Lesson Element

Thinking Abstractly

Instructions and answers for teachers

These instructions should accompany the OCR resource ‘Thinking Abstractly’ activity which supports OCR A Level Computer Science.

The Activity:
These activities support an introduction to the computer science notion of abstraction.

This activity offers an opportunity for English skills development.

Associated materials:
‘Thinking Abstractly’ Lesson Element learner activity sheet.
Introduction

Abstraction is the ability to filter the details that we do not need out of a problem so that we can create a more general idea of what the problem is. We may then be able to go on and apply the same problem solving procedure to other problems.

For instance, you could give a list of each London underground station and which other stations they are connected to, or you could produce a map like the London Underground tube map that abstracts the problem, making it easier to understand. Since this was so famous, this is now a common ‘template’ to use for other underground mapping systems.

The first activity seems like a simple colouring activity. The activity will help students consider how a computer might solve this problem. They will then use the same abstraction to solve activity 2.

Learning Outcomes:

After the activity, pupils should:

- Have experience in abstracting problems
- Recognise the advantages of why we abstract problems to ‘re-use’ a solution
- Recognise that constraints make problems harder to solve
- Understand what graphs are and why they are used in computer science
- Understand why there is a need to automate tasks
Activity 1

Introduce the idea of abstraction in computer science

- Pupils are asked to look at Activity 1 and colour it in using as few colours as possible.
- You can ask pupils how they achieved the task and see if there are any common themes.
- Ask questions focused on extending the problem and introducing graphs as a method of problem representation.
- Discuss the idea of constraints. Did anyone attempt the extension activities?

Solution

First go through each node and list what other nodes it is connected to

1 – 2, 3, 6
2 – 1, 3, 4
3 – 1, 2, 4, 5, 6
4 – 2, 3, 5
5 – 3, 4, 6
6 – 1, 3, 5
Start with one node and keep applying the rules
Activity 2

Pupils should have a look at Activity 2. Can they figure it out for themselves?

Extension (10 mins)

Students who finish early should be encouraged to explore their own graphs

Discussion and conclusions (10 mins)

- Discuss with students what the idea of abstraction means to them and sort out any misconceptions.
- Discuss the use of rules to complete the tasks.
- Discuss limitations of using graphs, and that not all problems can be solved in this way.
- Discuss that as you may have found from Activity 2, computer logic does not cover all bases.

Supporting links/Other activities

http://csi.dcs.gla.ac.uk/workshop-view.php?workshopID=6 – Graph colouring. Materials for this exercise were adapted from this exercise for easier use in a lesson. Author: CS inside

http://studio.code.org/s/1/level/81 - Abstraction madlibs activity. Author: code.org

http://codeboom.wordpress.com/2012/11/22/python-madlibs/ - Python madlibs Author: Laura @codeboom

Solution

Of course, this problem can also be represented as a graph. It can be easier to draw if students replace the names of the animals with the numbers, and then they can work at each one in a logical order.

Of course, the problem is with the chart we have made is that it suggests that just because animals don’t eat each other, that doesn’t mean that they are suited to be living together. Computer science needs to have human logic attached to it too!