GCE

Chemistry A

Unit F325: Equilibria, Energetics and Elements

Advanced GCE

Mark Scheme for June 2014
OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today’s society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners’ meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2014
Annotations available in Scoris

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>Blank Page – this annotation must be used on all blank pages within an answer booklet (structured or unstructured) and on each page of an additional object where there is no candidate response.</td>
</tr>
<tr>
<td>BOD</td>
<td>Benefit of doubt given</td>
</tr>
<tr>
<td>CON</td>
<td>Contradiction</td>
</tr>
<tr>
<td></td>
<td>Incorrect response</td>
</tr>
<tr>
<td>ECF</td>
<td>Error carried forward</td>
</tr>
<tr>
<td>I</td>
<td>Ignore</td>
</tr>
<tr>
<td>NAQ</td>
<td>Not answered question</td>
</tr>
<tr>
<td>NDOD</td>
<td>Benefit of doubt not given</td>
</tr>
<tr>
<td>POT</td>
<td>Power of 10 error</td>
</tr>
<tr>
<td></td>
<td>Omission mark</td>
</tr>
<tr>
<td>RE</td>
<td>Rounding error</td>
</tr>
<tr>
<td>SF</td>
<td>Error in number of significant figures</td>
</tr>
<tr>
<td>✓</td>
<td>Correct response</td>
</tr>
</tbody>
</table>
Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO NOT ALLOW</td>
<td>Answers which are not worthy of credit</td>
</tr>
<tr>
<td>IGNORE</td>
<td>Statements which are irrelevant</td>
</tr>
<tr>
<td>ALLOW</td>
<td>Answers that can be accepted</td>
</tr>
<tr>
<td>()</td>
<td>Words which are not essential to gain credit</td>
</tr>
<tr>
<td>__</td>
<td>Underlined words must be present in answer to score a mark</td>
</tr>
<tr>
<td>ECF</td>
<td>Error carried forward</td>
</tr>
<tr>
<td>AW</td>
<td>Alternative wording</td>
</tr>
<tr>
<td>ORA</td>
<td>Or reverse argument</td>
</tr>
</tbody>
</table>

The following questions should be marked using **ALL** appropriate annotations to show where marks have been awarded in the body of the text:

1(b), 2(b), 3(b)(ii), 4(c)(iii), 5(a), 5(b)(iv), 6c(iii), 6(d), 7(b)(ii), 8(d)
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (a) (i)</td>
<td>$2K^+(g) + S^{2-}(g)$</td>
<td>✓</td>
<td>Mark each marking point independently. Correct species AND state symbols required for each mark. For S^{2-}, DO NOT ALLOW S^{-2}. For e^-, ALLOW e. For e^- only, IGNORE any state symbols added. ALLOW k and s. It can be very difficult distinguishing K from k; S from s.</td>
</tr>
<tr>
<td></td>
<td>$2K^+(g) + S^-(g) + e^-$</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$2K(g) + S(g)$</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
1 (a) (ii) (The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound from its gaseous ions (under standard conditions) ✓ ✓

Award marks as follows.
1st mark: formation of compound from gaseous ions
2nd mark: one mole for compound only

DO NOT ALLOW 2nd mark without 1st mark

Note: A definition for enthalpy change of formation will receive no marks

2 IGNORE 'Energy needed' OR 'energy required'
ALLOW one mole of compound is formed/made from its gaseous ions
ALLOW as alternative for compound: lattice, crystal, substance, solid

IGNORE: \(2\text{K}^+(g) + \text{S}^{2-}(g) \rightarrow \text{K}_2\text{S}(s)\)
(question asks for words)

ALLOW 1 mark (special case) for absence of 'gaseous' only, i.e.
the formation of one mole of a(n ionic) compound from its ions (under standard conditions) ✓
1 (a) (iii)

FIRST, CHECK THE ANSWER ON ANSWER LINE

IF answer $=-2116$ (kJ mol$^{-1}$) award 2 marks

\[
\begin{align*}
-381 - (2 \times 89 + 279 + 2 \times 419 - 200 + 640) &< 0 \\
-381 - 1735 &< 0 \\
\Rightarrow -2116 &< 0 \\
\end{align*}
\]

ALLOW for 1 mark ONE mistake with sign OR use of 2:

- 2027 (2×89 not used for K)
- 1697 (2×419 not used for K)
- 2516 ($+200$ rather than -200 for S 1st electron affinity)
- $+2116$ (wrong sign)
- -1354 ($+381$ instead of -381)
- $+1354$ ($+1735$ instead of -1735)
- -836 (-640 instead of $+640$)
- -1558 (-279 instead of $+279$)
- -1760 (-2×89 instead of $+2 \times 89$)
- -439 (-2×419 instead of $+2 \times 419$)
- -2120 (rounded to 3SF)

For other answers, check for a single transcription error or calculator error which could merit 1 mark

DO NOT ALLOW any other answers, e.g.

- -1608 (2 errors: 2×89 and 2×419 not used for K)
- -846 (3 errors:)
Mark Scheme

<table>
<thead>
<tr>
<th>1</th>
<th>(b)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lowest melting point</td>
<td>KI</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Highest melting point</td>
<td>NaBr</td>
<td>Correct order ✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mark 2nd and 3rd marking points independently

Attraction and ionic size linked:
Greater attraction from smaller ions/closer ions/larger charge density ✓
Comparison needed

Energy AND attraction/breaking bonds linked:
More energy/heat to overcome attraction (between ions)
OR
More energy/heat to break (ionic) bonds ✓

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL 10

FULL ANNOTATIONS MUST BE USED

ORA throughout
Response must clearly refer to ions for explanation marks

2nd and 3rd marking point must be comparative

DO NOT ALLOW incorrect named particles, e.g.
‘atoms’, ‘molecules’, Na, Cl, Cl₂, ‘atomic’, etc
DO NOT ALLOW responses using nuclear size or attraction
DO NOT ALLOW responses linked with loss of electrons

ALLOW larger electron density

ALLOW smaller sum of radii gives a greater ionic attraction
IGNORE NaBr has greater ionic attraction
IGNORE NaBr has smallest ionic radius
(not focussing on size of each ion)

ASSUME bonds broken are ionic unless otherwise stated
DO NOT ALLOW incorrect named particles, e.g.
‘atoms’, ‘molecules’, Na, Cl, Cl₂, ‘atomic’, etc

Note: Comparison for energy only *(i.e. link between more energy and breaking bonds/overcoming attraction)*
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (a) (i)</td>
<td>(entropy) decreases AND (solid/ice has) less disorder/ more order/ fewer ways of arranging energy/ less freedom/ less random molecules ✓</td>
<td>1</td>
<td>ORA decreases and reason required for mark ASSUME change is for freezing of water unless otherwise stated DO NOT ALLOW atoms are more ordered</td>
</tr>
<tr>
<td>2 (a) (ii)</td>
<td>(entropy) increases AND (CO₂) gas is formed ✓ Could be from equation with CO₂(g)</td>
<td>1</td>
<td>increases and reason required for mark ASSUME gas is CO₂ unless otherwise stated BUT DO NOT ALLOW an incorrect gas (e.g. H₂) ALLOW more gas</td>
</tr>
<tr>
<td>2 (a) (iii)</td>
<td>entropy decreases AND 3 mol O₂ form 2 mol O₃ OR 3O₂ → 2O₃ OR 3 mol gas form 2 mol gas ✓</td>
<td>1</td>
<td>decreases and reason required for mark For mol, ALLOW molecules ALLOW multiples, e.g. 1½O₂ → O₃; O₂ + ½O₂ → O₃ ALLOW O₂ + O → O₃ Note: DO NOT ALLOW 2 mol gas forms 1 mol gas unless linked to O₂ + O → O₃ IGNORE reaction forms fewer moles/molecules</td>
</tr>
</tbody>
</table>
2 (b) CARE: responses involve changes of negative values

Feasibility AND ΔG
- Reaction becomes/is less feasible/not feasible
- ΔG increases
 - OR ΔG becomes/is less negative/more positive
 - OR $\Delta G > 0$ OR $\Delta H - T\Delta S > 0$
 - OR $\Delta H - T\Delta S$ becomes/is less negative/more positive
 - OR $\Delta H > T\Delta S$
 - OR $T\Delta S$ becomes/is more negative than ΔH

Effect on $T\Delta S$
- $T\Delta S$ becomes more negative OR $T\Delta S$ decreases
 - OR $-T\Delta S$ becomes more positive OR $-T\Delta S$ increases
 - OR magnitude of $T\Delta S$ increases
 - OR $|T\Delta S|$ increases

FULL ANNOTATIONS MUST BE USED

- As alternative for ‘less feasible’
 - ALLOW ‘less spontaneous’
 - OR a comment that implies ‘reaction no longer take place’

- ALLOW for ΔG increases
 - $\Delta G < 0$ only at low T

- **DO NOT ALLOW** $T\Delta S > \Delta H$ (comparison wrong way round)

NOTE: Last statement automatically scores 2nd mark ALSO

- IGNORE significance
- IGNORE magnitude for 1st marking point

APPROACH BASED ON TOTAL ENTROPY:

Feasibility with increasing temperature
- Reaction becomes less feasible/not feasible
 - AND
 - $\Delta S - \Delta H/T$ OR ΔS_{total} decreases/ less positive

Effect on $\Delta H/T$
- $\Delta H/T$ is less negative OR $\Delta H/T$ increases
 - OR $-\Delta H/T$ decreases
 - OR magnitude of $\Delta H/T$ decreases
| 2 | (c) | (i) | FIRST, CHECK THE ANSWER ON ANSWER LINE
IF answer = 75.962 OR 75.96 OR 76.0 OR 76, award 2 marks
--
\[\Delta S = (33 + 3 \times 189) - (76 + 3 \times 131) \]
\[= (+)131 \text{ (J K}^{-1} \text{ mol}^{-1}) \] ✓
\[\Delta G = 115 - (298 \times 0.131) \]
\[= (+)75.962 \text{ OR 75.96 OR 76.0 OR 76 (kJ K}^{-1} \text{ mol}^{-1}) \] ✓
| | | 2 | DO NOT ALLOW \(-131\)
| | | | ALLOW ECF from incorrect calculated value of \(\Delta S\)

| 2 | (c) | (ii) | FIRST, CHECK THE ANSWER ON ANSWER LINE
IF answer = 878 OR 877.9 OR 877.86, award 2 marks
--
(Minimum temperature when) \(\Delta G = 0\) OR \(\Delta H - T\Delta S = 0\) OR
(For feasibility) \(\Delta G = 0\) OR \(\Delta G < 0\) OR \(\Delta H - T\Delta S < 0\) OR
\[T = \frac{\Delta H}{\Delta S} \] ✓
\[T = \frac{115}{0.131} = 878 \text{ K} \] ✓
| | | 2 | ALLOW total entropy statement:
\(\Delta S(\text{total}) = 0\) OR \(\Delta S(\text{total}) > 0\)
ALLOW ECF from incorrect calculated value of \(\Delta S\) from 2(c)(i)
ALLOW 878 up to calculator value of 877.862595 correctly rounded

<p>| | | | Total 9 |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
</table>
| 3 (a) | \((K_c =) \frac{[C_2H_2] [H_2]^3}{[CH_4]^2} \checkmark\) | 1 | Square brackets are **essential**
| | | | State symbols not required. |
| | | | **IGNORE** incorrect state symbols |
| 3 (b) | (i) amount of \(H_2 = 3 \times 0.168\) \(= 0.504 \text{ (mol)} \checkmark\) | 1 |
FIRST, CHECK THE ANSWER ON ANSWER LINE
IF answer = 0.153 mol dm$^{-6}$, award 3 marks
IF answer = 0.153 with incorrect units, award 2 marks

IF answer from 3(b)(i) for $n(H_2)$ ≠ 0.504, mark by ECF.

Equilibrium concentrations (from $n(H_2)$ = 0.504 mol dm$^{-3}$)

\[[\text{CH}_4] = 2.34 \times 10^{-2} \text{ (mol dm}^{-3} \text{)} \]

AND \[[\text{C}_2\text{H}_2] = 4.20 \times 10^{-2} \text{ (mol dm}^{-3} \text{)} \]

AND \[[\text{H}_2] = 0.126 \text{ (mol dm}^{-3} \text{)} \]

Calculation of K_c and units

\[K_c = \frac{4.20 \times 10^{-2} \times (0.126)^3}{(2.34 \times 10^{-2})^2} = 0.153 \text{ } \text{mol}^2 \text{ dm}^{-6} \]

3 significant figures are required

3

FULL ANNOTATIONS MUST BE USED

IF there is an alternative answer, check to see if there is any ECF credit possible using working below

ALLOW ÷ by 4 of equilibrium amounts in all expressions, i.e.

ALLOW $[\text{CH}_4] = \frac{9.36 \times 10^{-2}}{4} \text{ mol dm}^{-3}$

AND $[\text{C}_2\text{H}_2] = \frac{0.168}{4} \text{ mol dm}^{-3}$

AND $[\text{H}_2] = \frac{0.504}{4} \text{ mol dm}^{-3}$

ALLOW ECF from incorrect concentrations or from moles

From moles: 9.36 \times 10$^{-2}$, 0.168 and 0.504, K_c = 2.45 by ECF

ALLOW dm$^{-6}$ mol2

DO NOT ALLOW mol2/dm6

ALLOW ECF from incorrect K_c expression for both calculation and units

COMMON ECF

From 3(b)(i) answer of 0.1404,

$K_c = 3.32 \times 10^{-3}$ 2 marks + units

$K_c = 0.0531$ No ÷ 4 throughout 1 mark + units

NO ECF possible (all data given in question)
3 (c)

<table>
<thead>
<tr>
<th>Change</th>
<th>K_c</th>
<th>Equilibrium amount of C_2H_2 / mol</th>
<th>Initial rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperature increased</td>
<td>greater</td>
<td>greater</td>
<td>greater</td>
</tr>
<tr>
<td>smaller container</td>
<td>same</td>
<td>smaller</td>
<td>greater</td>
</tr>
<tr>
<td>catalyst added</td>
<td>same</td>
<td>same</td>
<td>greater</td>
</tr>
</tbody>
</table>

Mark by COLUMN

ALLOW obvious alternatives for greater/smaller/same, e.g. increases/decreases; more/less

- ✓
- ✓
- ✓

3 (d)

ONE mark only
USE ONE TICK ONLY ✓
from TWO uses:

1. fuel cells
2. manufacture of margarine
3. making of ammonia OR Haber process
4. making of HCl/hydrochloric acid
5. making of methanol

Mark by COLUMN

- ✓
- ✓
- ✓

ONE mark only
USE ONE TICK ONLY ✓
from TWO uses:

1. fuel cells
2. manufacture of margarine
3. making of ammonia OR Haber process
4. making of HCl/hydrochloric acid
5. making of methanol

Mark by COLUMN

- ✓
- ✓
- ✓

IGNORE just 'fuel'
IGNORE hydrogenation of margarine
ALLOW hydrogenation of fats/oils

DO NOT ALLOW explosives OR fertilisers

Total 10
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (a) (i)</td>
<td>5 OR 5th (order) ✓</td>
<td>1</td>
<td>ALLOW moles/ions/species/particles/molecules/atoms throughout (i.e. emphasis on particles)</td>
</tr>
<tr>
<td>4 (a) (ii)</td>
<td>(stoichiometry in) rate equation does not match (stoichiometry) in overall equation ✓</td>
<td>2</td>
<td>IF number of species is stated, ALLOW 3–5 only (rate equation contains 5 ions) DO NOT ALLOW negative ions would repel (there is a mixture of positive and negative ions) IGNORE more than two reactants collide (not related to rate equation)</td>
</tr>
<tr>
<td>4 (b)</td>
<td> Straight upward line AND starting at 0,0 ✓</td>
<td>2</td>
<td>ALLOW lines starting close to 0,0 ALLOW 2nd order line with 'straight' section early or late as long as an upward curve is seen between.</td>
</tr>
<tr>
<td>4 (c) (i)</td>
<td>5.4(0) ✓ 614.4(0) ✓</td>
<td>2</td>
<td>IGNORE sign ALLOW 614 OR 610</td>
</tr>
</tbody>
</table>
| 4 | (c) | (ii) | FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 6.7×10^8 OR 670000000 dm12 mol$^{-4}$ s$^{-1}$, award 3 marks IF answer = 6.7×10^8 OR 670000000 with incorrect units, award 2 marks k to >2 SF: 666666666.7 ✓ OR k to 2 SF: 6.7×10^8 OR 670000000 ✓✓
units: dm12 mol$^{-4}$ s$^{-1}$ ✓

| 4 | (c) | (iii) | $(K_a) = 10^{-3.75}$ OR 1.78×10^{-4} (mol dm$^{-3}$) ✓
$[H^+] = \sqrt{1.78 \times 10^{-4} \times 0.0200}$
$= 1.89 \times 10^{-3}$ (mol dm$^{-3}$) ✓

initial rate = $6.7 \times 10^9 \times 0.01 \times 0.015^2 \times (1.89 \times 10^{-3})^2$
$= 5.33 \times 10^{-3}$ to 5.38×10^{-3} (mol dm$^{-3}$ s$^{-1}$) OR 5.3×10^{-3} to 5.4×10^{-3} (mol dm$^{-3}$ s$^{-1}$) ✓

Actual value will depend on amount of acceptable rounding in steps and whether figures kept in calculator even if rounding is written down. ALLOW any value in range given above.

ALLOW ECF from incorrect initial rates if 1st experimental results have not been used. (Look to 4(c)(i) to check) i.e. IF other rows have been used, then calculate the rate constant from data chosen.

For k, ALLOW 1 mark for the following:
6.6×10^8 recurring
6.6×10^8
2 SF answer for k BUT one power of 10 out i.e. 6.7×10^9 OR 6.7×10^7

ALLOW units in any order, e.g. mol$^{-3}$ dm12 s$^{-1}$

FULL ANNOTATIONS MUST BE USED

For ALL marks, ALLOW 2 SF up to calculator value correctly rounded $1.77827941 \times 10^{-4}$
ALLOW $\sqrt{10^{-3.75} \times 0.0200}$ for first marking point ALLOW 1.88×10^{-3} (mol dm$^{-3}$)

ALLOW ECF from calculated $[H^+(aq)]$ and calculated answer for k from 4(c)(ii)
e.g. If no square root taken, $[H^+] = 3.56 \times 10^{-6}$ mol dm$^{-3}$ and rate = 1.91×10^{-8} OR 1.9×10^{-8} by ECF

Total 13
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
</table>
| 5 (a) | (Transition element) has **an ion** with an incomplete/partially-filled d **sub-shell/d-orbital** ✓ | 5 | **FULL ANNOTATIONS MUST BE USED**
<p>| | | | ALLOW capital ‘D’ within definition |
| | | | DO NOT ALLOW d shell |
| | Scandium/Sc and zinc/Zn are not transition elements ✓ | 1 | ALLOW if ONLY Sc and Zn are used to illustrate d block elements that are NOT transition elements |
| | | | This can be from anywhere in the overall response in terms of Sc, Sc$^{3+}$, Zn, Zn$^{2+}$ OR incorrect charges, i.e. only Sc$^+$, Sc$^{2+}$, Zn$^+$ |
| | Electron configurations of ions | | In electron configurations, IF subscripts OR caps used, DO NOT ALLOW when first seen but credit subsequently |
| | Sc$^{3+}$ AND 1s22s22p63s23p6 ✓ | 1 | ALLOW 4s0 in electron configurations |
| | Zn$^{2+}$ AND 1s22s22p63s23p63d10 ✓ | 1 | IGNORE [Ar] |
| | Sc$^{3+}$ AND d sub-shell empty / d orbital(s) empty ✓ | 1 | IGNORE electron configurations for other Sc and Zn ions |
| | Note: Sc$^{3+}$ must be the ONLY scandium ion shown for this mark | 1 | ALLOW for Sc$^{3+}$: Sc forms a 3+ ion; ALLOW Sc$^{3+}$ |
| | Zn$^{2+}$ AND d sub-shell full /ALL d-orbitals full ✓ | 1 | ALLOW for Zn$^{2+}$: Zn forms a 2+ ion; ALLOW Zn$^{2+}$ |
| | Note: Zn$^{2+}$ must be the ONLY zinc ion shown for this mark | 1 | ALLOW Sc$^{3+}$ has no d sub-shell |
| | DO NOT ALLOW ‘d sub-shell is incomplete’ (in definition) | 1 | DO NOT ALLOW ‘d sub-shell is incomplete’ (in definition) |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(b)</td>
<td>(i)</td>
</tr>
</tbody>
</table>
| | Donates **two** electron/lone pairs to a metal ion **OR** Co^{3+} **✓** | ALLOW ‘forms two coordinate bonds/dative covalent/dative bonds’ as an alternative for ‘donates two electron/lone pairs’
Two is required for 1st marking point
Two can be implied using words such as ‘both’ or ‘each’
For metal ion, ALLOW transition (metal) ion |

Electron/lone pair on N **OR** NH$_2$ (groups) **✓**

Second mark is for the atom that donates the electron/lone pairs
ALLOW both marks for a response that communicates the same using N as the focus:
e.g. The two N atoms each donate an electron pair to metal ion |

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(b)</td>
<td>(ii)</td>
</tr>
</tbody>
</table>
| | [Co(H$_2$NCH$_2$CH$_2$NH$_2$)$_2$Cl$_2$]$^+$ **✓** | Square brackets **AND** + charge required
DO NOT ALLOW any charges included within square brackets
ALLOW [Co(C$_2$H$_6$N$_2$)$_2$Cl$_2$]$^+$ **OR** [CoC$_4$H$_8$N$_2$Cl$_2$]$^+$
ALLOW structural **OR** displayed **OR** skeletal formula
OR mixture of the above (as long as unambiguous)
IGNORE [Co(en)$_2$Cl$_2$]$^+$ *simplifies question*
Within formula, ALLOW ….Cl$_2$, (Cl$_2$)
ALLOW CO
Within the context of the question, CO is Co |

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(b)</td>
<td>(iii)</td>
</tr>
<tr>
<td></td>
<td>6 ✓</td>
<td>1</td>
</tr>
</tbody>
</table>
Note: For each structure, **ALL** NH$_2$ groups must be shown **AND** bonding between Co **AND** N of NH$_2$.

For H$_2$NCH$_2$CH$_2$NH$_2$, **ALLOW** C–C without Hs and NH$_2$ NH$_2$.

IF NH$_2$ shown without Hs, e.g. N N, **penalise first time ONLY**

IF ALL 3 isomers are 'correct', but 2 x Cl AND no Ns, e.g.

AWARD 1 mark

FULL ANNOTATIONS MUST BE USED

__

IGNORE charges (**anywhere**) and labels (even if wrong)

Square brackets **NOT** required

Must contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper **OR** 4 lines, 1 'out wedge' and 1 'in wedge':

ALLOW for bond into paper:

ALLOW following geometry throughout:

TAKE CARE: structures may be in different orientations.

FOR H$_2$NCH$_2$CH$_2$NH$_2$, ALLOW NH$_2$ H$_2$N

(-connectivity within 'loop' only)

IF Cl$_2$s are shown instead of Cl, penalise 1st time only
| 5 | (c) (i) | O$_2$/oxygen **bonds** to Fe$^{2+}$/Fe(II) ✓
Fe$^{2+}$/Fe(II) essential for 1st marking point
(When required,) O$_2$ substituted OR O$_2$ released ✓
Fe$^{2+}$ not required for 2nd marking point (e.g. **IGNORE** Fe) | 2 | **ASSUME** that ‘it’ refers to oxygen
ALLOW O$_2$ binds to Fe$^{2+}$ OR O$_2$ donates electron pair to Fe$^{2+}$
OR O$_2$ is a ligand with Fe$^{2+}$
IGNORE O$_2$ reacts with Fe$^{2+}$ OR O$_2$ is around Fe$^{2+}$
ALLOW bond to O$_2$ breaks when O$_2$ required
OR H$_2$O replaces O$_2$ OR vice versa
ALLOW CO$_2$ replaces O$_2$ OR vice versa
ALLOW O$_2$ bonds/binds reversibly |
| 5 | (c) (ii) | $K_{stab} =$
$\frac{[\text{HbO}_2(\text{aq})]}{[\text{Hb}(\text{aq})][\text{O}_2(\text{aq})]}$ ✓
ALL Square brackets essential | 1 | ALLOW expression without state symbols (given in question) |
| 5 | (c) (iii) | Both marks require a comparison
Stability constant/K_{stab} value with CO is **greater** (than with complex in O$_2$) ✓
(Coordinate) bond with CO is **stronger** (than O$_2$)
OR CO binds more strongly ✓ | 2 | **IGNORE** (complex with) CO is more stable
ALLOW bond with CO is less likely to break (than O$_2$)
OR CO is a stronger ligand (than O$_2$)
OR CO has greater affinity for ion/metal/haemoglobin (than O$_2$)
ALLOW CO bond formation is irreversible
OR CO is not able to break away
IGNORE CO bonds more easily
OR CO complex forms more easily |
<p>| 5 | | Total | 18 |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
</table>
| **6 (a)** | CH₂COOH + H₂O ⇌ H₃O⁺ + CH₃COO⁻
Acid 1 Base 2 Acid 2 Base 1 √ | 2 | IGNORE state symbols (even if incorrect)
ALLOW 1 AND 2 labels the other way around.
ALLOW ‘just acid’ and ‘base’ labels if linked by lines so that it is clear what the acid–base pairs are
ALLOW A and B for ‘acid’ and ‘base’
IF proton transfer is wrong way around
ALLOW 2nd mark for idea of acid–base pairs, i.e.
CH₂COOH + H₂O ⇌ CH₃COOH⁺ + OH⁻ ×
Base 2 Acid 1 Acid 2 Base 1 √ | |
| **6 (b) (i)** | Water dissociates/ionises
OR
H₂O ⇌ H⁺ + OH⁻
OR
2H₂O ⇌ 2H₃O⁺ + 2OH⁻ √ | 1 | ALLOW K_w = [H⁺][OH⁻]
OR [H⁺][OH⁻] = 10⁻¹⁴ (mol² dm⁻⁶)
IGNORE breaking for dissociation
IGNORE water contains H⁺ and OH⁻
IGNORE H₂O → H⁺ + OH⁻ i.e. no equilibrium sign
IGNORE 2H₂O → H₃O⁺ + OH⁻ i.e. no equilibrium sign |
<table>
<thead>
<tr>
<th>6</th>
<th>(b)</th>
<th>(ii)</th>
<th>FIRST, CHECK THE ANSWER ON ANSWER LINE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>IF answer = 1.15×10^{-11}, award 2 marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$[H^+] = 10^{-3.06} = 8.71 \times 10^{-4}$ (mol dm$^{-3}$) ✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$[OH^-] = \frac{1.00 \times 10^{-14}}{8.71 \times 10^{-4}} = 1.15 \times 10^{-11}$ (mol dm$^{-3}$) ✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ALLOW answer to two or more significant figures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2SF: 1.1×10^{-11}; 4SF: 1.148×10^{-11};</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>calculator $1.148153621 \times 10^{-11}$</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>IF there is an alternative answer, check to see if there is any ECF credit possible using working below.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ALLOW 2 SF: 8.7×10^{-4} up to calculator value of 8.7096359×10^{-4} correctly rounded</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ALLOW alternative approach using pOH:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pOH = $14 - 3.06 = 10.94$ ✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$[OH^-] = 10^{-10.94} = 1.15 \times 10^{-11}$ (mol dm$^{-3}$) ✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>(c)</th>
<th>(i)</th>
<th>$2\text{CH}_3\text{COOH} + \text{CaCO}_3 \rightarrow (\text{CH}_3\text{COO})_2\text{Ca} + \text{CO}_2 + \text{H}_2\text{O}$ ✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>IF there is an alternative answer, check to see if there is any ECF credit possible using working below.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ALLOW state symbols</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ALLOW provided that reactants on LHS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For $\text{CO}_2 + \text{H}_2\text{O}$, ALLOW H_2CO_3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ALLOW $\text{Ca(\text{CH}_3\text{COO})}_2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ALLOW $(\text{CH}_3\text{COO})_2\text{Ca}^{2+}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BUT DO NOT ALLOW if either charge is missing or incorrect</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(c)</th>
<th>(ii)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>solution contains CH$_3$COOH AND CH$_3$COO$^-$ ✓</td>
<td>ALLOW names: ethanoic acid for CH$_3$COOH ethanoate for CH$_3$COO$^-$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALLOW calcium ethanoate OR (CH$_3$COO)$_2$Ca for CH$_3$COO$^-$</td>
<td>IGNORE ‘acid, salt, conjugate base; responses must identify the acid and conjugate base as ethanoic acid and ethanoate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IGNORE ethanoic acid is in excess (in question) BUT DO ALLOW some ethanoic acid is left over/present/some ethanoic acid has reacted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IGNORE equilibrium: CH$_3$COOH \rightleftharpoons H$^+$ + CH$_3$COO$^-$</td>
<td>Dissociation of ethanoic acid only</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c)</td>
<td>(iii)</td>
<td>Quality of written communication, QWC</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-------</td>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>2 marks are available for explaining how the equilibrium system allows the buffer solution to control the pH on addition of H⁺ and OH⁻ (see below)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CH₃COOH ⇌ H⁺ + CH₃COO⁻ ✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CH₃COOH reacts with added alkali OR CH₃COOH + OH⁻ → OR added alkali reacts with H⁺ OR H⁺ + OH⁻ → ✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Equilibrium → right OR Equilibrium → CH₃COO⁻ ✓ (QWC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CH₃COO⁻ reacts with added acid ✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Equilibrium → left OR Equilibrium → CH₃COOH ✓ (QWC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FULL ANNOTATIONS MUST BE USED

Note: If there is no equilibrium equation then the two subsequent equilibrium marks are not available: max 2

DO NOT ALLOW HA ⇌ H⁺ + A⁻

DO NOT ALLOW more than one equilibrium equation.

ALLOW response in terms of H⁺, A⁻ and HA

IF more than one equilibrium shown, it **must** be clear which one is being referred to by labeling the equilibria.

ALLOW weak acid reacts with added alkali

DO NOT ALLOW acid reacts with added alkali

ALLOW conjugate base reacts with added acid

DO NOT ALLOW salt/base reacts with added acid
FIRST, CHECK THE ANSWER ON ANSWER LINE
IF answer = 11.48 OR 11.5 (g), award 5 marks

\[[H^+] = 10^{-5} \text{ (mol dm}^{-3} \text{)} \]

\[[\text{CH}_3\text{COO}^-] = \frac{1.75 \times 10^{-5}}{10^{-5}} \times 0.200 = 0.350 \text{ mol dm}^{-3} \]

\[n(\text{CH}_3\text{COONa}/\text{CH}_3\text{COO}^-) \text{ in 400 cm}^3 = 0.350 \times \frac{400}{1000} = 0.14(0) \text{ (mol)} \]

mass $\text{CH}_3\text{COONa} = 0.140 \times 82.0 = 11.48 \text{ OR 11.5 (g)}$

For ECF, $n(\text{CH}_3\text{COONa}/\text{CH}_3\text{COO}^-)$ must have been calculated in step before

FULL ANNOTATIONS MUST BE USED

IF there is an alternative answer, check to see if there is any ECF credit possible.

Incorrect use of $[H^+] = \sqrt{[\text{CH}_3\text{COOH}] \times K_a}$ scores zero
BUT IGNORE if an alternative successful method is present

Incorrect use of K_w, 1 max for $[H^+] = 10^{-5} \text{ (mol dm}^{-3} \text{)}$
BUT IGNORE if an alternative successful method is present

ALLOW \[n(\text{CH}_3\text{COONa}/\text{CH}_3\text{COO}^-) \]
\[= \frac{1.75 \times 10^{-5}}{10^{-5}} \times 0.08 = 0.14(0) \text{ (mol)} \]

Note: There is no mark just for $n(\text{CH}_3\text{COOH}) \text{ in 400 cm}^3 = 0.200 \times \frac{400}{1000} = 0.08 \text{ (mol)}$

As alternative for the 4th and 5th marks, ALLOW:
mass of $\text{CH}_3\text{COONa} \text{ in 1 dm}^3 = 0.350 \times 82.0 = 28.7 \text{ g}$
mass of $\text{CH}_3\text{COONa} \text{ in 400 cm}^3 = 28.7 \times \frac{400}{1000} = 11.48 \text{ g}$

COMMON ECF
4.592 OR 4.6 g AWARD 4 marks
use of 400/1000 twice
ALLOW variants of Henderson–Hasselbalch equation.

\[pK_a = -\log(1.75 \times 10^{-5}) = 4.757 \quad \text{Calc: 4.75696.....} \]

\[\log \frac{[\text{CH}_3\text{COO}^-]}{[\text{CH}_3\text{COOH}]} = \text{pH} - pK_a = 5 - 4.757 = 0.243 \]

\[\frac{[\text{CH}_3\text{COO}^-]}{[\text{CH}_3\text{COOH}]} = 10^{0.243} = 1.75 \]

\[[\text{CH}_3\text{COO}^-] = 1.75 \times 0.200 = 0.350 \text{ mol dm}^{-3} \]

\[n(\text{CH}_3\text{COONa/CH}_3\text{COO}^-) \text{ in 400 cm}^3 \]
\[= 0.350 \times \frac{400}{1000} = 0.14(0) \text{ (mol)} \]

\[\text{mass } \text{CH}_3\text{COONa} = 0.140 \times 82.0 = 11.48 \text{ OR 11.5 (g)} \]

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 17
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 (a)</td>
<td>Definition
The e.m.f. (of a half-cell) compared with/connected to a (standard) hydrogen half-cell/(standard) hydrogen electrode ✓</td>
<td>2</td>
<td>As alternative for e.m.f., ALLOW voltage OR potential difference OR p.d. OR electrode potential OR reduction potential OR redox potential ALLOW /(standard) hydrogen cell IGNORE S.H.E. (as abbreviation for standard hydrogen electrode) ALLOW 1M DO NOT ALLOW 1 mol ALLOW 1 atmosphere/1 atm OR 101 kPa OR 101325 Pa</td>
</tr>
<tr>
<td>7 (b)</td>
<td>(i) 2Ag⁺(aq) + Cu(s) → 2Ag(s) + Cu²⁺(aq) ✓</td>
<td>1</td>
<td>State symbols not required ALLOW = provided that reactants on LHS</td>
</tr>
<tr>
<td>7 (b)</td>
<td>(ii) Assume Cu²⁺</td>
<td>Cu OR Cu half cell unless otherwise stated.
([\text{Cu}^{2+}]) decreases OR < 1 mol dm⁻³ AND
Equilibrium (shown in table) shifts to left ✓
more electrons are released by Cu ✓
The cell has a bigger difference in (E) ✓</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>(c)</td>
<td>(i)</td>
<td>no/less CO₂ OR H₂O is only product OR greater efficiency ✓</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>(c)</td>
<td>(ii)</td>
<td>liquefied/as a liquid AND under pressure/pressurised ✓</td>
</tr>
<tr>
<td>7</td>
<td>(d)</td>
<td>(i)</td>
<td>(E = -2.31 \text{ (V)} \checkmark)</td>
</tr>
<tr>
<td>7</td>
<td>(d)</td>
<td>(ii)</td>
<td>(4\text{Al}(s) + 4\text{OH}^−(aq) + 3\text{O}_2(g) + 6\text{H}_2\text{O}(l) \rightarrow 4\text{Al(OH)}_4^−(aq)) (\text{species ✓ balance ✓})</td>
</tr>
</tbody>
</table>

Total 11
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
</table>
| **8 (a)** | Fe₂O₃ + 3Cl₂ + 10OH⁻ → 2FeO₄²⁻ + 6Cl⁻ + 5H₂O ✓✓ | 2 | ALLOW multiples
ALLOW oxidation half equation for two marks
Fe₂O₃ + 10OH⁻ → 2FeO₄²⁻ + 5H₂O + 6e⁻
Correct species would obtain 1 mark
– question: equation for oxidation
ALLOW variants forming H⁺ for 1 mark, e.g:
Fe₂O₃ + 3Cl₂ + 5OH⁻ → 2FeO₄²⁻ + 6Cl⁻ + 5H⁺
Fe₂O₃ + 3Cl₂ + 5OH⁻ → 2FeO₄²⁻ + 5HCl + Cl⁻ |
| **8 (b)** | Ba²⁺(aq) + FeO₄²⁻(aq) → BaFeO₄(s) ✓ | 1 | Balanced ionic equation AND state symbols required
DO NOT ALLOW +2 or –2 for ionic charges |
| **8 (c)** | Reason can ONLY be correct from correct reducing agent
reducing agent: I⁻ OR KI ✓
I⁻ adds/donates/loses electrons
AND
to FeO₄²⁻ OR to BaFeO₄ OR to Fe(VI) or to Fe(+6) ✓
ALLOW Fe(6⁺) OR Fe⁶⁺ | 2 | IGNORE H⁺ OR acidified
ALLOW iodide/potassium iodide but DO NOT ALLOW iodine
ALLOW I⁻ loses electrons AND to form I₂
ALLOW Fe(6+) OR Fe⁶⁺ |
F325 Mark Scheme June 2014

8 (d)

FIRST, CHECK THE ANSWER ON ANSWER LINE
IF answer = 51.8%, award 4 marks.

\[n(S_{2}O_{3}^{2-}) \text{ used} = 0.1000 \times \frac{26.4}{1000} = 2.64 \times 10^{-3} \text{ (mol)} \checkmark \]

\[n(FeO_{4}^{2-}) = \frac{1}{2} \times 2 \times 3 \times 2.64 \times 10^{-3} = 8.8(0) \times 10^{-4} \text{ (mol)} \checkmark \]

Mass BaFeO₄ in sample
= \(8.8 \times 10^{-4} \times 257.1\) g = 0.226248 g \checkmark

% purity = \(\frac{0.226248}{0.437} \times 100 = 51.8\% \checkmark\)

MUST be to one decimal place (in the question)

As an alternative for the final two marks, ALLOW:

Theoretical amount of BaFeO₄ = \(\frac{0.437}{257.1}\) = 0.00170 (mol) \checkmark

% purity = \(\frac{8.8 \times 10^{-4}}{1.70 \times 10^{-3}} \times 100 = 51.8\% \checkmark\)

FULL ANNOTATIONS MUST BE USED

For alternative answers, look first at common ECFs below. Then check for ECF credit possible using working below
IF a step is omitted but subsequent step subsumes previous, then award mark for any missed step

Working must be to at least 3 SF throughout until final % mark
BUT ignore trailing zeroes, ie for 0.880 allow 0.88

ECF answer above \(\times \frac{1}{2} \times 2/3\)
This mark may be seen in 2 steps via I₂ but the mark is for both steps combined

ECF \(\frac{257.1 \times \text{answer above}}{0.437} \times 100\)

ALLOW 51.7% FROM 0.226 g BaFeO₄ (earlier rounding)

Common ECFs:
No \(\times 2/3\) for \(n(FeO_{4}^{2-})\):
% purity = 77.7%/77.6% 3 marks

No \(+\) 2 for \(n(FeO_{4}^{2-})\):
% purity = 25.9% 3 marks

24.6 used instead of 26.4:
% purity = 48.2% 3 marks

4
| 8 | (e) | **gas**: O₂ ✓
precipitate: Fe(OH)₃ ✓
equation:
\[2\text{FeO}_4^{2-} + 5\text{H}_2\text{O} \rightarrow \frac{1}{2}\text{O}_2 + 2\text{Fe(OH)}_3 + 4\text{OH}^- \]
OR
\[2\text{FeO}_4^{2-} + \text{H}_2\text{O} + 4\text{H}^+ \rightarrow \frac{1}{2}\text{O}_2 + 2\text{Fe(OH)}_3 ✓ \] | 3 | **DO NOT ALLOW** names
IGNORE a balancing number shown before a formula
ALLOW Fe(OH)₃(H₂O)₃
ALLOW multiples
ALLOW
\[2\text{FeO}_4^{2-} + 11\text{H}_2\text{O} \rightarrow \frac{1}{2}\text{O}_2 + 2\text{Fe(OH)}_3(\text{H}_2\text{O})_3 + 4\text{OH}^- \] | 12 | **Total** |
OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning
Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored