	Ask a question		Example: At 2:33, Sal said "single bonds" but meant "covalent bonds."
	But how do you really calculate the centre of mass in physics problems?	J YEAR AND OF \$ LOUDS	Report a mistake in the video
vttos://www.khanazadirme.org/	Xcm = (m1*x1 + m2*x2 +)/(m1 + m2 + m3 +) m = mass x = distance from origin of your choice		Discuss the site For general discussions about Khan Academy, <u>dick hare</u>

https://www.khanacademy.org/science/physics/torque-angularmomentum/torque-tutorial/v/center-of-mass

Description:

Complete set of video resources covering centre of gravity and rotation – including torque.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format:

Web page with video resources

17

Force, work energy and power

schoolphysics	0-1/////~O
Force, work energy and power – equations Work done = Energy transformed = Force x displacement = Fscosa (This is an example of two vectors being multiplied together to give a scalar)	
Fire-fighter sliding down a pole	
mgh - ½mv² = Fh Climber sliding down a rope mgh - ½mv² = Fh	F
Parachutist mgh – ½mv² = Fh	X
with the parachute open the parachutist falls at their terminal velocity and so:	
At terminal velocity: Drag force (F) = mg	
Skler on a slope mgh - ½mv ² = Fs = Fsin A	*
where A is the angle of the slope with the horizontal	
Car braking to a stop ½mv ² = Fs ¹ / ₂ mv ² = F	

http://www.schoolphysics.co.uk/age16-19/Mechanics/Dynamics/text/ Force Work Energy Power equations/index.html

Description:

Summary of equations relating to force, work energy and power.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost: Free

Format: Web page

18

Conventional versus electron flow

http://www.allaboutcircuits.com/vol_1/chpt_1/7.html

Description:

An article discussing conventional and electron flow in electric circuits. Also discusses circuits containing lamps and diodes. Has links to further articles considering voltage, current and resistance.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Web page

Electric potential difference

http://www.physicsclassroom.com/class/circuits/Lesson-1/Electric-Potential-Difference

Description:

Explanation with diagrams of potential difference. Links to other a web pages explaining potential and charge (Coulombs).

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Web page

Resources Link

OXFORD Cambridge and RSA

How voltage, current and resistance relate

Each unit of measurement is named after a famous experimenter in electricity: The amp after the Frenchman Andre M. Ampere, the volt after the Italian Alessandro Volta, and

http://www.allaboutcircuits.com/vol_1/chpt_2/1.html

Description:

Series of web pages looking at the relationship between voltage, current and resistance. Includes worked examples and worksheets. Includes power calculations.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Web page

OCR Oxford Cambridge and RSA

21

Resistors in Series and Parallel

http://www.electronics-tutorials.ws/resistor/res_5.html

Description:

Explanation of how to calculate total resistance for circuits containing series and parallel resistors.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Web page

Energy and Power

http://www.physicsclassroom.com/Class/circuits/u9l2d.cfm

Description:

Series of linked articles explaining (with worked examples) the relationship of energy with power. Includes example problems for learners to calculate.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Web page

Resources Link

Resistance and Resistivity

http://resources.schoolscience.co.uk/CDA/16plus/copelech2pg1.html

Description:

An explanation with calculations of the relationship between resistance and resistivity.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost: Free

Format: Web page

Resistance variation with temperature

http://www.electrical4u.com/electrical-resistance-and-laws-of-resistance/

Description:

An explanation of resistivity, resistance and how resistance of a material varies with temperature. Includes videos.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Web Page

25

Electric field and capacitors

Description:

Series of web pages explaining electric field strength and capacitance.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Web page

26

Energy of a charged capacitor

http://www.schoolphysics.co.uk/age16-19/Electricity%20and%20 magnetism/Electrostatics/text/Capacitor_energy_stored/index.html

Description:

Description with equations of energy stored in a capacitor.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Web page

Resources Link

Inductors and inductance – energy in an inductor

http://www.electronics-tutorials.ws/inductor/inductor.html

Description:

Complete explanation about inductance and inductors, including energy stored in an inductor.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost: Free

Format: Web page

28

Elastic behaviour of solids

http://physicspractice.blogspot.co.uk/2009/02/elastic-behaviour-ofsolids.html

Description:

A basic introduction to the elastic behaviour of solids at the atomic level.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Web page

Deformation of metal solids – atomic attraction and repulsion

Nuffield	Social policy Education Capacity building Teachers	Apply for funding
Foundation	Improving social well-being through education, re-	search and innovation
Nullield Foundation > > Explaining the	leformation of metal solids	
Practical Physics		
Practical activities designed for us	e in the classroom with 11- to 19-year-olds.	
In partnership with	itute of Physics	Enter your search term
in because the same		
	Explaining the deformation of metal	Printer friendly warelen
	solids	- Phile monoy version
	Metals are polycrystalline, inside each crystal, atoms are regularly	
	arranged and close together. Left alone, the atoms attract their	
	neighbours and at the same time repel each other, with forces that just	
	cancel each other out. Each atom is, on average, in equilibrium However,	
	the forces of repulsion increase more than the forces of attraction. If you	
	stretch a rod or wire, the forces of repulsion decrease and you can feel	
	the forces of attraction holding the wire together.	
	Both the repulsive forces between atoms and the attractive ones are	
	electrical in origin. They arise from the charged particles composing one	
	atom disturbing those of a neighbour, in ways that are specified by	
	quantum mechanical rules. Since these forces are due to complexes of	
	charges, they fall on more rapidly with distance than the inverse square law of force between isolated charges	
	The attractions between atoms in metals are fairly short-range forces; two	
	pieces of metal placed close together do not attract each other. Forces of	
	repulsion must also be there or attractive forces would collapse solids.	
	They cannot have the same falling off with distance as the attractive	
	definite spacing as they do. So the repulsions are year short range forces	
	usining againing as they do. So the repulsions are very-short-failed forces,	

http://www.nuffieldfoundation.org/practical-physics/explainingdeformation-metal-solids

Description:

A good description of how atoms are attracted and repelled in metal solids. Includes sketch illustrating intermolecular forces.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Web page

Resources Link

OXFORD Cambridge and RSA

Molecular separation (equilibrium)

http://www.schoolphysics.co.uk/age16-19/Properties%20of%20matter/ Elasticity/text/Intermolecular_forces/index.html

Description:

Further explanation of the forces of attraction and repulsion between atoms – including equilibrium and separation.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Web page

Resources Link

Elastic and plastic deformation

There are two types of deformations that a material can experi elastic deformation, the material is distorted temporarily, thus w experiences plastic deformation. Once the metal experiences pl	ce. These are elastic and plastic deformation. When the stress placed on the metal is small, meaning that the stress is less than the yield strength of the material, the metal expert on the stress is removed the material returns to its original shape with no permanent rearrangement of atoms. However, when the stress placed on the metal exceeds the yield its discontinuous interview and over all shape are permanently rearranged and langed. Once plattic deformation its a correct the material does not receive the overall the plattic are metal rearrangement of the stress placed on the metal exceeds the system.
enoved	A singlified wave of s area like to grammars. The man area line, the time with as applied box. The source line to the source line to the time with as applied box.
order to discover why plastic deformation occurs, we must l aucture exist smooth surfaces between layers of atoms. Slippi	ok at the atomic makeup of metals. Most metals are crystalline solids which contain orderly arrangement of atoms. These atoms exist in a lattice form which varies from materia which is the most common reason for plastic deformation, occurs when the sheets of atoms side across each other causing bonds to break. Once the original bonds have be
er original positions and form new bonds forever changing in	shape of the material
n original positions and form new bonds forever changing in pping is due to a couple of reasons. First, whenever a metalli tallic crystals are not perfect, therefore sometimes atoms are	shape of the material bood relies on the relatively non-directional sharing of electrons, the atoms have a transformy to slip under little stress because relative position is not a major factor in keeping to mixing causing lines of defective bonding, known as dislocations, as seen in the following illustration. \bigcirc
e origina posision and ionn new dom's lower county in opping is due to a couple of reasons. First, whenever a metall tallic crystals are not perfect, therefore sometimes atoms are	shape of the material bond relies on the relatively non-directional sharing of electrons, the atoms have a tendency to sky under little stress because relative position is not a major factor in keeping to assong causing lines of defective bonding, known as dislocations, as seen in the following illustration.
er engena positante anto inten une vo como interese compositante angena positante a compositante en esta positante en esta positante en esta positante en esta positante en esta inflix caryolado are not porfiect, therefore sometimes atoms are	dape of the material bond relies on the relatively non-directional sharing of electrons, the atoms have a tenderacy to slip under little stress because relative position is not a major factor in keeping to more causing lines of defective bounding, known as diskontions, as seen in the following instantion.
er organ possans and item two forms developed of events. The possans and generate the set of the se	dame of the material bond rises on the relatively non-fracticional sharing of electrons, the atoms have a tendency to slip under little stress because relative position is not a major factor in keeping to income canning lines of defective bonding, known as dislocations, as seem in the following ibarbation.
are organ possistic and can use consist over each organize the second second and the second s	shape of the material bond relet on the relatively non-detectional sharing of electrons, the moust have a transformy to slip under lifts threes because relative position is not a major factor in keeping to mixing carning lines of defective bonding, known as dislocations, as seen in the following institution.

http://www.phy.davidson.edu/StuHome/BeKinneman/metal/ deformation.htm

Description:

An explanation of elastic and plastic deformation at the molecular level. Includes the term 'slip'.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Web page

Properties of materials

http://www.technologystudent.com/joints/matprop2.htm

Description:

A basic introduction to some of the mechanical properties of materials.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost: Free

Format: Web page

Malleability

https://www.youtube.com/watch?v=OkuDM3hYutl

Description:

YouTube video showing malleability of hot metals. YouTube contains further videos illustrating material properties such as ductility, brittleness, endurance and hardness.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format:

YouTube video

Drift velocity and current

copper and electricity	2. Electric current	Drift velocity	
Opport and electronic C. Electric current Drift velocity The section Drift velocity and current Under section			
	How fast must free electrons move in a wire to produce a decent curr	rent?	
	'Current' means the rate at which electric charge flows past a point in what happens to the electron highlighted in red.	n a circuit. Imagine standing at point X with a stopwatch and timing the charge flowing past. (We have to imagine that all the electrons move at the same spec	
	Suppose you start your watch and let it run for a time, ϵ . The highligh	ted electron electron will have travelled a distance L. In fact, in time r, all of the electrons in the cylinder of length L have flowed past you.	
free electrons	So what current has flowed? We need to work out how much charge We start by thinking of the volume of the cylinder.	has passed point A.	
ture 3.6 All the electronic in a	Control Drift velocity Image: Control Image: Control Image: Control Image: Control		
Current means the net at which electric charge flows gast a point is a circuit. Imagine standing at point X with a stopwatch and siming the charge flowing past. (We have to imagine that all the electrons means the same at the section highlighted in add. Subspaces you stary you watch and leik in un for at time, i. The highlighted electron electron will have thavefled a distance i. In fact, in time r, all of the electrons in the cylinder of length 1 have flowed past you. Subspaces you stary you watch and leik in un for a time, i. The highlighted electron electron will have thavefled a distance i. In fact, in time r, all of the electrons in the cylinder of length 1 have flowed past you. Subspaces you stary you watch and leik in un for a time, i. The highlighted electron electron will have thavefled a distance i. In fact, in time r, all of the electrons in the cylinder of length 1 have flowed past you. Substant current has flowed? We need to work out how much charge has passed point. Substant current has flowed? We need to work out how much charge has passed point. Substant current has flowed? We need to work out how much charge has passed point. Substant current has flowed? We need to work out how much charge has passed point. Substant current has flowed? I we need to work out how much charge has passed point. Substant current has flowed? I we need to work out how much charge has passed point. Substant of electrons in cylinder = $n + n + 1$ Substant of electrons in cylinder = $n + n + 1$ Substant of electrons in cylinder = $n + n + 1$ Substant of electrons in cylinder = $n + n + 1$ Substant of electrons in cylinder = $n + n + 1$ Substant of electrons in cylinder = $n + n + 1$ Substant of the cylinder is $n + n + 1$ in fault this represents, we need to find the stat which the charge has flowed. So we dive how the time t. Substant current flowing in a wire is given by Substant current flowing in a wire is given by Substant current flowing in a wire is given by Substant current flowing in a wire			
	If each electron carries charge Q then: Charge carried by electrons in cylinder = $n\times A\times 1\times Q$		
	But the length of the cylinder is v * t	where v is the drift velocity and t is the time we used	
	Charge carried by electrons in cylinder = $\mathbf{n} \times \mathbf{A} \times \mathbf{v} \times \mathbf{t} \times \mathbf{Q}$		
	This is the amount of charge which passes point A in til	me t. To find the current which this represents, we need to find the rate at which the charge has flowed. So we divide by the time t.	
	Current = charge / time = $n \times A \times x \times t \times Q / t = nAxQ$		
	So the electric current I flowing in a wire is given by	where wie the number of electrons ner outlin matre	
	I = n A v Q	A is the cross a sectorial area of the wire visit the difficulation of the electrons Q is the charge of an electron	
	Resistivity and charge density		
	A material with a lot of free electrons (a high value of n) can carry a c charge This means that they rarely collide with atoms or impurities in	urrent more easily than one with a smaller charge density. To carry a given current, the electrons don't have to move very fast because there are so many of t the metal, and so it is a good conductor.	
	Semiconductors are materials with few free electrons – perhaps one- smaller amount of charge that is moving. Therefore they collide with a	millionth of copper's concentration. So free electrons in semiconductors have to have much higher drift velocities to carry the same current. Their speed has t atoms much more often. The resistivity of a semiconductor is typically one million times that of copper.	
	How fast do electrons drift?		
	We can get an idea of how fast the drift velocity is by taking some ty	pical values of current and wire dimensions.	
	Let's think of a current of 5A that is flowing in a copper wire with a cr	oss section of 0.5mm^2 (= $0.5 \text{*}10^{\text{H}}\text{m}^2$)	
	For copper, n = 8.5 × 10^{28} per m ³ The charge on an electron, Q = 1.6 × 10^{-19} C		

http://resources.schoolscience.co.uk/CDA/16plus/copelech2pg3.html

Description:

Explanation of drift velocity and current flow – including formulae.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost: Free

Format: Web page

Stress and Strain

http://physicsnet.co.uk/a-level-physics-as-a2/materials/stress-strain/

Description:

A basic introduction to stress and strain – including stress/strain graphs and formulae.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost: Free

Free

Format: Web page

Hooke's Law

Bitesize Home	Home > Science > AQA Additional Science > Forces and their effects > Forces an	d elasticity
Art & Design Business Studies Design & Technology	Science Print Forces and elasticity	C Activity
Drama English English Literature French Geography	Page: 1 2 Back Hooke's Law When an elastic object such as a spring is stretched, the increased length is called	REVISION Ma95 Ma95
German History ICT Irish	its extension. The extension of an elastic object is directly proportional to the force applied to It:	🕐 Links
Maths Music Physical Education Religious Studies Science Spanish	F = k × e ≪ F is the force in newtons, N ≪ k is the 'spring constant' in newtons per metre, N/m ≪ e is the extension in metres, m	Science & and Nature Nature Nature Nature Nature
Weish 2nd Language Audio Games	This equation works as long as the elastic limit (the limit of proportionality) is not exceeded. If a spring is stretched too much, for example, it will not return to its original length when the load is removed.	On the web The Science Museum BrainPOP Science
KS3 Bitesize More Bitesize	The spring constant The spring constant k is different for different objects and materials. It is found by carrying out an experiment. For example, the unloaded length of a spring is	GCSE.com S-Cool: Revision Guide Revision Centre Revision World
	Ineasured, Dinerein humbers of societo masses are added to the spring and its new length measured each time. The extension is the new length minus the unloaded length.	

http://www.bbc.co.uk/schools/gcsebitesize/science/add_aqa/forces/ forceselasticityrev2.shtml

Description:

Basic introduction to Hooke's Law.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost: Free

Format: Web page

Resources Link

Stress strain, Young's Modulus and Hooke's Law

Description:

A video explaining the relationship between stress and strain, and also Young's Modulus and Hooke's Law.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: YouTube Video

https://www.youtube.com/watch?v=KxxTTf7kUTM

British Institute of Non-destructive Testing (BINDT)

http://www.bindt.org/videos/

Description:

Website of the British Institute of Non-destructive Testing (BINDT). Includes many useful resources including videos explaining NDT and NDT techniques.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format:

Web page with video resources

Pressure is Force per unit Area

Where you gain knowledge, confidence and success	
Lesson Mini-Quiz Feedback Comments	
SfC Home > Physical Science > Physics >	
f 🔽 📾 💼 216	
Explanation how Pressure is Force per Unit Area by Ron Kurtus - Succeed in Understanding Physics. Key words : physical science, force, surface area, solid, fluid, confined, gravity, weight, high heeks. School for Champions. <u>Copyright © Restrictions</u>	
Pressure is Force per Unit Area	
by Ron Kurtus (revised 18 March 2006)	
Pressure is the force on an object that is spread over a surface area. The equation for pressure is the force divided by the area where the force is applied. Although this measurement is straightforward when a solid is pushing on a solid, the case of a solid pushing on a liquid or gas requires that the fluid be confined in a container. The force can also be created by the weight of an object.	
Questions you may have include:	Force topics
What is the pressure when a solid pushes on another solid?	Characteristics of Force
 What happens when a solid pushes on a confined fluid? What happens when the force comes from gravity? 	Units of Force
This lesson will answer those questions. Useful tool: Units Conversion	Force and Torque
	Mysterious Force at a Distance
	Centripetal Force Centrifugal Force Caused by Inertia
Protection for your various devices,	Fundamental Forces Act at a Distance
now with secure online PC backup. *Offer valid until 23.03.2015.	Pressure is Force per Unit Area
	Work and Force
Pressure of solid on a solid	Work is a Result of Force
	Work Can be Change in Kinetic Energy
when you apply a force to a solid object, the pressure is defined as the force applied divided by the area of application. The equation for pressure is:	
	Force of Gravity

Description:

Explanation of the relationship between pressure, force and area. Discusses liquids and gases (hydrostatic pressure).

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Web page

http://www.school-for-champions.com/science/pressure.htm

Fluid Statics – pressure in fluids

Description:

Introductory video to pressure in fluids. Includes derivation of pressure equation, and pressure due to a height of a column of liquid. Includes links to a further series of videos. Note: height is termed y and not h in the video.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Youtube video

https://www.youtube.com/watch?v=mzjlAla3H1Q

Gauge Pressure and Absolute Pressure

NPL 🛛				Search	NPL	
Science + Technology +	Commercial E Services - E	Educate + Explore	Joint Ventures	Publications	View Full Menu	÷
What are differentia pressure Dressure To avid antipuly, when to avid antipuly, when to avid antipuly, when to avid antipuly, to avid to avid antipuly, to avid to avid antipuly, to avid the avid avid avid to avid avid to avid avid to avid to avid to avid to avid to avid to avid to avid to avid to avid to avid to avid to avid to avid to avid to avid to av	absolute, gi pressure value it is no molecules whateowor, the pr value as their reference point an he earth varies but is approxima use it is expressed with respect many applications of pressure an a between it and the pressure of nected type pressure gauge woo pes are designed to measure pr thus indicate zero when the mes ea measurements are known as obther pressure value and a gauge solute pressure value and a gauge	auge and 'modes'? important to specify its mode resure would be zoro. Prese solat to be abootive pressu- tely 10 ⁶ Pa (1 000 mbar, 1 0 to zero pressure - flat is no ent so much dependent or the atmosphere. A puncture of read' zero' while obvious ssoure values that are expre- sumement port meetly cont gauge pressure measurem re + atmospheric pressure	(FAQ - le. What are pressure surse measured on a res Atmospheric 200 hPa: this is 10 ⁵ molecules at all. In the absolute value of ed car tyre is said to y sail containing saed with respect to ains molecules at ents. Thus the bible value of	Home Reference - FAQs		
In some cases - for each the pressure reduction <i>bel</i> absolute value of the press should be appreciated that In other applications, where the reference pressure part	e when measuring the pressure with external 'reference' atmos ure. This is sometimes known at the concept of a negative absolu- e knowledge of the pressure diffic	reduction in an engine mani opheric pressure which is rec s a negative gauge pressure ute pressure is meaningless. erence between two places (a throspheric pressure but	ifold - it is the value of quired, rather than the e measurement but it s. or systems is needed,			

http://www.npl.co.uk/reference/faqs/what-are-absolute,-gauge-anddifferential-pressures-'modes'-(faq-pressure)

Description:

An explanation of the difference between absolute and gauge pressure.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Webpage

Archimedes' Principle

http://www.onr.navy.mil/focus/blowballast/sub/work2.htm

Description:

An interactive explanation of Archimedes' Principle.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost: Free

Format: Webpage

Resources Link

Archimedes' Principle

https://www.youtube.com/watch?v=eQsmq3Hu9HA

Description:

Video showing experiments that demonstrate Archimedes' Principle. Includes calculations showing that the up-thrust force is equal to the weight of displaced fluid.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: YouTube video

Laminar and Turbulent Flow

Description:

A simple demonstration using water from a tap of laminar and turbulent fluid flow.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: YouTube video

https://www.youtube.com/watch?v=VoBc60iUq2I

Laminar and Turbulent Flow – Ideal and Real Fluids

Description:

A video explaining laminar and turbulent flow. Also explains the differences between ideal and real fluids.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: YouTube video

https://www.youtube.com/watch?v=Q2cpuJlWW-o

Resources Link

OXFORD Cambridge and RSA

What is viscosity?

http://www.youtube.com/watch?v=1AESWxko4nl

Description:

Explanation of viscosity with demonstration using milk and honey. Includes reference to Kinematic velocity and temperature.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format:

YouTube video

Resources Link

Dynamic (absolute) and Kinematic Viscosity

The Indiana	ing TaalDay			
I IIE ENGINEER	IIIU I UUIBUX			
esources. Tools and Bas	ic Information for Engineering and Design of Technical Applications! - adapts seamlessiv to phones, pads and desitops!			
AdChoices 🗈 🛛 🕨 🕨	fiscosity Viscosity Chart Dynamic Viscosity Viscosity CP			
∮ 3D 😣 ematics 🗳 😭 pps	Google" Oustern Search - "Search is the most efficient way to navigate the Engineering Too/Box!"			
• Home	Dynamic, Absolute and Kinematic Viscosity			
 Acoustics Air Psychrometrics 	Dynamic, absolute and kinematic viscosity - and how to convert between CentiStokes (cSt), CentiPoises (cP), Saybolt			
Basics	Universal Seconds (SSU) and degree Engler			
Combustion Drawing Tools	Sponsored Links			
Drawing roois Dynamics				
Economics				
Electrical				
Environment				
Fluid Mechanics				
Gas and Compressed	The viscosity is an important fluid property when analyzing liquid behavior and fluid motion near solid boundaries. Viscosity of a fluid is a measure of its			
HVAC Systems	resistance to gradual deformation by shear stress or tensile stress. The shear resistance in a fluid is caused by intermolecular friction exerted when layers			
Hydraulics and	of fluid attempt to slide by one another.			
Pneumatics	 viscosity is the measure of a fluid's resistance to flow 			
Insulation	· violosity is the measure of a num s resistance to now			
Material Properties	molasses is highly viscous			
Mathematics	water is medium viscous			
Mechanics	gas is low viscous			
Physiology	There are two related measures of fluid viscosity			
Piping Systems				
Process Control	- dynamic (or absolute)			
Pumps	• kinematic			
 Standard Organizations 	Dynamic (absolute) Viscosity			
Statics	Abality viscosity is the tangential face per unit area			
Steam and Condensate	required to move one horizontal bane with respect to an other plane - at an unit velocity - when maintaining ausonice / viscosity is the tangential force per unit area - is an unit velocity - when maintaining and unit distance apart in the fluid.			
Water Systems	The shearing stress between the layers of a non turbulent fluid moving in straight parallel lines can be defined for a Newtonian fluid as			
dChoices (>	The shearing seess extreme the layers of a non-tablear halo moving in sharing parallel lines can be denired for a new tomain and as			
Manual OD				
VIECOCITY ("U				

http://www.engineeringtoolbox.com/dynamic-absolute-kinematic-viscosity-d_412.html

Description:

Explanation of the differences between dynamic and Kinematic viscosity – including defining equations and examples. Has a typical value for different liquids.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Webpage

Resources Link

Internal energy

http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/inteng.html

Description:

A simple description of internal energy consisting of both kinetic and potential energy.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost: Free

Format: Webpage

Absolute temperature and the Kelvin scale

https://www.khanacademy.org/test-prep/mcat/physical-processes/gasphase/v/absolute-temperature-and-the-kelvin-scale

Description:

A video tutorial explaining the relationship between the Kelvin scale with Celsius and Fahrenheit scales. Relates temperature to internal energy.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Webpage

50

Boyle's Law

http://www.grc.nasa.gov/WWW/k-12/airplane/boyle.html

Description:

An interactive explanation (with characteristic equation) of Boyles Law.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost: Free

Format: Webpage

Resources Link

Charles' Law

http://www.grc.nasa.gov/WWW/k-12/airplane/glussac.html

Description:

An interactive explanation of Charles' Law (also makes the associated Gay-Lussac's Law).

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost: Free

Format: Webpage

Pressure Law

http://www.passmyexams.co.uk/GCSE/physics/pressure-temperaturerelationship-of-gas-pressure-law.html

Description:

An interactive explanation of the Pressure Law. Includes calculations and worked examples of using the characteristic formula.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Webpage

Resources Link

Combined Gas Law

https://www.youtube.com/watch?v=bftkRnTcFj8

Description:

A YouTube video tutorial relating Boyles, Charles and Gay-Lussac's Laws to the Combined Pressure Law. Includes a worked example.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format:

Youtube video

OXFORD Cambridge and RSA

Characteristic (Ideal) Gas Equation

deal gas equation	Ideal gas equation: PV = nRT		Total energy poin
Ideal gas equation. PV = nRT.	P	HOCCINE - Fore	y.
Deflate gate		Area	×.
Ideal gas equation example 1		ader partia =>	PT
Ideal gas equation example 2		low	
Ideal gas equation example 3	77		
) Ideal gas equation example 4			
) ideal gas equation example 4			
) Ideal gas equation example 4) Partial pressure) Vapor pressure example	▶ 4() 138/021		0 = \$
) Ideal gas equation example 4) Partial pressure) Vapor pressure example	Intuition behind the ideal gas equation: PV-riRT.		이 퍼 수 (Options 두 년 Share 두 4) is
Ideal gas equation example 4 Partial pressure Vapor pressure example	(a) tasi trai Infution behind the ideal gas equation: PV-riRT. Questions Tipp & Thanks	🗘 : Top Recent Roport a mistako ir	e ප එ (Options + (ඒ State +) 0 n the video
Ideal gas equation example 4 Partial pressure Vapor pressure example	(1) 136/121 Infution behind the ideal gas equation: PV-rRT. Questions Tips 4: Thanks Asks againting.	Top Recent Report a mistako in Exercisi:	이 더 것 ; Options + (연 Share + (0)) n the video
Ideal gas equation example 4 Partial pressure Vapor pressure example	(1) 156/1021 Intuition behind the ideal gas equation: PV rRT. Questions Tips 4. Thanks Asia question: First let mb say THANK YOU THANK YOU for these great videos. I really enjoy watch	Top Recent Report a mistako in Cuaroju: A1 215 Nota francju: Recot a mistako in th	Coptions + Cf Share + O) the video
Ideal gas equation example 4 Partial pressure Vapor pressure example	(4) 156/1021 Instation behind the ideal gas equation: PV rRT. Questions Tips & Thanks Asia question: First list mis say THANK YOU THANK YOU for these great videos. I really enjoy watch The guestion: First list mis say THANK YOU THANK YOU for these great videos. I really enjoy watch The guestion How come the gas ANU instants in out of these equation 36 effects, my us provide the first first explore show come the gas.	Top Recent Report a mistake in Campie: A1235 Not an frage Record a mistake in th Methoda State frage Record a mistake in th Methoda State frage Record a mistake in th	Coptions + C Share + Or

http://www.khanacademy.org/science/chemistry/ideal-gas-laws/v/ideal-gas-equation-pv-nrt

Description:

A video tutorial covering the characteristic (ideal) gas equation. Includes further video worked examples.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format:

Web page with video resources

55

Heat energy (including heat capacity and specific heat capacity)

http://www.schoolphysics.co.uk/age14-16/Heat%20energy/Heat%20 energy/text/Specific heat capacity and heat energy/index. html?PHPSESSID=b2810791ba27022d9331843c394d05c5

Description:

An introduction to heat energy, including a definition for specific heat capacity.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Web page

Resources Link

Sensible Heatcapacity)

http://physics.info/heat-sensible/

Description:

A further explanation of specific (or sensible) heat. Includes a historic timeline, and specific heat for different materials. Also has practice problems and further examples.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Web page

OXFORD Cambridge and RSA

57

Efficiency

http://physicsnet.co.uk/gcse-physics/energy-transfers-efficiency/

Description:

A recap on the term efficiency. Includes worked examples.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Web page

Latent Heat

http://physics.info/heat-latent/summary.shtml

Description:

An explanation with worked examples of latent heat.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost: Free

Format: Web page

First and Second Law of Thermodynamics

Description:

A YouTube tutorial explaining the first and second laws of thermodynamics. Makes reference to how a heat engine works.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format:

Youtube video

https://www.youtube.com/watch?v=xdRtWK1_2Eo

Heat of your hand Stirling Engine

https://www.youtube.com/watch?v=zCGTNArwJ0s

Description:

YouTube video showing hand held Stirling Engine working. The Stirling Engine works on the principle of heat transfer generating work energy – and is a good demonstration of the laws of thermodynamics.

Supports:

OCR Cambridge Technicals in Engineering Level 3 Unit 2

Cost:

Free

Format: Youtube video

We'd like to know your view on the resources we produce. By clicking on the 'Like' or 'Dislike' button you can help us to ensure that our resources work for you. When the email template pops up please add additional comments if you wish and then just click 'Send'. Thank you.

If you do not currently offer this OCR qualification but would like to do so, please complete the Expression of Interest Form which can be found here: www.ocr.org.uk/expression-of-interest

OCR Resources: the small print

OCR's resources are provided to support the teaching of OCR specifications, but in no way constitute an endorsed teaching method that is required by the Board and the decision to use them lies with the individual teacher. Whilst every effort is made to ensure the accuracy of the content, OCR cannot be held responsible for any errors or omissions within these resources. We update our resources on a regular basis, so please check the OCR website to ensure you have the most up to date version.

© OCR 2015 - This resource may be freely copied and distributed, as long as the OCR logo and this message remain intact and OCR is acknowledged as the originator of this work.

Please get in touch if you want to discuss the accessibility of resources we offer to support delivery of our qualifications: resources.feedback@ocr.org.uk

Contact us

Staff at the OCR Customer Contact Centre are available to take your call between 8am and 5.30pm, Monday to Friday.

Telephone: 02476 851509 Email: vocational.qualifications@ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored. © OCR 2014 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office 1 Hills Road, Cambridge CB1 2EU. Registered company number 3484466. OCR is an exempt charity.