[image: image1.png]AS and A LEVEL
COMPUTER SCIENCE

Data Structures
Activity 1 High Scores List using Dictionaries
Produce a program that holds a table of high scores for a computer game.
Task 1
Create a dictionary of names and high scores. A breakdown of what dictionaries are and their functions can be found at http://www.tutorialspoint.com/python/python_dictionary.htm
Task 2

Enable the user to look up someone’s high score from the dictionary.
Task 3

Enable the user to update the high scores table for a person.
Task 4

Enable the user to print out all the high scores in order (descending).
Activity 2 Linked Lists in Python 3
A Linked list is a data structure where each item (Node) holds a pointer to store the location (point to) the next item in the list.

In the below case, we call ‘Apple’ the head, as it is the first item in the list.

[image: image2.png]OCR

Oxford Cambridge and RSA

We can create a Node class in Python like so:
class Node:

def_init_(self,data):

 self.data = data #instance variable to store the data (a name)

 self.next = None #instance variable with address of next node
In our main function we can create instances of the Node class and link them together like so:
def main():
 # The head is the first node in a linked list.
 Node1 = Node(“Apple”) #head

 Node2 = Node(“Orange”)
 Node3 = Node(“Pear”)
 Node1.next = Node2

 Node2.next = Node3

We now want to be able to:

· Print the linked list

· Add things to the list

· Delete things from the list
Task 1 Print the linked list

We want to print the list in order, so we pass in the head node. We know that by default node.next = None, so when at the end of the loop we set node = node.next, then if there are no nodes at the end of the list (or we have forgotten to link them together) then it will stop.
def printList(head):
 # An example of printing the data of the list in order:
 node = head #give the head node
 print() #new line

 while node != None:
 print(node.data)
 node = node.next

Task 2 Add things to the list

If we want to insert a Node, the below diagram should aid us in understanding how this would work

As you can see, we firstly need to locate the item that we want to insert our new node after. Once we have done this, we set the new node.next to the same value as the node at the position we have just found. Now we set the value of node.next for our current node to the new node we have just created.
def InsertData(head,data,location):
 node = head #give the head node
 while node != None:
 if node.data == location:
 NewNode = Node(data)
 NewNode.next = node.next

 node.next = NewNode
 node = node.next
Task 3 Delete things from the list

If we want to delete a Node, this might seem quite complex at first, since it should make sense by now that if we know the item we want to delete, we have no way of changing the value of the previous node.

However, if we always keep track of the previous node we have visited, then this becomes possible.

Extension tasks

Task 4

Create a node so that it automatically adds it onto the end of the list (unless you specify otherwise).

Task 5

Be able to edit items in the list.

Task 6

Make a function to insert items before (as opposed to after) another item.
Activity 3 Binary Tree in Python 3
A binary tree is like an upside down tree. The top node is called the ‘root’ and each vertex can have no more than two children. These children are called the ‘left child’ and the ‘right child’.
We set up the constructor to hold the value of the node (The root ID) and the left and the right nodes. Each node will be another instance of a BinaryTree, whether it has children or not.
class BinaryTree:

#The constructor expects some kind of object to store in the root

#The root object of a tree can be a reference to any object

def_init_(self,rootID):

 self.rootID = rootID

 self.leftChild = None
 self.rightChild = None

We now need to add methods to the BinaryTree class in order to insert left and right children to the existing nodes.

If we try to insert a left child onto node a it will have the effect of pushing ‘b’ down a level to become the child of ‘d’.
#To add a left child to the tree, we will create a new binary tree object
#We set the ‘left’ attribute of the root to refer ro this new object

def insertLeft(self,newNode):

 #if there is no existing left child, simply add a node to the tree

 if self.leftChild == None:

 self.leftChild = BinaryTree(newNode)

 else:

 #if the node already has a left child, we insert a node

 #and push the existing child down one in the tree

 t = BinaryTree(newNode)

 t.leftChild = self.leftChild
 self.leftChild = t
Task 1

Now that you have seen this, can you develop the code for inserting the right child?
Populating the tree

r = BinaryTree(‘a’)
r.insertLeft(‘b’)
r.insertRight(‘c’)
r.insertRight(‘d’)

Printing the tree
#there are 3 ways of traversing a binary tree
#pre-order: root first, left subtree, right subtree

#in-order: left subtree, root, right subtree

#post-order: left subtree, right subtree, root

#pre order

def printTreePre(tree):

 if tree !- None:

 print(tree.rootID)

 printTreePre(tree.leftChild)

 printTreePre(tree.rightChild)
This produces a,b,d,c

Task 2

Using the comments in the code above, can you now produce printing functions for in-order and post-order?
Tree traversal

Using the trick found in the following hyperlink: (http://en.wikipedia.org/wiki/Tree_traversal Pre-order you place dots to the left of each node, In-order you place underneath the nodes and post to the right of the nodes and then trace around left side of the root to right.)

You see we pass via a,b,d,c. This proves that our program works correctly.
Appendix
Full code for Activity 1, Task 4

from operator import itemgetter

high_scores = {"mike":100,"joe":300,"emily":200}

def main():

 choice = None

 while choice != "0":

 print(

 """

 Hi scores system

 0-Quit

 1-Look up someone's high score

 2-Add a score

 3-Update a score

 4-Display all high-scores

 """

)

 choice = input("Choice: ")

 #exit

 if choice == "0":

 print("Goodbye")

 #look up a score

 elif choice == "1":

 player = input("Whose score would you like to look at?")

 if player in high_scores:

 score = high_scores[player]

 print("\n", player, "'s high score is ", score)

 else:

 print("Sorry, player ", player, "not in system")

 elif choice == "2":

 player = input("Whose score would you like to add?")

 if player not in high_scores:

 score = input("What is their high-score")

 high_scores[player] = score

 print("\n", player, "'s score has been added to the system")

 else:

 print("That player already exists. If you want to edit their score do so from the menu")

 #edit a high score

 elif choice == "3":

 player = input("Whose score would you like to edit?")

 if player in high_scores:

 score = input("What would you like their new score to be?")

 high_scores[player] = score

 print("\n", player, "'s high score is now", score)

 else:

 print("Sorry, player ", player, "not in system")

 #display all high-scores

 elif choice == "4":

 for key, value in sorted(high_scores.items(), key=itemgetter(1), reverse = True):

 print(key, value)
Full code for Activity 3, Task 2

class BinaryTree:

 def __init__(self,rootID):

 self.rootID = rootID

 self.leftChild = None

 self.rightChild = None

 def insertLeft(self,newNode):

 if self.leftChild == None:

 self.leftChild = BinaryTree(newNode)

 else:

 t = BinaryTree(newNode)

 self.leftChild = t

 t.leftChild = self.leftChild

 def insertRight(self,newNode):

 if self.rightChild == None:

 self.rightChild = BinaryTree(newNode)

 else:

 t = BinaryTree(newNode)

 t.rightChild = self.rightChild

 self.rightChild = t

#pre order

def printTreePre(tree):

 if tree != None:

 print(tree.rootID)

 printTreePre(tree.leftChild)

 printTreePre(tree.rightChild)

#in order

def printTreeIn(tree):

 if tree != None:

 printTreeIn(tree.leftChild)

 print(tree.rootID)

 printTreeIn(tree.rightChild)

#post order

def printTreePost(tree):

 if tree != None:

 printTreePost(tree.leftChild)

 printTreePost(tree.rightChild)

 print(tree.rootID)

r = BinaryTree('a')

r.insertLeft('b')

r.insertRight('c')

r.insertRight('d')

printTreePre(r)

print()

printTreeIn(r)

print()

printTreePost(r)
Apple

Orange

Pear

Apple

Orange

Pear

Potato

Apple

Pear

Orange

def DeleteData(head,data):

 current = head

 previous = None

 found = False

 while not found:

 if current.data == data:

 found = True

 else:

 previous = current

 current = current.next

 if previous == None:

 head = current.next

 else:

 previous.next = current.next

 return head

At the start of this function, we want to start off by setting the current node to the head, and create a space to store the previous node, which will enable us to delete a node. We also create a flag to indicate when we have found the item we want to delete.

Until we have found the right item we store details of the previous item and keep getting the next one.

Once we have found the item, if there is no previous item, that means the item we want to delete is the first item (the head). Therefore because we want to delete it, we set the head to the next item and return it.

Otherwise we set the next value of the previous node to the next value of the current node.

c

a

b

d

a

b

c

c

a

b

d

c

a

b

d

Start

End

Version 1

1

