GCSE (9-1) in Combined Science B (Twenty First Century Science) J260/03 Physics (Foundation Tier) Sample Question Paper

Date - Morning/Afternoon

Time allowed: 1 hour 45 minutes

You must have:

- a ruler (cm/mm)
- the Data Sheet

You may use:

- a scientific or graphical calculator

INSTRUCTIONS

- Use black ink. You may use an HB pencil for graphs and diagrams.
- Complete the boxes above with your name, centre number and candidate number.
- Answer all the questions.
- Write your answer to each question in the space provided.
- Additional paper may be used if required but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the bar codes.

INFORMATION

- The total mark for this paper is 95 .
- The marks for each question are shown in brackets [].
- Quality of extended responses will be assessed in the question marked with an asterisk (*).
- This document consists of $\mathbf{2 0}$ pages.

Answer all the questions.

1 A refrigerator uses mains electricity to compress a gas into a liquid.

(a) The density of the gas is different from the density of the liquid.

Explain the difference in density between the gas and the liquid.
Use ideas about the arrangement of molecules in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (i) In the fridge, the liquid then expands and turns back into a gas.

The temperature of the fridge changes.
Complete the following sentences about the liquid changing to a gas.
Use terms from the list.
apart heat capacity higher latent heat lower together

- When the liquid changes to a gas, the molecules move \qquad
- This process needs energy called the. \qquad
- This energy is taken from the air inside the fridge.
- This makes the temperature inside the fridge become
(ii) After the gas has all been compressed into a liquid, the temperature of the liquid begins to rise.

Three equations can be used to link the electrical energy used by the pump and the internal energy of the liquid.

Write down the three equations.

1 \qquad

2 \qquad

3
(iii) The pump is connected to the mains at 230 V and uses a current of 3 A .

Calculate the power of the pump.
(iv) A charge of 2160 C flows through the refrigerator.

Calculate the time in minutes for this charge to flow.
Use the equation below in your answer:
Charge flow $=$ current \times time

5
2 On his car driving test, Amir has to do an emergency stop.
When the driving test examiner makes a loud noise, Amir has to stop the car as soon as he can.

Amir reacts as quickly as he can and pushes down on the car brake pedal.
(a) (i) The car takes 0.10 minutes to stop. The car travels 58 m in that time. What is the average speed of the car over this time?

> Average speed =
\qquad m/s
(ii) The car travels at a speed of $15 \mathrm{~m} / \mathrm{s}$.

The brake is applied and the car comes to a rest in 5.0 seconds.
Calculate the deceleration of the car over these 5.0 seconds.
Use the equation below in your answer.

$$
\text { Deceleration }=\frac{(\text { final speed }- \text { initial speed })}{\text { time }}
$$

(b) For the theory part of his driving test, Amir had to learn about stopping distances using the chart below.

How long it takes to stop (driving an average sized vehicle)
(i) Using the chart, write down an equation linking the braking distance, reaction distance and stopping distance.
\qquad
(ii) Amir says:

There is a correlation between reaction distance and speed, because the reaction distance gets longer.

Explain why he makes this conclusion.
\qquad
\qquad
\qquad

3 (a) A ball is falling through the air.

The arrow in the diagram shows the direction of gravity acting down on the ball.
(i) On the diagram draw an arrow to show the interaction force that is paired with the gravitational force acting on the ball.
(ii) State Newton's Third Law.
\qquad
\qquad
\qquad
(b) The gravitational force on the ball is called weight.
(i) State the equation that shows the relationship between weight and mass.
(ii) An object with a mass of 15 kg has a weight of 150 N .

Calculate the weight of an object with a mass of 5 kg .

Weight = .N
(c) (i) The falling ball has a mass of 0.058 kg and falls with an acceleration due to gravity of $10 \mathrm{~m} / \mathrm{s}^{2}$.

Calculate the force acting on the ball.
Use the equation below in your answer.
Force $=$ mass \times acceleration

Force $=$.
(ii) Calculate the kinetic energy of the falling ball when its speed is $2.0 \mathrm{~m} / \mathrm{s}$.

Use the equation below in your answer.
Kinetic energy $=1 / 2 \times$ mass $\times(\text { speed })^{2}$

Kinetic energy =

4 Jane has a robot lawnmower.

A wire carrying an electric current marks the edge of the lawn.
(a) (i) What is an electric current?

What causes the electric current to flow in a wire?
\qquad
\qquad
\qquad
(ii) The lawnmower can detect an electric current of 0.5 A or more in the wire.

A 50 m long wire has a resistance of 2.5Ω.
Calculate the potential difference across the wire needed to produce a current of 0.5 A .

Include the units in your answer.
(b) Jane measured how the potential difference changed with the current in the wire.

The graph shows the pattern of her results.

Potential difference

Current
(i) Put a tick (\checkmark) in the boxes next to the two correct conclusions from the graph.

The wire has no resistance \square

The resistance increases with the current. \square

The resistance increases with the potential difference. \square

The resistance is fixed. \square

The wire is a linear part of the circuit \square
(ii) A longer wire will have a larger resistance.

On the graph above draw the line for the longer wire.
(c) Jane thinks the robot lawnmower is too noisy to use at night.

She builds a circuit which uses a Light Dependent Resistor (LDR) to detect the light level.

The lawnmower will then switch off automatically at night.
A

(i) Which component in the circuit is the LDR?

Put a ring around the correct letter.
A
B
C
D
(ii) The LDR is sensitive to light.

Which property of the LDR changes when the light level changes?
$5 \quad$ Table 5.1 shows the results of an investigation into some materials that could be used as shielding against gamma radiation.

Material	Density $\left(\mathbf{k g} / \mathbf{m}^{3}\right)$	Thickness that absorbs half the gamma radiation $(\mathbf{c m})$	Mass of a 1 m square screen that absorbs half the gamma radiation $(\mathbf{k g})$
lead	11300	1.0	113
steel	7860	2.5	197
concrete	3330	6.1	203
packed soil	1600	11.3	181
loose soil	1200	15.0	180
water	1000	18.0	180
wood	560	29.0	162
air	1.2	15000	180

Table 5.1
(a) The ability of a material to absorb gamma radiation is dependent on its density.
(i) Describe how the density of the material and the thickness needed to absorb half of the radiation are linked.
\qquad
\qquad
(ii) State the equation for density.
(b) In a hospital radiography department, the shielding must be portable.

Which material from Table 5.1 is the best for this use?
Justify your answer.
\qquad
\qquad
\qquad
\qquad
(c) A wall made of concrete is designed to absorb half the gamma radiation and requires 10000 kg of concrete. Calculate the volume of concrete needed to absorb half the gamma radiation.

Use values from Table 5.1.
\qquadVolume $=$ m^{3}

6 Earthquakes cause waves that travel through rocks. These are called seismic waves.

Three types of seismic waves are produced.
S-waves: particles in the rock move from side to side, at right angles to the direction of the wave.

P-waves: particles in the rock move backwards and forwards in the direction of the wave.

L-waves: move along the surface of the Earth making the ground move up and down.
(a) A wave has a wavelength of 500 m and a frequency of 15 Hz .

Calculate the wave's speed and state the units.

Speed $=$
Units
(b) Scientists can use seismic waves to find out about the structure of the Earth.

They can identify differences in rocks from the reflection and refraction of waves.
(i) What is the effect of reflection on a wave?
\qquad
\qquad
(ii) What is the effect of refraction on a wave?
\qquad
(iii) The scientists have discovered that the core of the Earth is liquid.

This is because one of the waves cannot pass through a liquid.
Which wave cannot pass through the liquid at the Earth's core?
Justify your answer.
\qquad
\qquad

7 Here is part of a leaflet given to patients of a local hospital.

Safe and Painless Diagnosis for Kidney Patients

You can obtain images of your kidneys by using a radioisotope.
The radioisotope quickly passes into your kidneys and then into your bladder and is then excreted.

The radioisotope emits gamma radiation.
(a) (i) It is important that a radioisotope for kidney treatment should have a short half-life.

Suggest why.
\qquad
\qquad
\qquad
(ii) The hospital uses technetium-99 as the radioisotope.

The half-life of technetium-99 is 6 hours.
How long will it take for the activity of a sample of technetium-99 to fall to one eighth of its starting value?

Duration $=$ hrs
(b) Alpha and beta radiation are not suitable for obtaining images of inside the body.

Explain why.
\qquad
\qquad
\qquad
(c) Technetium-99 is produced by the radioactive decay of molybdenum (Mo). Molybdenum is produced in nuclear reactors by the fission of uranium. Tin (Sn) and neutrons (n) are also produced, as shown in the equation below.

$$
{ }_{92}^{235} U \rightarrow{ }_{42}^{99} \mathrm{Mo}+{ }_{\cdots \cdots \cdot} \mathrm{Sn}+12{ }_{0}^{1} n
$$

Write the mass number and atomic number of tin (Sn) in the spaces in the equation above.

8* An island is struggling with the energy demand of its inhabitants and will need to produce more electricity in the future.

Information about the island's electricity production is given below.

Predicted electricity consumption in future	18880000 kWh
Current electricity production	16000000 kWh
Produced by burning oil and peat	100%
Produced by hydroelectricity	0%
Produced by nuclear	0%
Produced by wind	0%
Produced by waves/tides	0%
Oil imported	248.9 barrels/day
Peat used for fuel	13000 tonnes/year

The island is keen not to import any more oil.
What might the environmental minster advise as a plan for the island's future production of electricity?

Use the data in the table in your answer.
\qquad
$9 \quad$ Here is a picture of a mountain bike. The rider makes the pedal turn in a circle, which results in the bike moving.

(a) On the diagram draw labelled arrows to show:

- the force that does work to make the bike move.
- the friction force that moves the bike forwards.
(b) There is a spring in the front wheel suspension fork.

The bike hits a tree stump and a force of 510 N compresses the spring by 15 cm .

Calculate the spring constant of the spring.
(c) The graph shows the force and compression for the spring.

(i) Each time the cyclist pushes on the pedal the spring compresses by 6 cm . Use the graph, or an alternative method, to find how much energy is stored in the spring each time the pedal is pushed down.
Energy =
\qquad
(ii) Explain how you found your answer.
\qquad
\qquad
(d) Explain why the spring will result in the bicycle moving more slowly than without the spring.

Use ideas about energy in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

END OF QUESTION PAPER

Summary of updates

Date	Version	Details
December 2021	2.2	Removed copyright acknowledgements.

Copyright Information:

OCR is committed to seeking permission to reproduce all third-party content that it uses in the assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA. OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Oxford Cambridge and RSA
...day June 20XX - Morning/Afternoon
GCSE (9-1) Combined Science B (Twenty First Century Science)
J260/03 Physics (Foundation Tier)

SAMPLE MARK SCHEME

MAXIMUM MARK 95

MARKING INSTRUCTIONS

PREPARATION FOR MARKING

SCORIS

1. Make sure that you have accessed and completed the relevant training packages for on-screen marking: scoris assessor Online Training; OCR Essential Guide to Marking.
2. Make sure that you have read and understood the mark scheme and the question paper for this component. These are posted on the RM Cambridge Assessment Support Portal http://www.rm.com/support/ca
3. Log-in to scoris and mark the required number of practice responses ("scripts") and the required number of standardisation responses.

YOU MUST MARK 10 PRACTICE AND 10 STANDARDISATION RESPONSES BEFORE YOU CAN BE APPROVED TO MARK LIVE SCRIPTS.

MARKING

1. Mark strictly to the mark scheme
2. Marks awarded must relate directly to the marking criteria.
3. The schedule of dates is very important. It is essential that you meet the scoris 50% and 100% (traditional 50% Batch 1 and 100% Batch 2) deadlines. If you experience problems, you must contact your Team Leader (Supervisor) without delay.
4. If you are in any doubt about applying the mark scheme, consult your Team Leader by telephone, email or via the scoris messaging system.
5. Work crossed out:
a. where a candidate crosses out an answer and provides an alternative response, the crossed out response is not marked and gains no marks
b. if a candidate crosses out an answer to a whole question and makes no second attempt, and if the inclusion of the answer does not cause a rubric infringement, the assessor should attempt to mark the crossed out answer and award marks appropriately.
6. Always check the pages (and additional objects if present) at the end of the response in case any answers have been continued there. If the candidate has continued an answer there then add a tick to confirm that the work has been seen.
7. There is a NR (No Response) option. Award NR (No Response)

- if there is nothing written at all in the answer space
- OR if there is a comment which does not in any way relate to the question (e.g. 'can't do', 'don't know')
- OR if there is a mark (e.g. a dash, a question mark) which isn't an attempt at the question.

Note: Award 0 marks - for an attempt that earns no credit (including copying out the question).
8. The scoris comments box is used by your Team Leader to explain the marking of the practice responses. Please refer to these comments when checking your practice responses. Do not use the comments box for any other reason.

If you have any questions or comments for your Team Leader, use the phone, the scoris messaging system, or email.
9. Assistant Examiners will send a brief report on the performance of candidates to their Team Leader (Supervisor) via email by the end of the marking period. The report should contain notes on particular strengths displayed as well as common errors or weaknesses. Constructive criticism of the question paper/mark scheme is also appreciated.
10. For answers marked by levels of response:

Read through the whole answer from start to finish, using the Level descriptors to help you decide whether it is a strong or weak answer. The indicative scientific content in the Guidance column indicates the expected parameters for candidates' answers, but be prepared to recognise and credit unexpected approaches where they show relevance. Using a 'best-fit' approach based on the skills and science content evidenced within the answer, first decide which set of level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer. Once the level is located, award the higher or lower mark:

The higher mark should be awarded where the level descriptor has been evidenced and all aspects of the communication statement (in italics) have been met.
The lower mark should be awarded where the level descriptor has been evidenced but aspects of the communication statement (in italics) are missing.

In summary

The skills and science content determines the level.
The communication statement determines the mark within a level.

Level of response question on this paper is 8 .
11. Annotations

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
$($)	Words which are not essential to gain credit
ECF	Underlined words must be present in answer to scorre a mark forward
AW	Or reverse argument
ORA	

12. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Combined Science B:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures. A03.1 Analyse information and ideas to interpret and evaluate.
AO3.1a	Analyse information and ideas to interpret.
AO3.1b	Analyse information and ideas to evaluate.
AO3.2	Analyse information and ideas to make judgements and draw conclusions.
AO3.2a	Analyse information and ideas to make judgements.
AO3.2b	Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3a	Analyse information and ideas to develop experimental procedures.
AO3.3b	Analyse information and ideas to improve experimental procedures.

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
1	(a)		One mark for each of these: Density is mass per unit volume \checkmark Density of gas less than density of liquid \checkmark Plus any ONE of: Gas particles/molecules are: Spread far apart \checkmark Moving fast \checkmark No noticeable forces between particles \checkmark Density of gas less than density of liquid \checkmark Plus any ONE of: Liquids particles/molecules are: Close together \checkmark Sliding past each other \checkmark Held together by forces \checkmark	4	1.1	ORA For full marks at least one point must come from each of gas and liquid.
	(b)	(i)	Apart \checkmark Latent heat \checkmark Lower \checkmark	3	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$	
		(ii)	One mark for each of these: Change in internal energy $=$ mass x shc x temp change \checkmark Energy to cause a change of state $=$ mass x specific latent heat \checkmark Plus any ONE of: Energy transferred = PD x current x time \checkmark OR Power $=$ potential difference \times current \checkmark OR Energy transferred = charge \times potential difference \checkmark	3	1.1	

Question	Answer	Marks	AO	Guidance
(iii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE. If answer = $\mathbf{6 9 0}(\mathrm{W})$ award $\mathbf{3}$ marks $\begin{aligned} & \text { Recall } P=1 \times V \checkmark \\ & =230 \times 3 \checkmark \\ & 690(\mathrm{~W}) \checkmark \end{aligned}$	3	$\begin{aligned} & 1.1 \\ & 2.1 \\ & 2.1 \end{aligned}$	Correct substitution gains first 2 marks (if equation is missing).
(iv)	FIRST CHECK THE ANSWER ON THE ANSWER LINE. If answer = 12 (minutes) award 4 marks Rearrange the equation to give: $\begin{aligned} \text { time } & =\text { charge flow } \div \text { current } \\ & =2160 \div 3=720 \mathrm{~s} \checkmark \\ & =12 \times 60 \mathrm{~s} \checkmark \\ & =12 \text { (minutes) } \checkmark \end{aligned}$	4	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 1.2 \\ & 1.2 \end{aligned}$	

| Question | | Answer | Marks | AO
 element | Guidance |
| :--- | :---: | :--- | :--- | :--- | :---: | :---: |

Question			Answer	Marks	AO element	Guidance
3	(a)	(i)	Force acting upwards from the ground \checkmark Equal size to downward force \checkmark	2	2.1	
		(ii)	Idea of forces equal in size and in opposite directions \checkmark	1	1.1	ALLOW every action has an equal and opposite reaction (1mark).
	(b)	(i)	Weight $=$ mass \times gravitational field strength \checkmark	1	1.1	ALLOW acceleration due to gravity for gravitational field strength.
		(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE. If answer = $\mathbf{5 0}(\mathrm{N})$ award 2 marks $\begin{aligned} & 5 \times 10 \checkmark \\ & 50(N) \checkmark \end{aligned}$	2	2.1	
	(c)	(i)	FIRST CHECK ANSWER ON ANSWER LINE. If answer = $0.58(\mathrm{~N})$ award 2 marks $\begin{aligned} & =0.058 \mathrm{~kg} \times 10 \mathrm{~m} / \mathrm{s}^{2} \checkmark \\ & =0.58(\mathrm{~N}) \checkmark \end{aligned}$	2	$\begin{aligned} & 2.1 \\ & 2.1 \end{aligned}$	
		(ii)	FIRST CHECK ANSWER ON ANSWER LINE. If answer $=0.116(\mathrm{~J})$ award 2 marks $\begin{aligned} \text { K.E. } & =1 / 2 \times 0.058 \mathrm{~kg} \times(2.0 \mathrm{~m} / \mathrm{s})^{2} \checkmark \\ & =0.116(\mathrm{~J}) \checkmark \end{aligned}$	2	2.1	

Question			Answer	Marks	AO element	Guidance
4	(a)	(i)	(Rate of) flow of charge \checkmark A potential difference is needed / power supply / battery \checkmark A closed circuit is needed \checkmark	3	1.1	
		(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE. If answer $=1.25 \mathrm{~V}$ award 4 marks $\begin{aligned} & \text { Recall potential difference }=\text { current } \times \text { resistance } \checkmark \\ & =0.5 \mathrm{~A} \times 2.5 \Omega \checkmark \\ & 1.25 \checkmark \\ & \vee \checkmark \end{aligned}$	4	1.1 2.1 2.1 1.1	Correct substitution gains first 2 marks (if equation is missing). If units not given, award 3 marks for an answer of 1.25
	(b)	(i)	The resistance is fixed \checkmark The wire is a linear part of the circuit	2	3.2b	
		(ii)	Above the printed line and straight and through the origin \checkmark	1	2.2	

Question		Answer	Marks	AO element	Guidance
	(c)	(i)	$\mathrm{B} \checkmark$	1	1.2
	(ii)	Resistance \checkmark	1	1.2	

Question			Answer	Marks	AO element	Guidance
6	(a)		FIRST CHECK THE ANSWER ON THE ANSWER LINE. If answer $=7500 \mathrm{~m} / \mathrm{s}$ or $7.5 \mathrm{~km} / \mathrm{s}$ award 4 marks Recall: Speed $=$ frequency \times wavelength \checkmark $=500(\mathrm{~m}) \times 15(\mathrm{~Hz}) \checkmark$ 7500 or $7.5 \checkmark$ (7500) m/s or (7.5) km/s	4	1.1 2.1 2.1 1.1	Correct substitution gains first 2 marks (if equation and units missing). If units not given award 3 marks for an answer of 7500 or 7.5
	(b)	(i)	Reflection: Change in direction \checkmark Does not pass through boundary \checkmark	2	1.1	ALLOW bounces back for 2 marks.
		(ii)	Refraction: (May) change direction \checkmark Wave passes through boundary \checkmark	2	1.1	ALLOW bends at boundary for 2 marks. ALLOW change in speed for 2 marks.
		(iii)	S-wave Any 1 of: Transverse waves cannot travel through liquids Because the particles will not be pulled from side to side / forces between particles are too weak \checkmark	2	$\begin{aligned} & 1.1 \\ & 2.2 \end{aligned}$	

Question		Answer	Marks	AO element	Guidance	
$\mathbf{7}$	(a)	(i)	(Gamma radiation) damages tissue in patient \checkmark (short half-life) means small dose/ less gamma radiation exposure \checkmark	$\mathbf{2}$	$\mathbf{1 . 1}$	
		(ii)	Idea of half-life e.g. 3×6 hours \checkmark 18 (hrs) \checkmark	$\mathbf{2}$	$\mathbf{2 . 1}$	
(b)	Alpha and beta are not very penetrating / easily absorbed \checkmark Hence will not be detected outside body \checkmark Absorption by body will damage tissues/cells \checkmark	$\mathbf{3}$	$\mathbf{1 . 2}$			
(c)	Mass number $=124 \checkmark$ Atomic number $=50 \checkmark$	$\mathbf{2}$	$\mathbf{2 . 1}$			

Question		Answer	Marks	AO element	Guidance

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
9	(a)		Arrow downwards from pedal Arrow to right from the bottom of either wheel	2	2.1	
	(b)		FIRST CHECK THE ANSWER ON THE ANSWER LINE. If answer $=3400(\mathrm{~N} / \mathrm{m})$ award 3 marks Recall: $f=k x$ or $k=f \div x \checkmark$ Converts 15 cm into $0.15 \mathrm{~m} \checkmark$ $\begin{aligned} & 510(\mathrm{~N}) \div 0.15(\mathrm{~m})^{\checkmark} \\ & 3400(\mathrm{~N} / \mathrm{m}) \checkmark \end{aligned}$	4	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 2.1 \\ & 2.1 \end{aligned}$	Correct substitution gains first 2 marks (if equation is missing).
	(c)	(i)	Calculation showing area under the graph for 0.06 m (6 cm) $\begin{aligned} & (0.06 \times 204) \div 2 \checkmark \\ & 06.12(J) \checkmark \end{aligned}$	2	2.2	ALLOW between 6.0 and 6.3 inclusive.
		(ii)	Idea of finding area under the graph \checkmark	1	2.2	
	(d)		Energy input to turn pedal Transferred to kinetic energy Some energy transferred to spring, not available as kinetic energy Less kinetic energy results in less speed	4	2.1	

Summary of updates

Date	Version	Change
May 2018	2	We've reviewed the look and feel of our papers through text, tone, language, images and formatting. For more information, please see our assessment principles in our "Exploring our question papers" brochures on our website
October 2019	2.1	Question $5(\mathrm{c})-$ There has been a change to the answer of this question. Correct answer $=3.0\left(\mathrm{~m}^{3}\right)$, Rearrange equation to give volume $=$ mass \div density Select correct values, mass = 10000 kg; density $=3330 \mathrm{~kg} / \mathrm{m}^{3}$ $=10000 \mathrm{~kg} \div 3330 \mathrm{~kg} / \mathrm{m}^{3}$ $=3.0\left(\mathrm{~m}^{3}\right)$ Question 9(c)(i) - There has been a change to the answer of this question. Correct answer: Calculation showing area under the graph for $0.06(6 \mathrm{~cm})$ correct reading from graphs as 204 $0.06 \times 204 \div 6.12 \mathrm{~J}$

