
Computing

A Level

Computing
Exemplar Candidate Work
H447

Unit F454 Computing Project C

October 2015

www.ocr.org.uk

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

2 © OCR 2015

Contents
Introduction 3

URS/Teacher’s Comments 4

Candidate’s Work 6

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

3 © OCR 2015

Introduction
This sample material serves as a general guide. It provides the following benefits to a teacher:

•	 Gives teachers an appreciation of the variety of work that can be produced for this unit

•	 Shows how the mark scheme has been applied by a senior assessor

•	 Provides examples of both good and weak application of different parts of the mark scheme

•	 Provides real examples of work submitted for F454.

It is important to make the point that the teacher support materials play a secondary role to the Specification itself. The
Specification is the document on which assessment is based and specifies what content and skills need to be covered in
delivering the course. At all times, therefore, this teacher support should be read in conjunction with the Specification. If
clarification on a particular point is sought then that clarification should be found in the Specification itself.

This project is an example which has not been scaled or adjusted during the moderation process; as such the marks
awarded have been viewed as being ‘within tolerance’ when assessed by a moderator

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

4 © OCR 2015

URS/Teacher’s Comments
Sample Material – Project ‘C’

Centre marks/comments:

Definition, Investigation and Analysis
Definition Max Mark: 3

There is a sold and descriptive text detailing the area of investigation and the potential problems of the systems that are
in place within the role of Text base games. Early issues are hinted at.
 Centre Mark Awarded: 3

Investigation and Analysis Max Mark: 11

There is clear interatction via the use of online questionnaire with a range of end users across the school. All of the
details are recorded/collected. There is a thorough analysis of what people want developed in this game-styled project.
The requirements are detailed and relate back to the questions and research gained. HOwever, there is potential for
broader research using past games perhaps as a base line. The hardware and software requirements are a little vaige and
lack analysis/justification. The hardware/software requirements need more justification.
 Centre Mark Awarded: 8

 Total Section Mark : 11

Design
Nature of Solution Max Mark: 6

The design specification is functional but is not as detailed to allow independent implementation by a 3rd party.
Objectives are clear although lack detail.There are some descriptions of the UI deisgn and the function of buttons etc.
The menu flow is shown and makes sense. There is evidence that he has gained feedback from the end user at this
point. The “map” and general story line is useful. Variables are present but not complete.
 Centre Mark Awarded: 4

Algorithms Max Mark: 5

The algorithms are funcitonal and describe the basic actions that a player can take in the game. They cover all main
actions. However they are not proven to meet the full design specigication, not have they need tested for functionality.
 Centre Mark Awarded: 3

Test Strategy Max Mark: 6

There is a trivial test plan included that lacks depth or justification. There are a very limited number of test cases and
things like testing combat etc are never checked.
 Centre Mark Awarded: 2

 Total Section Mark: 9

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

5 © OCR 2015

Software Development and Testing
Software Development Max Mark: 16

There is a solution to the majoirty of the deisgn work and this is alpha tested as the solution develops. The testing is
narrative based, and is not linked closely to the original test plan, which was limited in nature. The screenshots aid the
development of the project and ther eis sufficient annotation to illistrate development for purpose. There are
annotations within the code, but these could be devleoped to explain the modular function further.
 Centre Mark Awarded: 10

Testing Max Mark: 14

The testing covers all button pressing and “option” selection testing. There is evidence that the original test plan has
been “re-written” and this test plan is much more robust, covering a range of data and options as needed.
End user tests have been demonstrated through the playing of the game and a form based feedback. Users have
provided feedback on the game.
 Centre Mark Awarded: 10

 Total Section Mark: 20

Documentation
Documentation Max Mark: 10

There is little documentation provided. There is no on screen help, but there is some validation messaging that gives
some support when a wrong action occurs. The user guide is very brief and does nt always cover everything expected.
 Centre Mark Awarded: 4

 Total Section Mark: 4

Evaluation
Discussion of the degree of success in meeting the original objectives Max Mark: 4

There is a brief return to the original requirements and mention of if they had been completed or not. However, there is
no real “depth” to the evaluation.
 Centre Mark Awarded: 2

Evaluate the user’s response to the system Max Mark: 3

End user feedback is included as part of the testing checks/form that was submitted. The end user provides some
feedback on the system, based on game play and time spend using the game. The end user has indicated some faults
and development that has been reflected on, in part, by the candidate.
 Centre Mark Awarded: 2

Desirable Extensions Max Mark: 3

The candidate identidies both positive and negatives within the system, and there is evidence that he has thought
about some potential developments. These developments have not necessarily been developed to the point of
identifying solutions however.
 Centre Mark Awarded: 2

 Total Section Mark: 6

 Overall Project Mark: 50

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

6 © OCR 2015

Candidate’s Work
Text based game project

A-level Computing F452

Section 1 – Definition, Investigation and Analysis 3
Problem definition 3
Past and current systems 3
Data Forms 4
Investigation and analysis 5
Types of research 5
Research 6
Questionnaire results 7
Analysis of feedback 11
Gameplay 11
UI and visuals 12
Controls 12
Initial ideas from results 12
Gameplay 12
UI and visuals 12
Controls 12
Second questionnaire 12
Analysis of second survey 16
Gameplay 16
UI and visuals 17
Controls 17
Second list of ideas 17
Gameplay 17
UI and visuals 17
Controls 17
Other 17
Final list of requirements 18
Gameplay 18
UI and visuals 18
Controls 18
Other 18
Software and Hardware requirements 18
Section 2 – Design and Testing 20
Objectives 20
Inputs 20
Outputs 21
Aesthetics 21
Processing 21
Interface designs 22
Game interface 22
Main menu interface 23
Game menu interface 23

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

7 © OCR 2015

Options menu interface 24
Screen flow 24
End user feedback 25
Results 25
Changes 26
Variables and data structures 26
Outline of story and basic game structure 27
Floor layouts 28
Floor 1 28
Floor 2 28
Combat 28
Movement 29
Pseudo code 29
Issuing commands 29
Combat 30
Handling Rooms 32
Section 3 – Implementation and Testing 33
Project 33
UI and menu navigation 33
The game 35
Testing 84
My test 84
User testing 92
Section 4 – Documentation 95
Brief description 95
Interface navigation 95
Movement 96
Interaction 96
Combat 96
Installation 97
Troubleshooting/Q&A 97
Section 5 – Evaluation 97

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

8 © OCR 2015

Section 1 – Definition, Investigation and Analysis
Problem definition
Recently I have noticed a lack of text based games in the market due which I believe is due to them not being as
appealing as other games with graphical interfaces and more intuitive gameplay. After talking to friends and looking
online it seems as if this is true. Judging by an online chart, action games account for 31.9% of games sold in 2013 with
shooters in second with 20% and sports games in third with 12.7%1. TBGs do not appear in this particular graph leading
me to believe that either the sales are so miniscule that they really don’t matter or that there just aren’t any TBGs on the
market. I can imagine this has left TBG fans disappointed. However, in the past few years retro gaming has become more
popular with games such as Shovel Knight2 and Organ Trail3 that play with the feeling of nostalgia to appeal to older
gamers but can still hold up in today’s market. This leads me to believe that TBGs could be an untapped market that
simply hasn’t been revisited. Text based games didn’t really have much wide spread appeal due to computers being so
expensive but now 56% of people on Earth own smartphones which are perfectly capable of playing games. As the
game industry has grown, the target audience has also grown making most modern games are developed to appeal to
the masses rather than a niche market which has led to less profitable/popular genres being phased out. I am planning
to have an end user that likes to play text-based games with an age range of 16-35 mainly consisting of males.
According to research, the average gamer is 314. Whilst I want the game to appeal to people who played TBGs when
they were younger and want to revisit the genre, I also want to introduce younger players to the text based game
experience.

My challenge is to create a text based game that will interest and entice current gamers.

Past and current systems
This genre of games usually has a higher focus on storytelling and description through text due to there being no
graphical interface. They are generally played by inputting commands into a command line to interact with the game.
This is potentially user unfriendly or unintuitive as it requires the user to have prior knowledge of commands and any
typing errors would not be accepted. However, this method of input allows for many different options within the game
as the only limits to input are the amount of accepted commands within the game.

These games were more common from the 70s to the 90s due to not being too demanding in terms of processing
power. They could be played on low spec machines and mostly required only a keyboard to play. Text based games are
much rarer these days as hardware has gotten much more powerful allowing for much more demanding games. Newer
games are also now much more intuitive in the way that they introduce players to the games mechanics.

Referring back to the chart from earlier, it seems current gamers tend to be more likely to play action and FPS games
than other genres. I think these games are popular as they are relatively easy to understand and can be played both
casually and competitively. They are generally fun for both short and long periods of time. They also benefit from being
visually appealing. I think In order for my game to fit in with the current market I will probably have to revise the genres
mechanics to make them seem less dated and make them more interesting to the current gamer.

There are very few newer text based games currently available. Heroes Rise: The Prodigy is a TBG released in 2012 on
Steam. The game uses only text, however rather than having a command line interface where you can input whatever
you want, inputs are done by picking from a list of choices. The game has received many positive reviews and is part one
of a trilogy.

Below is an image of Zork 1 which is one of the earliest text-based games, released in 1980.

1 http://venturebeat.com/2014/04/29/gaming-advocacy-group-the-average-gamer-is-31-and-most-play-on-a-console/
2 http://store.steampowered.com/app/250760/?snr=1_7_15__13
3 http://store.steampowered.com/app/233740/?snr=1_7_15__13
4 http://venturebeat.com/2014/04/29/gaming-advocacy-group-the-average-gamer-is-31-and-most-play-on-a-console/

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

9 © OCR 2015

Data Forms

Variable Data types From?
Output String Game

Input String User

Direction String Game/User

Magic word String Game/User

Investigation and analysis
Types of research
There any several different research types that I could use. Here are some benefits and drawbacks of each:

Questionnaires

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

10 © OCR 2015

With questionnaires, each person answers the same questions and if the respondent is anonymous, more honest
answers may be provided. However the questionnaire is only as good as the questions being asked and may be difficult
to allow people to expand on their questions. Questionnaires also have to be printed and distributed requiring a lot of
time and resources.

Online surveys
Online surveys can be easily distributed to a large group and allows for many people to be involved in the decision
making process. Some online surveys will automatically compile the data received into an easily read graph or other
form. However it is prone to error and it is possible that questions could be misinterpreted. As they are online they use
less resources than questionnaires.

Face to face interviews
Face to face interviews have a high response rate, give you immediate feedback and allow the interviewer to tailor the
discussion to the individual. However it requires good interviewing skills and due to the flexibility of the interview results
may result in inconsistencies in the results. It is the slowest method of data collection and analysis as it is usually done
one person at a time.

Observation
Observation can be combined with other methods of data collection and generates relevant and quantifiable data that
can give an in depth look at how the user interacts with the software and can identify persistent problems with the
system. The observer can observe multiple people at once. However it requires a skilled observer and if a group is aware
that they are being observed then their behaviour may be affected or they may feel uncomfortable.

For my research I will be using online surveys as they allow me to gather data from a large amount of people quickly and
easily which will be useful as my system is being developed for an audience rather than a single end user. I will also be
able to send the surveys to a wide range of people such as friends and schoolmates. Google forms puts responses from
the survey into a either a form or graph making analysis of the results much easier and faster.

Research
As this game is not being created for a single end user I will send out questionnaires to select students in my college
that are within my target age range and target demographic. Some examples of questions I could ask are;

•	 How old are you?

•	 Are you male or female?

•	 How long do you normally spend playing games?

•	 How long have you played games?

•	 What is your favourite genre?

•	 Have you ever played a text based game?

 – If so, how often do you play text based games?
 – What do you like about text based games?
 – What do you dislike about text based games?

•	 If not, why?

•	 What features would you like to see in a text based game?

•	 Do you prefer to play games online (Multiplayer) or offline (Single player)?

I am also going to observe others playing text based games to get an idea of how others play games.

Questionnaire results
I sent out 19 questionnaires and all recipients replied however some recipients have not filled out the entire survey.

Below is an image of the questionnaire.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

11 © OCR 2015

Here are the results:

How what is your DOB?

1. 09/04/1996

2. 24/09/1997

3. 02/12/1997

4. 30/05/1996

5. 07/01/1998

6. 19/07/1997

7. 12/08/1997

8. 23/03/1996

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

12 © OCR 2015

9. 13/03/1997

10. 29/06/1997

11. 20/03/1995

12. 17/12/1996

13. 01/09/1997

14. 05/01/1988

15. 27/05/1980

16. 20/11/1993

17. 30/07/1998

18. 09/04/1990

19. 24/06/1996

Are you male or female?

1. Male (10)

2. Female (9)

How long do you normally spend playing games?

1. 4+ hours (6)

2. 2-4 hours (11)

3. 1-2 hours (2)

How long have you played games?

1. 6+ years (16)

2. 3-6 years (3)

What is your favourite genre?

1. Action (4)

2. Adventure (3)

3. Shooter (5)

4. RPG (2)

5. Sports (1)

6. Fighting (2)

7. Puzzle (1)

8. Rhythm (1)

9. Text based game (0)

10. Other: (0)

Have you ever played a text based game?

1. Yes (16)

2. No (3)

If not, why?

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

13 © OCR 2015

1. Looks boring.

2. Uninterested.

3. Never had the chance.

If so how often do you play text based games?

1. Once a year (13)

2. Once a month (3)

3. Blank (3)

What do you like about text based games?

4. They’re a way to pass the time when I’m extremely bored. Honestly, I would rather read a book.

5. Wide amount of possibilities to choose from.

6. It causes the player to think and make decisions appropriate to the situation.

7. Range of choice.

8. The role play aspect you can get from them.

9. Lots of focus on the story line and text based games are usually more dynamic.

10. I enjoy using my imagination to picture the described settings and scenarios.

11. The ability to choose and have multiple outcomes depending on the choices you make.

12. nothing much, just helps me to keep track of my touch typing skills

13. Blank

14. I like the that the world is described through text as it leaves it up to my imagination as to what everything looks like.

15. Easy to understand how to play.

16. Good pastime

17. There is generally a lot of attention to detail when describing surroundings.

18. Nothing

19. Blank

20. Accessibility. You don’t need to remember many button combinations, you just need to know how to type.

21. Blank

22. I like that there is an element of choice

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

14 © OCR 2015

What do you dislike about text based games?

1. I find them dull for the most part, unless they tackle situations I am interested in.

2. Reminding me my imagination is bad.

3. They’re only text.

4. No images.

5. The repetitive nature of the story.

6. They are text based games.

7. The rigid structure of text-based games often restricts me from getting the most out of my in-game decisions, with
the exception of a few. Some require a lot of work as the actions have to be typed in their own rules. You’re not
allowed to say “Use Key.” You must specify “Use Golden Abyss Key on West Golden Key Door and Unlock Golden Key
Door and Open Golden Key Door.”

8. blank

9. Very dependent on the story.

10. It’s boring and plain, there’s nothing to it.

11. Needs an interesting premise, otherwise the game just falls apart.

12. Tiring looking at text all the time.

13. Not very rewarding.

14. Not much in the way of gameplay.

15. No visuals.

16. Too much text.

17. Pretty boring and railroady.

18. Not very interesting.

19. Choices usually don’t make much difference.

What features would you like to see in a text based game?

1. A Dragon Age style list of options, rather than having to guess at what to type.

2. Character portraits, fun.

3. More than text.

4. Some images (maybe in ASCII) to give a better idea of the situation. Spell checker built in.

5. A good story. Colours text and/or background (Not black and white). Pictures/images of characters in the game (to
help with role-play).

6. Different endings, different options, a lot of variety and diversity, a lot of choice and maybe some graphics.

7. More variation in options, easier-to-type actions as opposed to long strings on sentences.

8. Maybe a way to make it more fun.

9. Blank.

10. GUI.

11. Custom scenario creator.

12. Less text and a graphical interface.

13. A combat system.

14. Variety in gameplay.

15. Visuals.

16. Some images to go with the text.

17. Other things to do besides the main story that the games is telling.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

15 © OCR 2015

18. Interesting mechanics

19. Choices that significantly affect the progression of the story

Would you prefer a game that uses only text or a game with both a GUI and text?

1. Text (0)

2. GUI and Text (19)

What do you like about modern games that aren’t available in TBGs?

1. Freedom of movement as opposed to restrictive parameters and invisible walls. Modern games also tend to feature
finer details in their models. ‘Planescape: Torment’ was an excellent TBG for its time on account of its excellent story,
freedom and artwork.

2. There’s more than text.

3. There’s a story and a quest/objective to complete

4. You can understand a character by seeing their reactions to events whereas in a TBG this is not the case as they may
not describe the player’s character and only give them options of direction and significant landmarks.

5. More possibilities in regards to control, gameplay etc.

6. User interfaces

7. Skill based combat systems rather than turn based

8. The variety and amount of content

9. Graphics

10. Intuitivity of control

11. There’s a story and a quest/objective to complete

12. Online multiplayer

13. Nothing (7)

Analysis of feedback
From my feedback I can tell that most people have at least played a text based game once in their life, however the
results also show that those who have played them do not play them frequently, mostly once a year.

Gameplay
People generally like the focus on story and the thought that must be put in when choosing a path or figuring out
puzzles. This could mean that there should be a focus on the story, puzzle and choice elements of the game. Wanted
features include a graphical interface, interesting gameplay mechanics, character portraits, a combat system and an
interesting story. These features are possible to implement with the time I have however some wanted features are not
possible for me to implement such as multiplayer and meaningful choices that heavily impact story progression

UI and visuals
Lack of gameplay and lack of any graphical interface to go with the text are the most commonly brought up problems.
Almost all recipients prefer GUI and text over just text. This means that I should probably include visuals in the game. By
far the most wanted feature judging by the answers from each question is a graphical interface.

Controls
Highlighted features in modern games that are not in TBGs include intuitive controls, graphics, freedom of movement
and variety of content. This could mean that as well as a command line there should also be shortcut keys for common
actions to make it more intuitive.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

16 © OCR 2015

Initial ideas from results
From my results I have compiled a list of ideas based on the results from the questionnaire.

The game will need:

Gameplay
•	 Variety of things to do.

•	 Puzzles that require some thought.

•	 A combat system.

•	 An emphasis on story.

UI and visuals
•	 A graphical interface as well as text.

•	 On screen buttons as well as a command line.

•	 A portrait showing the characters face (possibly shows emotions or status effects).

•	 GUI to show Health, level, buttons etc.

Controls
•	 Shortcut buttons for commonly used commands

•	 Will use keyboard and mouse

Second questionnaire
Now that I have compiled the results of the first questionnaire and produced a list of user requirements I need to find
out if the end user agrees with them and ask some more in depth questions related to the answers from the previous
questionnaire and technical questions.

I sent this questionnaire back to the people who answered the first questionnaire and got full replies.

Are you happy with these user requirements?

1. Yes (15)

2. No (4)

If not, is there anything you would add to the list?

3. When someone says there are meaningful choices, they usually aren’t. How will they be meaningful, and are they
more consequence actions then actual choices? How can a Text based game be fast paced even though typing
speeds differ by person to person?

Do you think there should be multiple difficulty settings or one set difficulty?

1. Multiple (8)

2. Single (11)

Do you think the game should focus mainly on combat, puzzles or story?

1. Combat (8)

2. Puzzle (5)

3. Story (6)

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

17 © OCR 2015

What information do you think should be displayed on the game GUI?

1. Health, inventory, notepad (to write down notes and clues), General actions to save time typing them each time (E.G.
movement, look, take, put, interact). No mini-map, the only map should be one the player has to stop and bring it up.

2. Health, mana and minimap.

3. Score, time, currency, health.

4. Basic info such as health and mana

5. Health, buttons and command line.

6. Health

7. There should be a save button, text box, character portrait and command line.

8. Health, mana, text box

9. Inventory, health, pause menu button

10. Health and mana bar, inventory and text I/O

11. There should probably be a health and mana bar and an inventory box

12. Health, minimap and inventory.

13. Compass, health, mana, stamina, stats, inventory, text box

14. Health bar, mini map, menu button

15. Player stats, enemy stats, items

16. Map, abilities, items, enemy health

17. Health, buttons for movement and combat, inventory, map/compass

18. Objectives, health, equipment, map with layout of rooms

19. Health, mana, stamina, items, money, current task

Roughly how long would you want each level to take?

1. 30 minutes, could differ depending on the puzzles.

2. 15-20 minutes.

3. 2~5 minutes.

4. Around 5 mins

5. 5-10 mins

6. A few minutes

7. No more than 10 minutes.

8. Between 10 and 15 minutes

9. Couple mins

10. Less than half an hour.

11. 10 minutes

12. <5 Mins

13. Somewhere around 10 minutes

14. Between 5 and 8 mins.

15. 3 minutes.

16. 5 minutes

17. Around 5 mins.

18. 5~15 minutes

19. 10 to 20 minutes

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

18 © OCR 2015

What sort of obstacles would you like to see in the game?

1. Pattern puzzles, pressure sensitive pads, Enemies that take thought to overcome.

2. Whatever you want.

3. I would say a locked door or a chasm the player requires a special ability to pass would work.

4. Generic monsters; skeletons, goblins etc.

5. Pitfalls, enemies, traps

6. Hostile creatures, traps, illness

7. Decisions resulting in a combat scenario.

8. Monster ambushes

9. Spike pits, Key doors

10. Locked doors/gates

11. Skeletons, zombies

12. Doors that can only be open by solving a puzzle.

13. Puzzles

14. Locked doors, dead ends

15. Traps, enemies

16. Riddle/Puzzle activated doors, weak flooring

17. Blowpipes, boulders, timed doors

18. Locked doors/gates, fake walls, enemies

19. Rats, goblins etc.

Would you prefer turn based or real-time combat?

1. Turn based (12)

2. Real time (7)

Would you prefer 2D or 3D graphics?

1. 2D (14)

2. 3D (5)

Would you prefer a manual save or auto save feature?

1. Manual (11)

2. Auto (8)

What do you think should be included in the options menu?

1. Volume, resolution, sensitivity

2. It should include sound control and resolution

3. Sound, video, control options

4. Video and Sound settings

5. Graphics options, key bindings, mouse sensitivity

6. Video, control and sound settings

7. Graphics settings

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

19 © OCR 2015

8. Key bindings, mouse sensitivity, resolution, render quality, music and SFX volume sliders

9. Sound and video

10. Game and control options

11. Graphics, music, control settings

12. Resolution, texture/model quality, sounds, controls

13. Screen, music and game settings

14. Video, sound, control and game

15. Graphics, sound, key bindings

16. Sound, controls

17. Controls, sound and graphics

18. Graphics, sound and controls

19. Video(graphics, resolution), sound(Music, SFX) and control options(Key rebinding, mouse sensitivity)

Would you like the option to choose your gender?

1. Yes (9)

2. No (10)

Do you think that there should be merchants that sell various items?

1. Yes (16)

2. No (3)

Would you prefer being able to name the player character or that the player character have a set name?

1. Custom (15)

2. Set (4)

Analysis of second survey
As most were happy with the current requirements I decided to not remove any and only add to the list however the
majority of recipients preferred a turn-based approach to combat rather than a real time system so I have changed the
list to reflect this.

Gameplay
There was a lot of variation in the responses regarding the length of each level but 5 and 10 minutes showed up the
most so I decided that would be the target length for each level. It seems that the majority would prefer a single set
difficulty so I decided that the game will be an intermediate difficulty. Players seem to prefer naming their character
themselves so I will include that in the game. The recipients seem to want the game to focus mostly on the combat with
story coming second and puzzle solving coming last. This clashes with an observation I made in the analysis of the first
survey, however here they have directly stated that they would like a focus on combat so I will go with that.

UI and visuals
Each recipient had similar ideas for information to be shown to the player and that were relevant so I decided to add any
that made sense such as health and inventory. Overall the recipients seemed to favour a manual save over an automatic
one, so a save button will be included on the UI.

Controls
It was requested that buttons should be available on the GUI that are shortcuts to common commands to avoid having
to type in the same commands over and over again.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

20 © OCR 2015

Second list of ideas
I have revised the initial list of ideas to include results from the second questionnaire.

The game will need:

Gameplay
•	 Variety of things you can do.

•	 To be able to set the name of the character.

•	 Puzzles that require some thought.

•	 To have a turn based combat system.

•	 Merchants that sell various helpful items.

•	 Various obstructions such as locked doors and pitfalls.

•	 Levels that take around 5-10 minutes to complete.

•	 Have an overall intermediate difficulty.

UI and visuals
•	 2D graphics.

•	 A graphical interface as well as text.

•	 A portrait showing the characters face (possibly shows emotions or status effects).

•	 A GUI to show information, buttons etc.

•	 Information such as health, mana, currency, minimap, inventory and general actions to be displayed on the GUI.

Controls
•	 On screen buttons as well as a command line.

•	 Will use keyboard and mouse.

Other
•	 An options menu containing audio, video and control options.

Final list of requirements
I have compiled my observations into a final list of requirements. It is basically my list from the second questionnaire
with some alterations based on my ability and time.

Gameplay
•	 Variety of things you can do.

•	 To be able to set the name of the character.

•	 Puzzles that require some thought.

•	 To have a turn based combat system.

•	 Merchants that sell various helpful items.

•	 Various obstructions such as locked doors and pitfalls.

•	 Levels that take around 5-10 minutes to complete.

•	 Have an overall intermediate difficulty.

UI and visuals
•	 2D graphics.

•	 A graphical interface as well as text.

•	 A GUI to show information, buttons etc.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

21 © OCR 2015

•	 Information such as health, currency, inventory and general actions to be displayed on the GUI.

Controls
•	 On screen buttons as well as a command line.

•	 Will use keyboard and mouse.

Other
•	 An options menu containing video and control options.

•	 A death screen for when the player is defeated in combat.

•	 A menu screen with buttons for new game, load game, options and exit

Software and Hardware requirements
For the end user/running this system, these will be the requirements:

Software Reason
Any recent version of Windows, MacOS or Linux A platform for the program to run.

Hardware Reason
Around 1GB storage space To be sure that there is enough space to store the

program locally.

1.6 GHz or faster processor.

1 GB of RAM (1.5 GB if running on a virtual machine).

10 GB (NTFS) of available hard disk space.

5400 RPM hard drive.

DirectX 9-capable video card running at 1024 x 768 or
higher display resolution.

I was unable to find minimum requirements for running a
Visual Basic program so I will assume it is the same as the
minimum for Visual Studio itself.

For creating the game, these will be the requirements

Software Reason
Any recent version of Windows, MacOS or Linux A platform for me to work on the program

Visual studio Software that I’m going to use to create the program

Hardware Reason
1.6 GHz or faster processor.

1 GB of RAM (1.5 GB if running on a virtual machine).

10 GB (NTFS) of available hard disk space.

5400 RPM hard drive.

DirectX 9-capable video card running at 1024 x 768 or
higher display resolution.

Minimum requirements for running visual studio.

I know that the school computers have at least the minimum recommended specs, so they are a suitable platform for
developing the program.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

22 © OCR 2015

Section 2 – Design and Testing
Objectives
Though I already have a list of requirements for the game, I have decided to adapt this list to give myself a clear
indication of what is required and desired of the game interface. After I have finished these designs I will present them to
my end users and get feedback to make improvements.

Inputs
Main menu
•	 A button for starting the game without loading a previous save file.

•	 A button for loading the game using a previous text file.

•	 A button for accessing the options menu.

•	 A button for exiting the application.

Game
•	 Text input to allow the use of specific commands.

•	 Shortcut buttons for commonly used commands such as moving and attacking.

•	 A button for accessing the pause menu.

Pause menu
•	 A button for resuming the game.

•	 A button for saving current progress.

•	 A button for accessing the options menu.

•	 A button for exiting to the main menu.

Options menu
•	 Buttons for changing the size of the window between 2-3 pre-set sizes.

•	 Text input for changing the save location on the hard drive.

•	 Text input for changing the players name.

Outputs
Main menu
•	 Image box for displaying the logo of the game.

Game
•	 Image box to display the game screen.

•	 The image box will show different images to suit what is currently happening in the game.

•	 Text output to show story and events in the game.

•	 A text box showing layer stats such as health, money and status effects.

•	 A text box for displaying the inventory of the player.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

23 © OCR 2015

Aesthetics
Main menu
•	 Red background.

•	 White Buttons with black text.

•	 Logo at the top of the screen.

Game
•	 Red background.

•	 White Buttons with black text.

•	 Reasonably different sizes between window size options.

•	 Game screen and text output above inputs, inventory and stats.

Pause menu
•	 Red background.

•	 White Buttons with black text.

•	 Options menu

•	 Red background.

•	 White Buttons with black text.

Processing
Game
•	 The layout of the rooms will be stored in an array. When the player moves in a direction, the game will get the

location of the variable adjacent in the array in the direction the player specifies. The Image box loads an image
based on the location in the array.

•	 Current items held by the player will also be stored in an array and constantly output to the inventory box.

•	 Descriptions of rooms will be stored as strings in an array and output to the text output box.

•	 Health and money will be stored as integers in an array and constantly output to the stat box.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

24 © OCR 2015

Interface designs
Game interface

Display – Shows the game
screen using an image file that
is accessed depending on
which room the player is in.
The game screen is the largest
module on the interface to keep
focus on the game.

Text output – Displays the text
that shows descriptions, combat
statistics and story. I have placed
this directly underneath the
game display so that the player
can quickly read the text and
also see what’s happening in
the game. It also includes a
scroll bar so that the player can
look back on previous events.

Text input – Secondary input
used for accessing specific
actions/commands.

Stats – Shows current health
and currency. Maybe also status
effects such as poison, sleep etc.

Inventory – Shows items in the
game currently held by the
player such as health potions,
keys etc. The inventory and stats
boxes are close to the shortcuts
and text input so that the player
can look at them and quickly
make an action depending on
their current situation.

Shortcuts – Buttons for quick and
easy use of common commands
to avoid repetitive typing.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

25 © OCR 2015

Main menu interface

Game menu interface

Picture box – Shows logo for
the game.

Start button – Begin a new
game without loading a
previous save.

Load button – Load a previous
saved game and start from
where you left off.

Options button – Access the
options menu where the player
may alter certain settings.

Exit button – Close the
application.

Resume button – Continue
playing the game.

Save button – Save current
progress to a file which can then
be loaded later.

Options button – Accesses the
options menu.

Exit button – Exits to the
main menu.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

26 © OCR 2015

Options menu interface

Window size – Changes the size
of the game window between
three pre-set sizes.

Save location – Changes the
location on the hard drive to
store the save file.

Back button – Takes the player
back to the main menu.

Screen flow
Exit

Menu

Resume

Back

Options

Options

Games menu

Game screen

Game screen

Main menu

Start/Load

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

27 © OCR 2015

End user feedback
Before continuing, I sent out a survey to get feedback from my end user on the current screen designs.

Results
Do you think that the current game screen design is suitable for the program?
Yes (19)
No (0)

Is there anything you would add/change about the game screen design?
No (19)

Do you think that the current main menu screen design is suitable for the program?
Yes (19)
No (0)

Is there anything you would add/change about the main menu screen design?
No (19)

Do you think that the current game menu screen design is suitable for the program?
Yes (19)
No (0)

Is there anything you would add/change about the game menu screen design?
No (19)

Do you think that the current options screen design is suitable for the program?
Yes (18)
No (1)

1. There needs to be an area where you can input your name.

Is there anything you would add/change about the options screen design?
No (19)

Changes
Based on the feedback above I have made changes to the design of the options menu. It now has an area where the
player can input their name.

Player name – Sets the name
that the player will be
referenced by.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

28 © OCR 2015

Variables and data structures

Variable Type Identifier Description
Health Integer health The amount of health the player currently has.

Currency Integer money The amount of gold the player currently has.

Password String password The word used to solve a riddle to open a door.

Keys Integer keyCount The amount of keys the player currently has.

Health potions integer

Player name String playerName The name of the player. The game will
sometimes reference the player using this.

Room layout Array/Integer rooms An array containing the location of each room.

Sword String playerSword Holds the name of the sword currently
equipped. When a new sword is acquired the
old sword will be overwritten.

Shield String playerShield Holds the name of the shield currently
equipped. When a new shield is acquired the
old shield will be overwritten.

Armour String playerArmour Holds the name of the armour currently
equipped. When a new armour is acquired the
old armour will be overwritten.

Sword damage Integer swordDamage The amount of damage that the sword does
based on the current sword equipped.

Shield negation
chance

Integer shieldBlock The chance that the shield has to block based
on the current shield equipped.

Armour damage
reduction

Integer armourDamRed The amount that damage received is reduced
by based on the current armour equipped.

Inventory Array/Integer inventory Holds the keys and health potions that the
player holds.

Outline of story and basic game structure
The basic outline of the story is that the player has entered into an event to win huge amounts of money. However to
receive this money, the player must survive through a dungeon-like maze filled with deadly traps, creatures and puzzles.
Along the way you may come across other entrants who will either trade with you or fight you.

You wake up in a room with a bed and table. On top of the table is a tray with some food for restoring health and a key
which will open the door to the maze introducing the player to the inventory and healing mechanics. There will also be
a small harmless creature such as a rat for introducing the combat mechanic. The first room will have three branches.
The first branch will lead towards a password door and a lever. The second branch will lead to a combat situation, some
food, a rusty sword that slightly increases damage output and a second lever. The third branch leads to a gate which is
opened once both levers are thrown. On the other side is a puzzle to figure out the password for the door from the first
branch. After passing the password door there will be a combat situation and 2 branches, the first leading towards a
riddle door and the second leading towards a locked door. Behind the riddle door will be a mini boss which will drop a
key and a suit of rusty armour which will slightly decrease damage received. Using the key on the second branch door
will lead to a staircase that takes the player to the second floor.

In the first room there are two branches and an entrant who wants to trade a shiny object and health potions for gold.
The player should not currently be able to buy the shiny object. Following the first branch there will be a combat
situation and a door with a slot in the middle. Following the second branch there will be an empty room with a fragile

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

29 © OCR 2015

wall. Attacking this wall will reveal a bag of money. The player can now buy the object from the other entrant and use it to
open the door with the slot. There will be 2 more branches, the first of which will lead to another entrant who will try to
fight you, however you can try talking to him to calm him down. If you manage to calm him down he will give you a key
piece and offer a trade for a rusty shield which has a random chance to block an attack. Defeating him in battle will give
you only the key piece. Taking the second will lead to another riddle door. In the next room there will be three branches,
two of which lead to combat situations which both drop a key piece, the third branch needing a key to enter. Once all
three key pieces are in possession the player will be able to enter the boss room. Defeating the boss will end the game.

Floor layouts
Using the gameplay outline above I have created rough layouts of the floors which will help when constructing them.

Floor 1

Floor 2

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

30 © OCR 2015

Combat
As combat will be turn based, the structure of the combat will go like this;

1. The player gets to take their turn first.

2. They have the option to attack, heal or defend.

•	 Attacking will deal a random amount of damage between 10 and 20 + current sword attack to the enemies’
health.

•	 Blocking will reduce damage received by half and has a chance to negate damage completely.

•	 Healing will consume a health potion and restore around 50 health points.

3. It is then the enemies turn.

4. The AI will mostly attack but will occasionally heal

5. This will repeat until either the player or enemy is defeated.

6. If the enemy is defeated the player will receive 50 gold and in some cases an item.

7. If the player is defeated the game will end.

Movement
Movement will be rather basic. Clicking on a directional button or typing in something like “Move right” will move the
player to an adjacent room in the direction specified if there is one available.

Pseudo code
Before I can start coding the program I will need a clear set of pseudo codes so that I can work out how I am going to
structure my code and so that I know exactly what module to work on next.

Below I have provided the pseudo code ordered as modules. The modules are combat, movement, puzzles and general.
They are currently ordered like this so that I can clearly see which bits of code do what.

Issuing commands
Int playerX = 3
Int playerY = 3
String command
Bool loop = true
Bool usePresent = false
string array coordinates [6,6] {A1, B1, C1, D1….} {A2, B2, C2, D2…..}……..

WHILE loop is true
 IF (combatSituation = true)
 RUN combat
 ELSE
 Write “Please enter a command.”
 Command = readline

 IF (Command = up AND combatSituation = false)
 PlayerY++
 Write command [playerX, playerY]
 Command = null

 ELSE IF (Command = down AND combatSituation = false)

Exemplar Candidate WorkGCE Computing Unit F454 Computing Project

30 © OCR 2015

Combat
As combat will be turn based, the structure of the combat will go like this;

1. The player gets to take their turn first.

2. They have the option to attack, heal or defend.

•	 Attacking will deal a random amount of damage between 10 and 20 + current sword attack to the enemies’
health.

•	 Blocking will reduce damage received by half and has a chance to negate damage completely.

•	 Healing will consume a health potion and restore around 50 health points.

3. It is then the enemies turn.

4. The AI will mostly attack but will occasionally heal

5. This will repeat until either the player or enemy is defeated.

6. If the enemy is defeated the player will receive 50 gold and in some cases an item.

7. If the player is defeated the game will end.

Movement
Movement will be rather basic. Clicking on a directional button or typing in something like “Move right” will move the
player to an adjacent room in the direction specified if there is one available.

Pseudo code
Before I can start coding the program I will need a clear set of pseudo codes so that I can work out how I am going to
structure my code and so that I know exactly what module to work on next.

Below I have provided the pseudo code ordered as modules. The modules are combat, movement, puzzles and general.
They are currently ordered like this so that I can clearly see which bits of code do what.

Issuing commands
Int playerX = 3
Int playerY = 3
String command
Bool loop = true
Bool usePresent = false
string array coordinates [6,6] {A1, B1, C1, D1….} {A2, B2, C2, D2…..}……..

WHILE loop is true
 IF (combatSituation = true)
 RUN combat
 ELSE
 Write “Please enter a command.”
 Command = readline

 IF (Command = up AND combatSituation = false)
 PlayerY++
 Write command [playerX, playerY]
 Command = null

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

31 © OCR 2015

Exemplar Candidate WorkGCE Computing Unit F454 Computing Project

31 © OCR 2015

 ELSE IF (Command = down AND combatSituation = false)
 playerY—
 Write command [playerX, playerY]
 Command = null

 ELSE IF (Command = left AND combatSituation = false)
 playerX—
 Write command [playerX, playerY]
 Command = null

 ELSE IF (Command = right AND combatSituation = false)
 playerY++
 Write command [playerX, playerY]
 Command = null

 ELSE IF (command = use AND usePresent = true)
 Activate room device

 ELSE IF (command = menu AND combatSituation = false)
 Create single instance of pause menu
 ELSE
 Write “Please enter a valid command.”
 END IF

Combat
WHILE combat Situation is true and enemy Alive is true
 enemy action = random between 1 and 10
 IF enemy action > 1 THEN
 Enemy attack = random between 4 and 10
 ENDIF
 Read line for action
 IF action = attack THEN
 Attack damage = random between 10 and 20
 Attack damage = attack damage + sword damage
 IF enemy health > attack damage THEN
Enemy health = enemy health – attack damage
 ELSE IF enemy health < attack damage THEN
 Enemy alive = false
 Write “Enemy defeated” to text output
 ENDIF
 Write “Enemy damaged for (attack damage)” to text output

 ELSE IF action = block THEN
 Block chance = random between 1 and 20
 Block chance = block chance – shield block chance
 IF block chance = 1 THEN
 Enemy damage = 0
 ELSE
 Enemy damage = enemy damage / 2
 ENDIF
 ELSE IF action = heal THEN
 IF (player max health – player health) < player heal amount THEN

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

32 © OCR 2015

These modules together should allow for the player to navigate through the game, interact with the NPCs and objects
and engage in combat. However, these modules are very rough and will need to be built upon when I start coding.
These will give me a firm base to start coding the game.

Exemplar Candidate WorkGCE Computing Unit F454 Computing Project

32 © OCR 2015

 Player health = player health + player heal amount
 ELSE IF (player max health – player health) > player heal amount THEN
 Player health = player max health
 Write “(player name) healed for (player heal amount)” to text output
 ELSE
 Print “Please enter an action”
 ENDIF

 IF enemy action = 1 THEN
 IF (enemy max health – enemy current health) < enemy heal amount THEN
 enemy health = enemy health + enemy heal amount
 ELSE IF (enemy max health – enemy current health) > enemy heal amount THEN
 enemy health = enemy max health
 Write “Enemy healed for (enemy heal amount)” to text output
 ENDIF
 ELSE
 IF player health > enemy attack
 Player health = player health – enemy attack
 ELSE IF player health < enemy attack
 Player health = 0
 Write “(player name) damaged for (enemy attack)” to text output
ENDIF
END WHILE

Handling Rooms

IF player coordinates = are XY
 Set image as ______
Write “______”

These modules together should allow for the player to navigate through the game, interact with the NPCs and objects
and engage in combat. However, these modules are very rough and will need to be built upon when I start coding.
These will give me a firm base to start coding the game.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

33 © OCR 2015

Test Plan
I plan to test the program myself using a test table. User testing will be done by sending out questionnaires along with a
copy of the game. Below is an example of the sort of test table that I will use.

Using a test table allows for time efficient testing with minimal hassle and easy readability.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

34 © OCR 2015

Section 3 – Implementation and Testing
Project
UI and menu navigation
Based on my designs in order to develop this solution I will first need to draw up each room of the game that will be
displayed. I will use a base room template at the same resolution as the game screen. Looking at the properties of the
game screen, the size of the game screen is 342 by 180 pixels.

Figure 1: Image of the base room

Using the base shown above I created an image for each room.

Now that I have each room layout and I have already created the interface designs for the game using Visual studio, all I
need to do is name the items on the interface and start coding the game.

To start off I have named each item on the interface with easily identifiable names. For example, movement buttons are
simply named the direction they are associated with as shown by the image below of the properties for the forwards
button. I did this for each screen. This will make it easier to refer back to each module of the layouts when I am coding.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

35 © OCR 2015

I decided that it would be best to next work on getting the menu flow working before starting work on the game code.

Below is an image of the code that I am using to create instances of forms. I ran into a problem where visual studio was
not recognising GameMenu as a class. I realised that this was because the name of the class was not the same as the
name of the form. I then changed GameMenu to Menu2 which worked.

Broken

Fixed

This simple piece of code is what will be used to close an instance of a form.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

36 © OCR 2015

After writing the code linking each form I decide to run a test case to document the results of the current code. I created
a table in excel to record the results of my tests.

From the results I can tell that for the most part I am receiving the correct results however there are a couple of slight
problems with some forms not closing when they should.

To fix the problem with the exit button on the menu I replaced “This.close” with “Application.Exit”. This now shuts down
the entire application rather than just the menu form.

The game
To start development of the actual game I am going to create a basic input/output to make sure that the system fulfils
the requirements listed in my analysis will work.

I started by creating a method that is called when the enter button is pressed and takes the text currently pressent in the
input box and runs an if statement based on the value. For example the user could input “left” which ingame would
make the player move to the left however here I have the output box show “left” to show that the system is working.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

37 © OCR 2015

This is the snippet of code that I used to test the input/output of my system. From the result it seems as though it works
although I would like the text to be created on another line. For now though I will leave it as it is and move on to getting
player movement working.

The way I plan to handle player movement is by using an array to store coordinates which point to a specific room.
Moving in a direction simply changes the current coordinate.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

38 © OCR 2015

Here is the first version of the code for the players’ movement. I created a method called PlayerMovement and put IF
statements in it for each direction and one for the displaying the current coordinate. The IF statements run based on the
input of the player. If the player inputs “forwards”, the players Y coordinate is then incremented and the now current
coordinate is displayed in the output box. The method is called when either a button is pressed or a command is
entered in the input box. However the problem with the current code is that the coordinates do not inc/decrement and
instead each directional input just displays a single coordinate.

I found out that the reason for this problem is that I had declared my variables within the PlayerMovement method
resulting in them being reset each time the method was run.

To solve this I transferred the variables outside of the method. The coordinates system then produced the desired results.
I also decided to rename the PlayerMovement method to PlayerAction as it would be handling actions as well as
movement.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

39 © OCR 2015

I now want to have images appear based on the coordinates of the play
er.

I produced a method called PlayerCurrentPos that contains IF statements that will run based on the current coordinate
of the player. I have used this to display a bitmap image of the room the player is currently in however this method will
also later be used to set other properties for the rooms. The code worked as I expected it to so I repeated the code for
each room.

The game currently is working as it should however there are no boundaries to restrict the player from walking through
walls and entering coordinates that will remain empty and unused. To counteract this I will have to add restrictions to
movement between rooms in the PlayerAction method.

The image above shows the PlayerAction method after I have added restrictions on which rooms commands can be
used in. I didn’t run into any serious problems while adding the restrictions however there was a few times where I
hadn’t included a room or the problem was easily fixable such as missing parentheses.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

40 © OCR 2015

Now that navigation is completely done I will start working on the combat system.

I pre-emptively created some variables that may prove useful later as shown below.

I am going to create a basic random damage, turn based combat system to start out. I will then add in the other features
such as healing and blocking.

During my creation of the combat code I ran into a problem. I had to call have

Issues I had in development
•	 Calling Method

 – Issues with how to get the actions in through use of buttons
 – Decided to pass strings to Combat Method when buttons clicked

•	 Clicking Attack button

 – Clicking attack set a string Action to “attack” and passed into combat method
•	 Getting stuck in While Loop

•	 Kept calling/resetting monster health

•	 Extracted each “action” out of combat method into individual function that was called from the “Combat” method

•	 Visibility of variables

 – Player health visible
 – Had to get monster health in based on room

•	 Selecting correct monster health

 – Added IF Statements to cover this
•	 Created new Attack Method

•	 Created new Block method

•	 Created new Heal method

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

41 © OCR 2015

While creating the combat system I ran into a few problems. At first I had issues trying to get the actions to work
through the use of buttons. I couldn’t call the method for when the “Enter” was clicked into the CombatSystem method.
I fixed this problem by passing strings containing the action through the CombatSystem method using three other
methods that are called when any of the three combat buttons are clicked. The action and location of the player are
compared to IF statements contained within the method to produce the final action. The actions contained within the
combat method were extracted out into their own methods for this to work.

The original combat method contained a WHILE loop that reset the variable representing the health of the enemy with
each loop. By removing the loop I fixed this problem.

In order for the program to recognise which enemy’s health to use I used IF statements that compared the players
current coordinates to know if an enemy was present and if so, which one.

I added a message that would be outputted to the text output box once a player entered room 3, 2 telling the player
what to do when encountering an enemy.

Figure 2: Adding descriptions for user on attacking monster

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

42 © OCR 2015

I removed the WHILE loop as It was not necessary

Figure 3: removal of While loop and adding new IF statement

I created a new method called CombatAttack which would be called if the player entered “attack” as their action in
combat. It takes the current rooms enemy’s health and subtracts a random amount between two numbers and adds the
currently equipped swords damage to each number. The same is done to the players health and the process is repeated
until either the player or enemy dies or the player leaves the room.

Figure 4: Creation of new Attack Method, called from the CombatAttack method.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

43 © OCR 2015

Figure 5: Removal of WHILE loop and code from Combat Method to new Attack Method.

If the player chooses to block during their turn in combat, their attack damage is halved but they have a 50/50 chance of
negating all damage received. Due to the attack damage needing to be multiplied by 0.5 there was the chance that it
would result in a decimal number, therefore some values needed to be temporarily converted to doubles and back to
integers.

Figure 6: Had to convert to doubles for 0.5 multiplier and then back to Int

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

44 © OCR 2015

Figure 7: Added block method that reduced player dmg, but gives player a 50/50 to stop ALL incoming damage.

While creating the healing method I ran into the problem that using the random number generator “heal” as a variable
resulted in the text output box showing “System.Randomhitpoints” instead of the value that heal produced. I fixed this
by assigning the value produced by heal to a variable called “healthBoost” and outputting that in the text output box.

Figure 8: Started heal method. Tried to use “heal” as a variable. Failed!

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

45 © OCR 2015

Figure 9: Heal code that is not working.

Figure 10: Added variable to store heal amount so I could use it in text!

The heal button now increases the players health by a number between 30 and 40 however there is currently no
restriction on the amount you heal up to.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

46 © OCR 2015

Figure 11: Health went over 100, added IF statement

I added an IF statement that only allows the players health to reach 100. If the players health is 80 and the player heals
for 35 if would only go up to 100 rather than to 115. This was because the health went over 100 sometimes and this is
not something that should be happening.

Figure 12: Heal now stops at 100 – need error message to say no heal pots left.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

47 © OCR 2015

Figure 13: solution

I created a method for the use button so that when it is clicked, the players current coordinates are compared to IF
statements to find out what the player is “using”.

Figure 14: Coding USE button. Set of IF statements to control which levers have been used in which rooms

In order to stop the player moving through the gate into room (4, 2) I had to add another logic statement to the IF
statement for the command “forwards” so that the player can only move forwards in room (4, 1) if lever32 is true (If the
lever has been activated).

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

48 © OCR 2015

Figure 15: Added logic statements to movement to stop people moving through the locked door linked to Room (3, 2) Lever

I ran a quick test to see if the gate in room (4, 1) was working as it should. After testing it with and without the lever
being active, show test showed that the code was working as intended with just one problem. The lever could be
activated without having defeated the monster in the room but I wanted the lever to only be usable after defeating the
monster.

Figure 16: lever check system test

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

49 © OCR 2015

Figure 17: Bug – you can use level before monster is dead

To fix the lever problem I added some if statements. If the player uses the lever and the enemy is alive then the player is
informed that they must first defeat the enemy, however if the enemy is dead then the player is informed that they have
pulled the lever and the lever is activated.

Figure 18: Added logic to prevent lever being used whilst monster is alive.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

50 © OCR 2015

Figure 19: Lever Check evidence

I then decided it would be best to move to working on how the player will collect items.

I will create an array for the player’s inventory so that I can set a limit on how many items can be carried at a time. Even if
I don’t end up setting a limit, having an array to store inventory items makes things a little easier.

I Changed the IF statement within the “playerAction” method that runs when the command “current” is input so that as
well as displaying the current location of the player, the current sword, shield and armour are displayed along with their
values. I also created a new IF statement for the command “collect” which will retrieve any items in the current room as
long as there are no enemies alive in the room.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

51 © OCR 2015

Figure 20: Added code to collect items from room with IF statement based on monster being dead and updated “Current” to include values of all items.

Figure 21: I created an array to store the players inventory items as strings.

I ran a test for the “current” and “collect” commands. The “current” command code worked as expected and displayed
each element correctly however the “collect” command took the text from the output box and added it to the inventory
box. The player is also informed that the monster is still alive and cannot pick up the items when the enemy is defeated.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

52 © OCR 2015

Figure 22: Evidence that Current displays status of character

Figure 23: Tried collect after monster dead – fail!

The problem with the text was that the code was setting the inventory box text equal to the message to the player plus
the output box’s text. To fix this I simply changed output box to inventory box.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

53 © OCR 2015

Figure 24: Changed TextBox output to inventory box

Figure 25: Coded Inventory update for this room

The inventory box must be updated to show the player current inventory at all times. As such I created a method called
“inventoryUpdate” which is called whenever the player picks up an item. The method then resets the inventory box’s text
to include the most recent values within the inventory array. It uses a FOR loop to repeat a line showing a single
inventory slot whether it is empty or not. This is repeated a set amount of times.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

54 © OCR 2015

Figure 26: added inventory update method as this will be needed for other rooms.

While testing the program I ran Into the problem that the inventory was being displayed as “System.String[]” rather than
“Item: Empty slot”. This was due to the code printing inventory without accessing a specific area of the array. This was
easily fixed by adding “[i]” to the end of inventory. This means that for every loop in the FOR loop, the next item will be
accessed.

Figure 27: Works but inventory not printing accurately

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

55 © OCR 2015

Once this was fixed the code needed to be formatted so that there was a space between the item number and the item.

Figure 28: Working inventory – needs formatting

Where the inventory array is declared, the string “Empty slot” is preloaded into the array to fill the vacant spaces in the
players inventory.

Figure 29: Preloaded “Empty Slot”

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

56 © OCR 2015

Figure 30: Edited Inventory Function

Once the changes had been made to the inventory system I ran a test. The system worked as intended.

Figure 31: Working Inventory system

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

57 © OCR 2015

During the test I realised that the lever in room (3, 2) was being activated when the player “used” it even when the
monster was still alive, the player was also still informed that the enemy was blocking the lever. This was due to both IF
statements containing “lever32 = true”. I fixed this problem by removing this line of code from the IF statement
containing “enemy1Alive == true”.

Figure 32: lever operated even when monster is alive

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

58 © OCR 2015

Figure 33: Corrective Action – set to false

Similar to the inventory box, the stat box needs to be updated whenever a change is made to any of the values related
to the stat box. As such I created a method called “statsUpdate” which is called whenever the player’s equipment is
changed. It clears the stat box and replaces the contents with up to date values.

Figure 34: Added Stats Update method

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

59 © OCR 2015

A test showed that the stat box worked as it should however there was a minor formatting problem that was easily
remedied. The box was too small to fit the name of the starter sword and its damage. This was fixed by shortening
“Damage”, “Defence” and “Block” to “Dmg”, “Def” and “Blk”.

Figure 35: StatsUpdate works but formatting issues (box too small)

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

60 © OCR 2015

Figure 36: edited formatting for Stats Box

Now that each of the main systems are in a working state and are ready to be applied to the rest of the program I have
decided to work on the riddle, password and locked doors. I will start with the password door.

I created a new IF statement to the “playerAction” method that runs when the player enters the command “hell” and is in
room (2, 1). It informs the player that the door has opened and sets the variable “passDoor1” to true. I added a new logic
statement to the “left” command IF statement so that the player may only go left in room (2, 1) when “passDoor1” is true.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

61 © OCR 2015

Figure 37: Added IF statement for “hell” command.

Figure 38: Added logic statement to “left” command for room (2, 1).

As the code for this part was finished I decided to test it. The door worked as it should. The next door I will create will be
the riddle door. The riddle door will work exactly the same as the password door except text will be output beforehand
to inform the player of the riddle.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

62 © OCR 2015

Figure 39: Password door work as intended. No problems.

I followed the same steps as when I was creating the password door code. When the player enters the command “nothing”
in room (1, 1) once the monster is defeated, the door will be unlocked and the player can proceed. However as this is a
riddle door the riddle must be shown in the output box whenever the player enters the room and the enemy is dead.

Figure 40: Created “nothing” command.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

63 © OCR 2015

Figure 41: Text output box shows riddle in text output upon entering room (1, 1).

Figure 42: Added logic to “left” command for room (1, 1) riddle door.

I ran a test to see if the riddle door was working. The door worked as it should however if the player entered the
command “nothing” after the door had already been opened, the “door has been opened” message would appear again.
I also noticed a few problems in room (3, 2). Once the player had picked up the items in the room, the image would not
change to the empty room. If the player “collected” the items more than once, the swords damage would keep
increasing. There were also some spelling errors in the text.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

64 © OCR 2015

Figure 43: Image not changing to empty room on item pickup, increasing damage and spelling errors.

I fixed the increasing damage and image problems by changing the ELSE statement in the “collect” command code to
an ELSE IF that runs if the enemy is dead and the items haven’t been collected yet. At the end of the statement the
variable “collect32” is set to true so that the statement will not run again. This also allows the room image to change. I
also corrected the spelling errors when the player attacks a dead enemy.

Once those were fixed I added a logic statement to the “nothing” command so that the statement will only run if the
door has not already been opened which fixed the problem of repeating text.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

65 © OCR 2015

Figure 44: Fixed image, spelling and “collect” code.

Figure 45: Working room (3, 2).

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

66 © OCR 2015

Figure 46: Working riddle door.

The last system that needs to be developed is the locked door which will work differently to the other two doors in that
in order to open the door, the player must be carrying a key in their inventory.

I started by making some code to let the player “collect” the key in the first room. I basically copied the code from room
(3, 2)s collection but with some minor changes. The next empty inventory slot is retrieved and replaced with the string
“Key”.

I created an ELSE IF statement within the “playerAction” method for the command “unlock” which opens the door if the
player has a key present in their inventory. The key then breaks and is removed from the player’s inventory.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

67 © OCR 2015

Figure 47: Created ELSE IF for key “collection”.

Figure 48: Created “unlock” command.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

68 © OCR 2015

Figure 49: Logic for “forward” command in room (1, 1).

I was going to run a test to see if the current code was working, however I ran into a problem. The game would not run
as there was an error because the program could not find “Room11.png”

I fixed this problem by deleting the line of code in Resources.resx that referenced the file.

I then reran the test. Picking up the key in the first room worked as intended however when trying to unlock the door in
room (1, 1), the game says it is an invalid action.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

69 © OCR 2015

Figure 50: Working key “collection”.

Figure 51: “unlock” command not working.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

70 © OCR 2015

I managed to fix the problem somewhat by changing “(inventory[inventoryLocation] == “Key”)” to “collect30 == true” in
the “unlock” command ELSE IF statement. Now the statement will only run if the player hasn’t already picked up the key.

Figure 52: Changed “(inventory[inventoryLocation] == “Key”)” to “collect30 == true”.

Now that all the systems are complete I have to create two more enemies and change make the room (4, 1) gate require
two levers to open. I will fine tune and iron out bugs afterwards.

I first duplicated the code from room (3, 2)’s lever in the “OKButton_Click” method and edited it to work for the lever in
room (2, 1). I then added the necessary logic to the “forward” command for room (4, 1).

I tested the gate using each lever individually and then tested both. As expected the gate only opened when both levers
had been activated.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

71 © OCR 2015

Figure 53: Duplicating and editing code for the second lever.

Figure 54: Adding necessary logic to “forward” command.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

72 © OCR 2015

Figure 55: Working room (2, 1) lever.

Now that this is working I need to add in the other two enemies in rooms (0, 1) and (1, 1). Similar to the levers I will
duplicate the code from the first enemy and edit it to work for the other two enemies.

Once the code had been edited for the other two enemies I tested the game. The game worked as expected. I then
added some code so that both enemies dropped items.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

73 © OCR 2015

Figure 56: Combat action code for enemies in rooms (1, 1) and (0, 1).

Figure 57: Setting the images to be shown in the two rooms.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

74 © OCR 2015

Figure 58: Working room (1, 1) enemy.

After getting the enemies working I decided to make them drop items when they are defeated. Upon being defeated
the room (1, 1) enemy will drop a suit of “Stone Armour” and the room (0, 1) enemy will drop a “Beaten Shield”, each one
increasing their respective stats by two. After the values are changed, the “statsUpdate” method is called to reset the
values in the stat box.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

75 © OCR 2015

Figure 59: Adding code for item drops.

Figure 60: Working item drops.

Now that the game is effectively finished, I need to add some sort of end state. I will do this by opening a popup
window telling the player that they “escaped the dungeon!” or something along those lines once they reach room (1, 2).

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

76 © OCR 2015

Figure 61: End state code.

Upon entering the final room, a pop up box appears telling the player “You have escaped the dungeon!”. Once the player
clicks ok the application closes.

Figure 62: Working end state message.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

77 © OCR 2015

The final thing I need to do before my application is complete is add a save/load function. This will work by writing the
current values of all global variables to a text file whenever the player clicks the save button. When the player clicks the
load button from the menu, the game will start and set all the variables to the values written in the text file.

I realised that even though I have three other forms besides the game screen that the player must navigate, there isn’t
actually anything on those screens that could not be relocated to the game screen itself so I decided to scrap the other
forms and just have “New”, “Save” and “Load” buttons below the inventory box. This would also mean scrapping the
options menu which at this point was rather unrealistic anyway, and also changing the menu button to another
function.

The game screen I ended up with after relocating and repurposing buttons is shown in the image below. Having all
necessary functions available on one screen saves the user from wasting time navigating menus. The options on the
options menu were unnecessary and did not require a screen to themselves so I scrapped the save location and screen
size options along with the options form.

Figure 63: Final version of the game screen layout.

I added in the code for the “Exit” and “New” buttons first. The exit button simply closes the application and the “New”
button restarts the application with its default values.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

78 © OCR 2015

Figure 64: “Exit” and “New” button code.

After that I created the “Save” button. When the user clicks the button all the global variables are written to a text file
called “Save.txt” located in the C: drive. The file is then closed and the user is informed that they have saved the game.

Figure 65: “Save” button code.

Lastly I created the “Load” button code. When the user clicks the button every global variable is assigned the contents of
the “Save.txt” file. As the contents of the file are stored as strings, they are converted into the necessary data types before
being assigned to the variables. The “inventoryUpdate”, “statsUpdate” and “PlayerCurrentPos” methods are then called so
all the outputs are showing the correct values. The player is then informed that they have loaded a previous save.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

79 © OCR 2015

Figure 66: “Load” button code.

After running a test, the buttons all worked as intended. I ran through a portion of the game, saved and exited. I then
reran the game and clicked load which immediately put me back where I was.

Figure 67: Working “save” button.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

80 © OCR 2015

Figure 68: Working “Load” button.

The program is now finished. Now I will move on to testing.

Testing
The program must be now be tested by myself and the end user to see if the game functions as it should and identify
any major bugs. I will be presenting my findings in test table format to increase efficiency and readability. The test will
cover movement and input/output.

Shown below are the results of my test. The table is rather large as I wanted to be thorough with my testing.

My test

Test
Case

ScenariExpected results Actual results Pass/Fail Evidence
(Optional)

1) Movement – Testing
that the restrictions on
movement are working
correctly.

1.1) Room1-Right Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

Room1-Left Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

Room1-Back Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

Room1-Forward Move to room 2 Move to room 2 Pass

1.2) Room2-Right Move to room 5 Move to room 5 Pass

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

81 © OCR 2015

Test
Case

ScenariExpected results Actual results Pass/Fail Evidence
(Optional)

Room2-Left Move to room 3 Move to room 3 Pass

Room2-Back Move to room 1 Move to room 1 Pass

Room2-Forward Move to room 4 Move to room 4 Pass

1.3) Room3-Right Move to room 2 Move to room 2 Pass

Room3-Left Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

Room3-Left and password
entered correctly

Move to room 7 Move to room 7 Pass

Room3-Back Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

Room3-Forward Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

1.4) Room4-Right Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

Room4-Left Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

Room4-Back Move to room 2 Move to room 2 Pass

Room4-Forward Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

1.5) Room5-Right Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

Room5-Left Move to room 2 Move to room 2 Pass

Room5-Back Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

Room5-Forward Output “Hmmm the gate
seems locked... maybe
there is a lever somewhere
around here?”

Output “Hmmm the gate
seems locked... maybe
there is a lever somewhere
around here?”

Pas

Room5-Forward and both
levers are activated

Move to room 6 Move to room 6 Pass

1.6) Room6-Right Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

Room6-Left Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

Room6-Back Move to room 5 Move to room 5 Pass

Room6-Forward Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

1.7) Room7-Right Move to room 3 Move to room 3 Pass

Room7-Left Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

Room7-Left and riddle
answered correctly

Move to room 8 Move to room 8 Pass

Room7-Back Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

82 © OCR 2015

Test
Case

ScenariExpected results Actual results Pass/Fail Evidence
(Optional)

Room7-Forward Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

Room7-Forward and locked
door unlocked

Move to room 9 Move to room 9 Pass

Room7-Enter Output “The poor have it.
The rich need it. If you eat it,
you will die. what is it?”

Output “The poor have it.
The rich need it. If you eat it,
you will die. what is it?”

Pass

1.8) Room8-Right Move to room 7 Move to room 7 Pass

Room8-Left Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

Room8-Back Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

Room8-Forward Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

2) Input/output – Testing
that all inputs provide the
correct results.

2.1) “collect” (Lower-case)
command in room (3, 0)

Add key to inventory,
change room (3, 0) image

Add key to inventory,
change room (3, 0) image

Pass

“collect” (Lower-case)
command in room (3, 2)
with enemy alive

Output “There is nothing to
collect here... try killing the
monster!!”

Output “There is nothing to
collect here... try killing the
monster!!”

Pass

“collect” (Lower-case)
command in room (3, 2)
with enemy dead

Add cooked meat to
inventory, add 2 to sword
dmg

Add cooked meat to
inventory, add 2 to sword
dmg

Pass

“collect” (Lower-case)
command outside of rooms
(3, 0) and (3, 2)

Output “Please enter a valid
action”

Nothing Fail

“Collect” (Upper-case)
command in room (3, 0)

Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

“Collect” (Upper-case)
command in room (3, 2)
with enemy alive

Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

“Collect” (Upper-case)
command in room (3, 2)
with enemy dead

Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

“Collect” (Upper-case)
command outside of rooms
(3, 0) and (3, 2)

Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

2.2) “Use” button in room (3, 2)
with enemy alive

Output “The lever is being
guarded.. fight to the
death!”

Output “The lever is being
guarded.. fight to the
death!”

Pass

“Use” button in room (3, 2)
with enemy dead

Activate lever 1, output
“You operate the lever and
hear a clunking noise.”

Activate lever 1, output
“You operate the lever and
hear a clunking noise.”

Pass

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

83 © OCR 2015

Test
Case

ScenariExpected results Actual results Pass/Fail Evidence
(Optional)

“Use” button in room (2, 1) Activate lever 2, output
“You operate the lever and
hear a clunking noise.”

Activate lever 2, output
“You operate the lever and
hear a clunking noise.”

Pass

“Use” button outside of
rooms (3, 2) and (2, 1)

Output “Please enter a valid
action”

Nothing Fail

2.3) “unlock” (Lower-case)
command in room (1, 1)

Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

“unlock” (Lower-case)
command in room (1, 1)
with key in inventory

Locked door opens, output
“You hear a click. The door
opens but the key breaks
off in your hand.”, key
removed from inventory

Locked door opens, output
“You hear a click. The door
opens but the key breaks
off in your hand.”, key
removed from inventory

Pass

“unlock” (Lower-case)
command outside of room
(1, 1)

Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

“Unlock” (Upper-case)
command in room (1, 1)

Output “Please enter a valid
action”

Nothing Fail

“Unlock” (Upper-case)
command outside of room
(1, 1)

Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

2.4) “hell” (Lower-case)
command in room (2, 1)

Password door opens,
output “The door creaks
open. You seem to
have entered the right
password!”

Password door opens,
output “The door creaks
open. You seem to
have entered the right
password!”

Pass

“hell” (Lower-case)
command outside of room
(2, 1)

Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

“Hell” (Upper-case)
command in room (2, 1)

Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

“Hell” (Upper-case)
command outside of room
(2, 1)

Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

2.5) “Heal” button while at lower
than 70 health

Add 30-40 to player health,
output “You now have
{Player health} hitpoints

You swig a potion from
your backpack and heal.
Your health increased by
{30-40} hitpoints”

Add 30-40 to player health,
output “You now have 96
hitpoints

You swig a potion from
your backpack and heal.
Your health increased by 31
hitpoints”

pass

“Heal” button while at 70
health or higher

Set player health to 100,
output “You now have 100
hitpoints.

You swig a potion from
your backpack and heal
yourself to full health”

Set player health to 100,
output “You now have 100
hitpoints.

You swig a potion from
your backpack and heal
yourself to full health”

Pass

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

84 © OCR 2015

Test
Case

ScenariExpected results Actual results Pass/Fail Evidence
(Optional)

2.6) “Load” button Set all variables to ones
in text file, update stats,
inventory and image,
output “You have loaded a
previous save.”

Set all variables to ones
in text file, update stats,
inventory and image,
output “You have loaded a
previous save.”

Pass

2.7) “Save” button Write all current variables to
a text file, output “You have
saved your progress.”

Write all current variables to
a text file, output “You have
saved your progress.”

Pass

2.8) “Exit” button Exit application Exit application Pass

2.9) “Block” button in room (3, 2)
while enemy is alive

Block, output “You have 100
hitpoints left

You have blocked all
damage that the monster
did to you!” or “You have
failed to block and the
monster hit you for {block}
hit points”

Block, output “You have 100
hitpoints left

You have blocked all
damage that the monster
did to you!” or “You have
failed to block and the
monster hit you for {block}
hit points”

Pass

“Block” button in room (3, 2)
while enemy is dead

Output “There is nothing to
block here!”

Output “There is nothing to
attack here!”

Fail

“Block” button in room (1, 1)
while enemy is alive

Block, output “You have 100
hitpoints left

You have blocked all
damage that the monster
did to you!” or “You have
failed to block and the
monster hit you for {block}
hit points”

Block, output “You have 100
hitpoints left

You have blocked all
damage that the monster
did to you!” or “You have
failed to block and the
monster hit you for {block}
hit points”

Pass

“Block” button in room (1, 1)
while enemy is dead

Output “There is nothing to
block here!”

Output “There is nothing to
attack here!”

Fail

“Block” button in room (0, 1)
while enemy is alive

Block, output “You have 100
hitpoints left

You have blocked all
damage that the monster
did to you!” or “You have
failed to block and the
monster hit you for {block}
hit points”

Block, output “You have 100
hitpoints left

You have blocked all
damage that the monster
did to you!” or “You have
failed to block and the
monster hit you for {block}
hit points”

Pass

“Block” button in room (0, 1)
while enemy is dead

Output “There is nothing to
block here!”

Output “There is nothing to
attack here!”

Fail

“Block” button outside of
rooms (3, 2), (1, 1) and (0, 1)

Output “There is nothing to
block here!”

Output “There is nothing to
attack here!”

Fail

2.10) “Attack” button in room (3,
2) while enemy is alive

Attack, Output “Monster 1
has {activeMonsterHealth}
hit points, you attack with
your weapon”

Attack, Output “Monster 1
has {activeMonsterHealth}
hit points, you attack with
your weapon”

Pass

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

85 © OCR 2015

Test
Case

ScenariExpected results Actual results Pass/Fail Evidence
(Optional)

“Attack” button in room (3,
2) while enemy is dead

Output “The monster is
already dead, you hack into
its squishy dead body.... and
get covered in goo!”

Output “There is nothing to
attack here!”

Fail

“Attack” button in room (1,
1) while enemy is alive

Attack, Output “Monster 1
has {activeMonsterHealth}
hit points, you attack with
your weapon”

Attack, Output “Monster 1
has {activeMonsterHealth}
hit points, you attack with
your weapon”

Pass

“Attack” button in room (1,
1) while enemy is dead

Output “The monster is
already dead, you hack into
its squishy dead body.... and
get covered in goo!”

Output “There is nothing to
attack here!”

Fail

“Attack” button in room (0,
1) while enemy is alive

Attack, Output “Monster 1
has {activeMonsterHealth}
hit points, you attack with
your weapon”

Attack, Output “Monster 1
has {activeMonsterHealth}
hit points, you attack with
your weapon”

Pass

“Attack” button in room (0,
1) while enemy is dead

Output “The monster is
already dead, you hack into
its squishy dead body.... and
get covered in goo!”

Output “There is nothing to
attack here!”

Fail

“Attack” button outside of
rooms (3, 2), (1, 1) and (0, 1)

Output “There is nothing to
attack here!”

Output “There is nothing to
attack here!”

Pass

2.11) “nothing” (Lower-case)
command in room (2, 1)
with enemy alive

Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

“nothing” (Lower-case)
command in room (2, 1)
with enemy dead

Riddle door opens, Output
“The door slides open.
You answered the riddle
correctly!”

Riddle door opens, Output
“The door slides open.
You answered the riddle
correctly!”

Pass

“nothing” (Lower-case)
command outside room
(2, 1)

Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

“Nothing” (Upper-case)
command in room (2, 1)
with enemy alive

Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

“Nothing” (Upper-case)
command in room (2, 1)
with enemy dead

Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

“Nothing” (Upper-case)
command outside room
(2, 1)

Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

“help” in any room Output “forwards, left, right,
back, collect, unlock”

Output “forwards, left, right,
back, collect, unlock”

Pass

2.12) “” in any room Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

“dsafnjw” in any room Output “Please enter a valid
action”

Output “Please enter a valid
action”

Pass

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

86 © OCR 2015

Summary
The restrictions on movement are all in the correct places and work properly and the systems all work as they should,
however there are a few minor problems regarding text outputs. Some commands in certain scenarios would not give
the desired output but for most of these the output still worked adequately. Overall the system is rather solid technically
but with some minor text output bugs.

User testing
For user testing I sent out a copy of the game to three end users along with a questionnaire. An image of the
questionnaire and the results are shown below.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

87 © OCR 2015

What would you rate the game as a product out of 10?

1. 7

2. 7

3. 7

Tick the features that you think are present in the game.

1. There are a variety of things to do., There are puzzles that require some thought., There is a turn based combat
system., There are obstructions. E.g.: Locked doors, pitfalls, The game has an overall intermediate difficulty., There
are 2D graphics., There is a graphical interface as well as text., There is a GUI., Important information is shown on
the GUI. E.g.: Health, inventory., There are on screen buttons as well as a command line., The game uses the
keyboard and mouse

2. There are a variety of things to do., There are puzzles that require some thought., There is a turn based combat
system., There are obstructions. E.g.: Locked doors, pitfalls, The game has an overall intermediate difficulty., There
are 2D graphics., There is a graphical interface as well as text., There is a GUI., Important information is shown on
the GUI. E.g.: Health, inventory., There are on screen buttons as well as a command line., The game uses the
keyboard and mouse

3. There are a variety of things to do., There are puzzles that require some thought., There is a turn based combat
system., The levels take around 5-10 minutes to complete., The game has an overall intermediate difficulty., There
is a graphical interface as well as text., There is a GUI., Important information is shown on the GUI. E.g.: Health,
inventory., The game uses the keyboard and mouse, There is a menu screen with buttons.

Do you think any of the missing features could be considered major omissions? If so, which ones and why?

1. Death screen to make the game look more polished.

2. There wasn’t a health bar or similar which would make it easier for the user to understand their characters stats
easier.

There could have been a tutorial or better help on how to play the game.

3. None.

Please note any areas of the game where you got confused about what to do or where information wasn’t conveyed
properly (if any).

1. The coloured doors with the letter ‘P’ marked on them. I did not know that I have to enter a password to get
through them.

2. I didn’t know how to pick up objects or how to open doors which could be because of little if any help tutorials.

3. None, it took quite a bit of thought though.

Do you think that the game can be considered a “complete” product in its current state?

1. No

2. No

3. Yes

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

88 © OCR 2015

Do you have any other extra feedback on the game?

1. Maybe make the help menu a bit clearer, at the moment it only shows a list of commands. It would be good if it
was separated from the rest of the text e.g. -------[HELP]-------- and then another line ------------------- at the end with
the commands inside it.

2. There is lacking story for the game or extra levels. It could also do with increased tutorial on how to play the game
and make the list box clearer to understand.

3. Could have had further levels.

Summary
It seems as though my end users enjoy the game overall however there are some areas where information is poorly
conveyed to the player. Judging from several responses it seem my efforts at showing the player how to play the game
were not useful enough. “There could have been a tutorial or better help on how to play the game”, “I didn’t know how
to pick up objects or how to open doors which could be because of little if any help tutorials” and “It could also do with
increased tutorial on how to play the game and make the list box clearer to understand” show that users desired more
adequate tutorials on how to play the game.

Of the 17 planned features, there were only 4 that all 3 users felt the game did not have at all. Those features are
character naming, merchants, the options menu and the death screen. Judging from the answers to the other questions
it seems as though no one particularly misses the options screen however one user said that there should be a “Death
screen to make the game look more polished.” One user also expressed that there should have been a health bar so that
the player could see their health easier. “There wasn’t a health bar or similar which would make it easier for the user to
understand their characters stats easier.” Two users expressed that they would have preferred further levels but as I have
already explained I did not have enough time to implement more than one level. “Could have had further levels” and
“There is lacking story for the game or extra levels” show this and also that one user would have preferred more
emphasis on the story.

All three users rated the product as a 7 which I feel is a rather good score given the lack of many initial features, however
two of the three users did not consider the game a “complete” product, probably due to the short length and lack of
features.

Overall I think that the game was a success with my end user but only just. If I had the time to include the other planned
features and provide sufficient help and tutorials I feel that my end users would have been happier with the product.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

89 © OCR 2015

Section 4 – Documentation
Brief description
The goal of this game is to reach the exit of the dungeon by navigating the dark corridors while defeating enemies,
solving puzzles and picking up loot.

Interface navigation

Movement
Movement can be done by either using the directional buttons shown on the bottom left of the interface or by entering
the direction you would like to move into the text input box shown in the middle of the interface. Movement is
restricted to forwards, left, right and back and each moves you to an adjacent room in the direction you choose
assuming there isn’t a wall or locked door in the way.

Image Output
This is the area where you will see
an image of the room you are
currently in.

Text output
This is where important information
is displayed. It shows descriptions of
actions and acts as a combat log.

Text Input
This is where you will input more
detailed actions to interact with the
game.

Stats and inventory output
These show your equipment stats
and the items you currently hold in
your inventory.

Save, Load, New and Exit buttons
These allow you to save your
current progress, load a previous
save, restart the game or exit the
application without saving.

Action buttons
These buttons allow you to interact with the game.
The buttons labelled with directions are used for
movement. Attack and block are only used during
combat. Heal allows you to use a healing item to
regain some health.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

90 © OCR 2015

Interaction
Interaction with the environment is done using the use button and the unlock and collect commands. The use button is
used to activate levers, switches and other environmental interactions. The collect command is used to pick up items in
the game. E.g.: Picking up a key from a table. Finally, the unlock command is used to unlock doors provided you have a
key present in your inventory.

Combat
Upon encountering an enemy you have three options;

Attack the enemy for a random amount of damage.

Block for the chance to negate all incoming damage and attack with reduced damage.

Move to another room to leave combat. The enemy will have the same amount of health the next time you encounter it.

After either attacking or blocking the enemy will attack you for a random amount of damage. Once the enemy’s health
reaches below 0, the enemy will be defeated and the player may receive some loot. If the player is defeated the game
must either be restarted or reloaded from a save file.

Installation
1. Place the game folder anywhere, preferably in a permanent space such as your user area.

2. Open up the solution and navigate to the areas of code where file locations are referenced. (Must have Visual
Studio 2012 or later)

3. Change these file locations to where each file is located on your computer.

4. Click “Start” in the top left of the Visual Studio to play the game.

Troubleshooting/Q&A
Q: I can’t pass through the locked door in room 7 even though I have a key.

A: You need to use the unlock command to open the door.

Q: Using the command “unlock” on the door in room 7 isn’t working.

A: You must have a key present in your inventory to unlock the door. If you have a key and this still doesn’t work, check
your capitalisation and spelling.

Q: When I enter a command I get the message “Please enter a valid action”.

A: The commands are case sensitive, only lower case is accepted. If that isn’t the problem then check your spelling.

Q: I have pulled the lever but the gate in room 5 is still shut.

A: You must activate both levers before the gate will open.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

91 © OCR 2015

Section 5 – Evaluation
Overall I feel that the project was a success despite the absence of several features I had planned in the designs. Here is a
list of the initial planned features and whether they are present in the final version or not.

Present in the final version (Yes, no, modified, removed)
Planned Features Myself End User
Variety of things you can dYes Yes

To be able to name the character NNo

Puzzles that require some thought Yes Yes

To have a turn based combat system Yes Yes

Merchants that sell various helpful items NNo

Various obstructions such as locked doors and pitfalls Yes Yes

Levels that take around 5-10 minutes to complete Yes No

Have an overall intermediate difficulty Yes Yes

2D graphics Yes Yes

A graphical interface as well as text Yes Yes

A GUI to show information, buttons etc. Yes Yes

Information such as health, inventory displayed on the
GUI

Yes Yes

On screen buttons as well as a command line Yes Yes

Will use keyboard and mouse Yes Yes

An options menu containing video and control options Removed No

A death screen for when the player is defeated in combat NNo

A menu screen with buttons for new game, load game,
options and exit

modified No

The final version of the game only contained the first floor of the two that were planned due to time constraints. There
was originally a main menu and pause menu but they were removed to save the time that would be wasted navigating
menus. The buttons on the menus were relocated to the game screen where they were more accessible and useful. The
options menu was also omitted due to the rearranging of buttons that were previously located on the main menu and
pause menu. Having an options menu for two rather unnecessary options was also a waste of space. Character
customisation in the way of the character’s name and portrait were left out due to the player’s character not being
referenced in the text anyway and also due to the limited space on the form. Merchants and other dungeon dwellers
were features that were going to be included on floor 2 however I ended up scrapping floor 2 so the feature was never
developed. Implementing them into floor 1 would have required a complete re design so I decided to just omit the
feature.

User reception was positive with the product receiving 7 out of 10 overall from the users I tested, however it seemed
that most found the game to be an incomplete product despite the high score due to inadequate tutorials, some
confusing concepts that were not fully explained such as the password door and riddle door and the absence of several
features that were initially proposed. Overall I feel that the game was a success because despite the end users being
underwhelmed by the user friendliness of the system, they overall still found the software to be rather solid in its own
right.

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

92 © OCR 2015

If the software was ever to receive an update I would;

•	 Expand upon the first floor – Most of the end users felt that the game did not reach the target 5-10 minutes so
making the first floor larger would fix this issue.

•	 Create more floors – The end users expressed that they would have preferred more floors. Adding the second floor
and possibly more floors would fix this problem.

•	 Prioritise story and player choice – The game was originally supposed to have a larger emphasis on the story and
choices the player made. The final version of the game is very much linear.

•	 Include character customisation – I wasn’t able to add this due to several factors however if I was to place a higher
priority on story and player choice then this would be a must.

Code

Code
using System;
using System.IO;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

namespace WindowsFormsApplication11
{
 public partial class Form1 : Form
 {

 //Whether the player can pass through the door.
 bool riddleDoor1 = false;
 bool passDoor1 = false;
 bool lockedDoor1 = false;

 //Room 3 2 Options
 bool lever32 = false;
 bool collect32 = false;

 //Room 3 0 Options
 bool collect30 = false;

 //Room 2 1 Options
 bool lever21 = false;

 //The equipment currenly being utilised by the player. these act as
multiplyers for their respective uses.
 int currentShieldValue = 1; //Block chance.
 int currentSwordValue = 1; //Sword damage.
 int currentArmourValue = 1; //Damage reduction.

 //Number of items in the players inventory.
 int keyNo = 0;
 int hPotionNo = 4;
 string shield = "Rotten buckler";
 string sword = "Wooden club";
 string armour = "Old rags";

 //Various player and enemy properties.
 bool enemy3Alive = true;
 bool enemy2Alive = true;
 bool enemy1Alive = true;
 int enemy3Health = 60;
 int enemy2Health = 30;
 int enemy1Health = 20;
 int playerHealth = 100;

 //Array to hold inventory
 string [] inventory = {"Empty Slot", "Empty Slot","Empty Slot","Empty
Slot","Empty Slot"} ;
 int inventoryLocation = 0;

 //Coordinate system.
 int playerX = 3;

109 | P a g e

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

93 © OCR 2015

Code
using System;
using System.IO;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

namespace WindowsFormsApplication11
{
 public partial class Form1 : Form
 {

 //Whether the player can pass through the door.
 bool riddleDoor1 = false;
 bool passDoor1 = false;
 bool lockedDoor1 = false;

 //Room 3 2 Options
 bool lever32 = false;
 bool collect32 = false;

 //Room 3 0 Options
 bool collect30 = false;

 //Room 2 1 Options
 bool lever21 = false;

 //The equipment currenly being utilised by the player. these act as
multiplyers for their respective uses.
 int currentShieldValue = 1; //Block chance.
 int currentSwordValue = 1; //Sword damage.
 int currentArmourValue = 1; //Damage reduction.

 //Number of items in the players inventory.
 int keyNo = 0;
 int hPotionNo = 4;
 string shield = "Rotten buckler";
 string sword = "Wooden club";
 string armour = "Old rags";

 //Various player and enemy properties.
 bool enemy3Alive = true;
 bool enemy2Alive = true;
 bool enemy1Alive = true;
 int enemy3Health = 60;
 int enemy2Health = 30;
 int enemy1Health = 20;
 int playerHealth = 100;

 //Array to hold inventory
 string [] inventory = {"Empty Slot", "Empty Slot","Empty Slot","Empty
Slot","Empty Slot"} ;
 int inventoryLocation = 0;

 //Coordinate system.
 int playerX = 3;

109 | P a g e

 int playerY = 0;
 string[,] coordinates = new string[5, 5] { { "1A", "1B", "1C", "1D", "1E" }, {
"2A", "2B", "2C", "2D", "2E" }, { "3A", "3B", "3C", "3D", "3E" }, { "4A", "4B", "4C",
"4D", "4E" }, { "5A", "5B", "5C", "5D", "5E" }, };

 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 //Runs the code as soon as the form has loaded
 PlayerCurrentPos(playerX, playerY);
 statsUpdate();
 inventoryUpdate(inventory);
 TextOutput.Text = "For a list of common commands, enter \"Help\" in the
command line.";
 }

 public void PlayerAction(string command)
 {
 //This Method handles the next action based on what the player inputs.

 if (command == "forwards" && playerY != 4 && ((playerX == 3 && playerY ==
0) || (playerX == 3 && playerY == 1) || ((playerX == 4 && playerY == 1) && lever32 ==
true && lever21 == true) || ((playerX == 1 && playerY == 1) && lockedDoor1 == true)))
 {
 //Increment the players Y coordinate and display the players current
position.
 playerY++;
 TextOutput.Text = coordinates[playerX, playerY] + "\r\n" +
TextOutput.Text;
 }

 else if (command == "forwards" && ((playerX == 4 && playerY == 1) &&
(lever32 == false || lever21 == false)))
 {
 //Dsiplay "Gate Locked" message
 TextOutput.Text = "Hmmm the gate seems locked... maybe there is a
lever somewhere around here?" + "\r\n" + TextOutput.Text;
 }

 else if (command == "back" && playerY != 0 && ((playerX == 3 && playerY ==
1) || (playerX == 3 && playerY == 2) || (playerX == 4 && playerY == 2) || (playerX ==
1 && playerY == 2) || (playerX == 1 && playerY == 3)))
 {
 //Decrement the players Y coordinate and display the players current
position.
 playerY--;
 TextOutput.Text = coordinates[playerX, playerY] + "\r\n" +
TextOutput.Text;
 }

 else if (command == "left" && playerX != 0 && ((playerX == 0 && playerY ==
1) || ((playerX == 1 && playerY == 1) && riddleDoor1 == true) || ((playerX == 2 &&
playerY == 1) && passDoor1 == true) || (playerX == 3 && playerY == 1) || (playerX == 4
&& playerY == 1)))
 {
 //Decrement the players X coordinate and display the players current
position.
 playerX--;

110 | P a g e

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

94 © OCR 2015

 int playerY = 0;
 string[,] coordinates = new string[5, 5] { { "1A", "1B", "1C", "1D", "1E" }, {
"2A", "2B", "2C", "2D", "2E" }, { "3A", "3B", "3C", "3D", "3E" }, { "4A", "4B", "4C",
"4D", "4E" }, { "5A", "5B", "5C", "5D", "5E" }, };

 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 //Runs the code as soon as the form has loaded
 PlayerCurrentPos(playerX, playerY);
 statsUpdate();
 inventoryUpdate(inventory);
 TextOutput.Text = "For a list of common commands, enter \"Help\" in the
command line.";
 }

 public void PlayerAction(string command)
 {
 //This Method handles the next action based on what the player inputs.

 if (command == "forwards" && playerY != 4 && ((playerX == 3 && playerY ==
0) || (playerX == 3 && playerY == 1) || ((playerX == 4 && playerY == 1) && lever32 ==
true && lever21 == true) || ((playerX == 1 && playerY == 1) && lockedDoor1 == true)))
 {
 //Increment the players Y coordinate and display the players current
position.
 playerY++;
 TextOutput.Text = coordinates[playerX, playerY] + "\r\n" +
TextOutput.Text;
 }

 else if (command == "forwards" && ((playerX == 4 && playerY == 1) &&
(lever32 == false || lever21 == false)))
 {
 //Dsiplay "Gate Locked" message
 TextOutput.Text = "Hmmm the gate seems locked... maybe there is a
lever somewhere around here?" + "\r\n" + TextOutput.Text;
 }

 else if (command == "back" && playerY != 0 && ((playerX == 3 && playerY ==
1) || (playerX == 3 && playerY == 2) || (playerX == 4 && playerY == 2) || (playerX ==
1 && playerY == 2) || (playerX == 1 && playerY == 3)))
 {
 //Decrement the players Y coordinate and display the players current
position.
 playerY--;
 TextOutput.Text = coordinates[playerX, playerY] + "\r\n" +
TextOutput.Text;
 }

 else if (command == "left" && playerX != 0 && ((playerX == 0 && playerY ==
1) || ((playerX == 1 && playerY == 1) && riddleDoor1 == true) || ((playerX == 2 &&
playerY == 1) && passDoor1 == true) || (playerX == 3 && playerY == 1) || (playerX == 4
&& playerY == 1)))
 {
 //Decrement the players X coordinate and display the players current
position.
 playerX--;

110 | P a g e

 TextOutput.Text = coordinates[playerX, playerY] + "\r\n" +
TextOutput.Text;
 }

 else if (command == "right" && playerX != 4 && (((playerX == 3 && playerY
== 1) || (playerX == 2 && playerY == 1)) || (playerX == 1 && playerY == 1) || (playerX
== 0 && playerY == 1)))
 {
 //Increment the players X coordinate and display the players current
position.
 playerX++;
 TextOutput.Text = coordinates[playerX, playerY] + "\r\n" +
TextOutput.Text;
 }

 else if (command == "current")
 {
 //Display the players current coordinate.
 TextOutput.Text = TextOutput.Text + "\r\n" + coordinates[playerX,
playerY];
 TextOutput.Text = "Location: " + coordinates[playerX, playerY] +
"\r\n" + TextOutput.Text;
 }

 else if (command == "collect")
 {
 //Allows the player to pick up items and add them to their inventory
depending on the room they are in.
 if ((playerX == 3 && playerY == 2))
 {
 if (enemy1Alive == true)
 {
 TextOutput.Text = "There is nothing to collect here... try
killing the monster!!" + "\r\n" + TextOutput.Text;
 }

 else if (enemy1Alive == false && collect32 == false)
 {
 currentSwordValue = currentSwordValue + 2;
 sword = "Rusty Short Sword";
 TextOutput.Text = "You collect a Rusty Short Sword and your
attack rating increases" + "\r\n" + TextOutput.Text;
 TextOutput.Text = "You collect try to pick up food and store
it in your inventory" + "\r\n" + TextOutput.Text;
 if (inventoryLocation < 4)
 {
 inventory[inventoryLocation] = "Cooked Meat";
 inventoryLocation++;
 TextOutput.Text = "You find some room in your bags and
keep the food" + "\r\n" + TextOutput.Text;
 inventoryUpdate(inventory);
 collect32 = true;
 //Updated PICTURES to match
 }
 else
 {
 TextOutput.Text = "You cannot find any room in your bags."
+ "\r\n" + TextOutput.Text;
 }

 }
 statsUpdate();

111 | P a g e

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

95 © OCR 2015

 TextOutput.Text = coordinates[playerX, playerY] + "\r\n" +
TextOutput.Text;
 }

 else if (command == "right" && playerX != 4 && (((playerX == 3 && playerY
== 1) || (playerX == 2 && playerY == 1)) || (playerX == 1 && playerY == 1) || (playerX
== 0 && playerY == 1)))
 {
 //Increment the players X coordinate and display the players current
position.
 playerX++;
 TextOutput.Text = coordinates[playerX, playerY] + "\r\n" +
TextOutput.Text;
 }

 else if (command == "current")
 {
 //Display the players current coordinate.
 TextOutput.Text = TextOutput.Text + "\r\n" + coordinates[playerX,
playerY];
 TextOutput.Text = "Location: " + coordinates[playerX, playerY] +
"\r\n" + TextOutput.Text;
 }

 else if (command == "collect")
 {
 //Allows the player to pick up items and add them to their inventory
depending on the room they are in.
 if ((playerX == 3 && playerY == 2))
 {
 if (enemy1Alive == true)
 {
 TextOutput.Text = "There is nothing to collect here... try
killing the monster!!" + "\r\n" + TextOutput.Text;
 }

 else if (enemy1Alive == false && collect32 == false)
 {
 currentSwordValue = currentSwordValue + 2;
 sword = "Rusty Short Sword";
 TextOutput.Text = "You collect a Rusty Short Sword and your
attack rating increases" + "\r\n" + TextOutput.Text;
 TextOutput.Text = "You collect try to pick up food and store
it in your inventory" + "\r\n" + TextOutput.Text;
 if (inventoryLocation < 4)
 {
 inventory[inventoryLocation] = "Cooked Meat";
 inventoryLocation++;
 TextOutput.Text = "You find some room in your bags and
keep the food" + "\r\n" + TextOutput.Text;
 inventoryUpdate(inventory);
 collect32 = true;
 //Updated PICTURES to match
 }
 else
 {
 TextOutput.Text = "You cannot find any room in your bags."
+ "\r\n" + TextOutput.Text;
 }

 }
 statsUpdate();

111 | P a g e

 }

 else if ((playerX == 3 && playerY == 0))
 {
 if (collect30 == false)
 {
 if (inventoryLocation < 4)
 {
 inventory[inventoryLocation] = "Key";
 inventoryLocation++;
 TextOutput.Text = "You pick up a worn key off of a nearby
table." + "\r\n" + TextOutput.Text;
 inventoryUpdate(inventory);
 collect30 = true;
 }
 else
 {
 TextOutput.Text = "You cannot find any room in your bags."
+ "\r\n" + TextOutput.Text;
 }
 }
 else
 {
 TextOutput.Text = "There is nothing to collect" + "\r\n" +
TextOutput.Text;
 }
 }
 }

 else if (command == "hell" && (playerX == 2 && playerY == 1))
 {
 //Password for the password door
 TextOutput.Text = "The door creaks open. You seem to have entered the
right password!" + "\r\n" + TextOutput.Text;
 passDoor1 = true;
 }

 else if (command == "nothing" && (playerX == 1 && playerY == 1) &&
enemy2Alive == false && riddleDoor1 == false)
 {
 //Opens the riddle door if the enemy in the room is dead
 TextOutput.Text = "The door slides open. You answered the riddle
correctly!" + "\r\n" + TextOutput.Text;
 riddleDoor1 = true;
 }

 else if (command == "unlock" && (playerX == 1 && playerY == 1) &&
collect30 == true && lockedDoor1 == false && enemy2Alive == false)
 {
 //Unlocks the locked door if the player has a key in their inventory
and the enemy in the room is dead
 inventoryLocation--;
 inventory[inventoryLocation] = "Empty slot";
 TextOutput.Text = "You hear a click. The door opens but the key breaks
off in your hand." + "\r\n" + TextOutput.Text;
 lockedDoor1 = true;
 }

 else if (command == "help")
 {
 //Lists the common commands in the text output

112 | P a g e

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

96 © OCR 2015

 }

 else if ((playerX == 3 && playerY == 0))
 {
 if (collect30 == false)
 {
 if (inventoryLocation < 4)
 {
 inventory[inventoryLocation] = "Key";
 inventoryLocation++;
 TextOutput.Text = "You pick up a worn key off of a nearby
table." + "\r\n" + TextOutput.Text;
 inventoryUpdate(inventory);
 collect30 = true;
 }
 else
 {
 TextOutput.Text = "You cannot find any room in your bags."
+ "\r\n" + TextOutput.Text;
 }
 }
 else
 {
 TextOutput.Text = "There is nothing to collect" + "\r\n" +
TextOutput.Text;
 }
 }
 }

 else if (command == "hell" && (playerX == 2 && playerY == 1))
 {
 //Password for the password door
 TextOutput.Text = "The door creaks open. You seem to have entered the
right password!" + "\r\n" + TextOutput.Text;
 passDoor1 = true;
 }

 else if (command == "nothing" && (playerX == 1 && playerY == 1) &&
enemy2Alive == false && riddleDoor1 == false)
 {
 //Opens the riddle door if the enemy in the room is dead
 TextOutput.Text = "The door slides open. You answered the riddle
correctly!" + "\r\n" + TextOutput.Text;
 riddleDoor1 = true;
 }

 else if (command == "unlock" && (playerX == 1 && playerY == 1) &&
collect30 == true && lockedDoor1 == false && enemy2Alive == false)
 {
 //Unlocks the locked door if the player has a key in their inventory
and the enemy in the room is dead
 inventoryLocation--;
 inventory[inventoryLocation] = "Empty slot";
 TextOutput.Text = "You hear a click. The door opens but the key breaks
off in your hand." + "\r\n" + TextOutput.Text;
 lockedDoor1 = true;
 }

 else if (command == "help")
 {
 //Lists the common commands in the text output

112 | P a g e

 TextOutput.Text = "forwards" + "\r\n" + "left" + "\r\n" + "right" +
"\r\n" + "back" + "\r\n" + "current" + "\r\n" + "collect" + "\r\n" + "unlock" + "\r\n"
+ TextOutput.Text;
 }

 else
 {
 TextOutput.Text = "Please enter a valid action." + "\r\n" +
TextOutput.Text;
 }

 }

 public void EnterText_Click(object sender, EventArgs e)
 {
 string input = "";
 //On button press, assign text currently entered in the input box to input
variable.
 input = TextInput.Text;
 PlayerAction(input);
 PlayerCurrentPos(playerX, playerY);
 //Reset input
 input = null;
 }

 public void PlayerCurrentPos(int x, int y)
 {
 //Retreive current player coordinates, output an image of the current room
and set properties.
 // ---

 // Room 3 0 Picture Display Choices
 // ---

 if ((x == 3 && y == 0) && collect30 == false)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room1 KEY.png");
 }
 else if ((x == 3 && y == 0) && collect30 == true)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room1 Empty.png");
 }

 // ---

 // Room 3 1 Picture Display Choices
 // ---

 if (x == 3 && y == 1)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room2.png");
 }

 // ---

 // Room 2 1 Picture Display Choices

113 | P a g e

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

97 © OCR 2015

 TextOutput.Text = "forwards" + "\r\n" + "left" + "\r\n" + "right" +
"\r\n" + "back" + "\r\n" + "current" + "\r\n" + "collect" + "\r\n" + "unlock" + "\r\n"
+ TextOutput.Text;
 }

 else
 {
 TextOutput.Text = "Please enter a valid action." + "\r\n" +
TextOutput.Text;
 }

 }

 public void EnterText_Click(object sender, EventArgs e)
 {
 string input = "";
 //On button press, assign text currently entered in the input box to input
variable.
 input = TextInput.Text;
 PlayerAction(input);
 PlayerCurrentPos(playerX, playerY);
 //Reset input
 input = null;
 }

 public void PlayerCurrentPos(int x, int y)
 {
 //Retreive current player coordinates, output an image of the current room
and set properties.
 // ---

 // Room 3 0 Picture Display Choices
 // ---

 if ((x == 3 && y == 0) && collect30 == false)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room1 KEY.png");
 }
 else if ((x == 3 && y == 0) && collect30 == true)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room1 Empty.png");
 }

 // ---

 // Room 3 1 Picture Display Choices
 // ---

 if (x == 3 && y == 1)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room2.png");
 }

 // ---

 // Room 2 1 Picture Display Choices

113 | P a g e

 // ---

 if (x == 2 && y == 1)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room3.png");
 }

 // ---

 // Room 4 1 Picture Display Choices
 // ---

 if (x == 4 && y == 1)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room5.png");
 }

 // ---

 // Room 3 2 Picture Display Choices
 // ---

 if (x == 3 && y == 2 && enemy1Alive == true)
 {
 TextOutput.Text = TextOutput.Text + "\r\n" + "You encounter an enemy!!
Press Attack/Heal/Block to fight or move from the room to quit combat";
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room 4 Monster.png");
 }
 else if (x == 3 && y == 2 && enemy1Alive == false && collect32==false)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room 4 meat and sword.png");
 }
 else if (x == 3 && y == 2 && enemy1Alive == false && collect32 == true)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room 4 empty.png");
 }

 // ---

 // Room 4 2 Picture Display Choices
 // ---

 if (x == 4 && y == 2)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room 6.png");
 }

 // ---

 // Room 1 1 Picture Display Choices
 // ---

 if (x == 1 && y == 1 && enemy2Alive == true)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room 7 Monster.png");

114 | P a g e

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

98 © OCR 2015

 // ---

 if (x == 2 && y == 1)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room3.png");
 }

 // ---

 // Room 4 1 Picture Display Choices
 // ---

 if (x == 4 && y == 1)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room5.png");
 }

 // ---

 // Room 3 2 Picture Display Choices
 // ---

 if (x == 3 && y == 2 && enemy1Alive == true)
 {
 TextOutput.Text = TextOutput.Text + "\r\n" + "You encounter an enemy!!
Press Attack/Heal/Block to fight or move from the room to quit combat";
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room 4 Monster.png");
 }
 else if (x == 3 && y == 2 && enemy1Alive == false && collect32==false)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room 4 meat and sword.png");
 }
 else if (x == 3 && y == 2 && enemy1Alive == false && collect32 == true)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room 4 empty.png");
 }

 // ---

 // Room 4 2 Picture Display Choices
 // ---

 if (x == 4 && y == 2)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room 6.png");
 }

 // ---

 // Room 1 1 Picture Display Choices
 // ---

 if (x == 1 && y == 1 && enemy2Alive == true)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room 7 Monster.png");

114 | P a g e

 }
 else if (x == 1 && y == 1 && enemy2Alive == false)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room 7 empty.png");
 }

 if ((x == 1 && y == 1) && enemy2Alive == false && riddleDoor1 == false)
 {
 TextOutput.Text = "The poor have it. The rich need it. If you eat it,
you will die. what is it?" + "\r\n" + TextOutput.Text;
 }

 // ---

 // Room 0 1 Picture Display Choices
 // ---

 if (x == 0 && y == 1 && enemy3Alive == true)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room 8 empty monster.png");
 }
 else if (x == 0 && y == 1 && enemy3Alive == false)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room 8 empty.png");
 }

 // ---

 // Room 1 2 Picture Display Choices
 // ---

 if (x == 1 && y == 2)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room 9.png");
 MessageBox.Show("You have escaped the dungeon!");
 Application.Exit();
 }

 }

 public void combatSystem(string action)
 {
 //Combat actions for room (3, 2).
 if (action == "attack" && playerX == 3 && playerY == 2 && enemy1Alive ==
true)
 {
 enemy1Health = combatAttack(enemy1Health);
 if (enemy1Health <= 0)
 {
 enemy1Alive = false;
 GameDisplay.Image = new
Bitmap(@"E:\School\NEWEST\Computing\F454\F454 Game HOME
VER\WindowsFormsApplication11\Resources\Room 4 meat and sword.png");
 }
 }

 else if (action == "block" && playerX == 3 && playerY == 2 && enemy1Alive
== true)

115 | P a g e

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

99 © OCR 2015

 }
 else if (x == 1 && y == 1 && enemy2Alive == false)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room 7 empty.png");
 }

 if ((x == 1 && y == 1) && enemy2Alive == false && riddleDoor1 == false)
 {
 TextOutput.Text = "The poor have it. The rich need it. If you eat it,
you will die. what is it?" + "\r\n" + TextOutput.Text;
 }

 // ---

 // Room 0 1 Picture Display Choices
 // ---

 if (x == 0 && y == 1 && enemy3Alive == true)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room 8 empty monster.png");
 }
 else if (x == 0 && y == 1 && enemy3Alive == false)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room 8 empty.png");
 }

 // ---

 // Room 1 2 Picture Display Choices
 // ---

 if (x == 1 && y == 2)
 {
 GameDisplay.Image = new Bitmap(@"E:\School\NEWEST\Computing\F454\F454
Game HOME VER\WindowsFormsApplication11\Resources\Room 9.png");
 MessageBox.Show("You have escaped the dungeon!");
 Application.Exit();
 }

 }

 public void combatSystem(string action)
 {
 //Combat actions for room (3, 2).
 if (action == "attack" && playerX == 3 && playerY == 2 && enemy1Alive ==
true)
 {
 enemy1Health = combatAttack(enemy1Health);
 if (enemy1Health <= 0)
 {
 enemy1Alive = false;
 GameDisplay.Image = new
Bitmap(@"E:\School\NEWEST\Computing\F454\F454 Game HOME
VER\WindowsFormsApplication11\Resources\Room 4 meat and sword.png");
 }
 }

 else if (action == "block" && playerX == 3 && playerY == 2 && enemy1Alive
== true)

115 | P a g e

 {
 enemy1Health = combatBlock(enemy1Health);
 if (enemy1Health <= 0)
 {
 enemy1Alive = false;
 GameDisplay.Image = new
Bitmap(@"E:\School\NEWEST\Computing\F454\F454 Game HOME
VER\WindowsFormsApplication11\Resources\Room 4 meat and sword.png");
 }
 }

 //Combat actions for (1, 1).
 else if (action == "attack" && playerX == 1 && playerY == 1 && enemy2Alive
== true)
 {
 enemy2Health = combatAttack(enemy2Health);
 if (enemy2Health <= 0)
 {
 enemy2Alive = false;
 GameDisplay.Image = new
Bitmap(@"E:\School\NEWEST\Computing\F454\F454 Game HOME
VER\WindowsFormsApplication11\Resources\Room 7 empty.png");
 TextOutput.Text = "The monster dropped a suit of Stone Armour!" +
"\r\n" + TextOutput.Text;
 armour = "Stone Armour";
 currentArmourValue = currentArmourValue + 2;
 statsUpdate();
 }
 }

 else if (action == "block" && playerX == 1 && playerY == 1 && enemy2Alive
== true)
 {
 enemy2Health = combatBlock(enemy2Health);
 if (enemy2Health <= 0)
 {
 enemy2Alive = false;
 GameDisplay.Image = new
Bitmap(@"E:\School\NEWEST\Computing\F454\F454 Game HOME
VER\WindowsFormsApplication11\Resources\Room 7 empty.png");
 TextOutput.Text = "The monster dropped a suit of Stone Armour!" +
"\r\n" + TextOutput.Text;
 armour = "Stone Armour";
 currentArmourValue = currentArmourValue + 2;
 statsUpdate();
 }
 }

 //Combat actions for (0, 1).
 else if (action == "attack" && playerX == 0 && playerY == 1 && enemy3Alive
== true)
 {
 enemy3Health = combatAttack(enemy3Health);
 if (enemy3Health <= 0)
 {
 enemy3Alive = false;
 GameDisplay.Image = new
Bitmap(@"E:\School\NEWEST\Computing\F454\F454 Game HOME
VER\WindowsFormsApplication11\Resources\Room 8 empty.png");
 TextOutput.Text = "The monster dropped a Beaten Shield!" + "\r\n"
+ TextOutput.Text;
 shield = "Beaten Shield";

116 | P a g e

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

100 © OCR 2015

 {
 enemy1Health = combatBlock(enemy1Health);
 if (enemy1Health <= 0)
 {
 enemy1Alive = false;
 GameDisplay.Image = new
Bitmap(@"E:\School\NEWEST\Computing\F454\F454 Game HOME
VER\WindowsFormsApplication11\Resources\Room 4 meat and sword.png");
 }
 }

 //Combat actions for (1, 1).
 else if (action == "attack" && playerX == 1 && playerY == 1 && enemy2Alive
== true)
 {
 enemy2Health = combatAttack(enemy2Health);
 if (enemy2Health <= 0)
 {
 enemy2Alive = false;
 GameDisplay.Image = new
Bitmap(@"E:\School\NEWEST\Computing\F454\F454 Game HOME
VER\WindowsFormsApplication11\Resources\Room 7 empty.png");
 TextOutput.Text = "The monster dropped a suit of Stone Armour!" +
"\r\n" + TextOutput.Text;
 armour = "Stone Armour";
 currentArmourValue = currentArmourValue + 2;
 statsUpdate();
 }
 }

 else if (action == "block" && playerX == 1 && playerY == 1 && enemy2Alive
== true)
 {
 enemy2Health = combatBlock(enemy2Health);
 if (enemy2Health <= 0)
 {
 enemy2Alive = false;
 GameDisplay.Image = new
Bitmap(@"E:\School\NEWEST\Computing\F454\F454 Game HOME
VER\WindowsFormsApplication11\Resources\Room 7 empty.png");
 TextOutput.Text = "The monster dropped a suit of Stone Armour!" +
"\r\n" + TextOutput.Text;
 armour = "Stone Armour";
 currentArmourValue = currentArmourValue + 2;
 statsUpdate();
 }
 }

 //Combat actions for (0, 1).
 else if (action == "attack" && playerX == 0 && playerY == 1 && enemy3Alive
== true)
 {
 enemy3Health = combatAttack(enemy3Health);
 if (enemy3Health <= 0)
 {
 enemy3Alive = false;
 GameDisplay.Image = new
Bitmap(@"E:\School\NEWEST\Computing\F454\F454 Game HOME
VER\WindowsFormsApplication11\Resources\Room 8 empty.png");
 TextOutput.Text = "The monster dropped a Beaten Shield!" + "\r\n"
+ TextOutput.Text;
 shield = "Beaten Shield";

116 | P a g e

 currentShieldValue = currentShieldValue + 2;
 statsUpdate();
 }
 }

 else if (action == "block" && playerX == 0 && playerY == 1 && enemy3Alive
== true)
 {
 enemy3Health = combatBlock(enemy3Health);
 if (enemy3Health <= 0)
 {
 enemy3Alive = false;
 GameDisplay.Image = new
Bitmap(@"E:\School\NEWEST\Computing\F454\F454 Game HOME
VER\WindowsFormsApplication11\Resources\Room 8 empty.png");
 TextOutput.Text = "The monster dropped a Beaten Shield!" + "\r\n"
+ TextOutput.Text;
 shield = "Beaten Shield";
 currentShieldValue = currentShieldValue + 2;
 statsUpdate();
 }
 }

 else
 {
 TextOutput.Text = "There is nothing to attack here!" + "\r\n" +
TextOutput.Text;
 }

 }

 private void ForwardsButton_Click(object sender, EventArgs e)
 {
 //Input "forwards".
 PlayerAction("forwards");
 PlayerCurrentPos(playerX, playerY);
 }

 private void LeftButton_Click(object sender, EventArgs e)
 {
 //Input "left".
 PlayerAction("left");
 PlayerCurrentPos(playerX, playerY);
 }

 private void RightButton_Click(object sender, EventArgs e)
 {
 //Input "right".
 PlayerAction("right");
 PlayerCurrentPos(playerX, playerY);
 }

 private void BackButton_Click(object sender, EventArgs e)
 {
 //Input "back".
 PlayerAction("back");
 PlayerCurrentPos(playerX, playerY);
 }

 private void TextOutput_TextChanged(object sender, EventArgs e)
 {

117 | P a g e

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

101 © OCR 2015

 currentShieldValue = currentShieldValue + 2;
 statsUpdate();
 }
 }

 else if (action == "block" && playerX == 0 && playerY == 1 && enemy3Alive
== true)
 {
 enemy3Health = combatBlock(enemy3Health);
 if (enemy3Health <= 0)
 {
 enemy3Alive = false;
 GameDisplay.Image = new
Bitmap(@"E:\School\NEWEST\Computing\F454\F454 Game HOME
VER\WindowsFormsApplication11\Resources\Room 8 empty.png");
 TextOutput.Text = "The monster dropped a Beaten Shield!" + "\r\n"
+ TextOutput.Text;
 shield = "Beaten Shield";
 currentShieldValue = currentShieldValue + 2;
 statsUpdate();
 }
 }

 else
 {
 TextOutput.Text = "There is nothing to attack here!" + "\r\n" +
TextOutput.Text;
 }

 }

 private void ForwardsButton_Click(object sender, EventArgs e)
 {
 //Input "forwards".
 PlayerAction("forwards");
 PlayerCurrentPos(playerX, playerY);
 }

 private void LeftButton_Click(object sender, EventArgs e)
 {
 //Input "left".
 PlayerAction("left");
 PlayerCurrentPos(playerX, playerY);
 }

 private void RightButton_Click(object sender, EventArgs e)
 {
 //Input "right".
 PlayerAction("right");
 PlayerCurrentPos(playerX, playerY);
 }

 private void BackButton_Click(object sender, EventArgs e)
 {
 //Input "back".
 PlayerAction("back");
 PlayerCurrentPos(playerX, playerY);
 }

 private void TextOutput_TextChanged(object sender, EventArgs e)
 {

117 | P a g e

 }

 private void TextInput_TextChanged(object sender, EventArgs e)
 {

 }

 private void GameDisplay_Click(object sender, EventArgs e)
 {

 }

 private void AttackButton_Click(object sender, EventArgs e)
 {
 //Input attack into combat method
 string action = "attack";

 combatSystem(action);
 }

 private int combatAttack(int activeMonsterHealth)
 {
 Random chance = new Random();

 if (activeMonsterHealth > 0)
 {
 // Player attacks monster
 TextOutput.Text = "Monster 1 has " + activeMonsterHealth + " hit
points, you attack with your weapon" + "\r\n" + TextOutput.Text;
 activeMonsterHealth = activeMonsterHealth - chance.Next(5 +
currentSwordValue, 10 + currentSwordValue);
 //Monster attacks player
 TextOutput.Text = "You have " + playerHealth + " hit points.. the
monster attacks you!" + "\r\n" + TextOutput.Text;
 playerHealth = playerHealth - chance.Next(4, 7);

 //Output results
 TextOutput.Text = "You have " + playerHealth + " hitpoints left" +
"\r\n" + TextOutput.Text;
 if (activeMonsterHealth <= 0)
 {
 TextOutput.Text = "The monster has died" + "\r\n" +
TextOutput.Text;
 }
 else
 {
 TextOutput.Text = "The monster has " + activeMonsterHealth + "
hitpoints left" + "\r\n" + TextOutput.Text;
 }
 }
 else if (playerHealth <= 0)
 {
 TextOutput.Text = "Hahahahha you died!" + "\r\n" + TextOutput.Text;
 }

 else if (activeMonsterHealth <= 0)
 {
 TextOutput.Text = "The monster is already dead, you hack into it's
squishy dead body.... and get covered in goo!" + "\r\n" + TextOutput.Text;
 }

 return activeMonsterHealth;

118 | P a g e

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

102 © OCR 2015

 }

 private int combatBlock(int activeMonsterHealth)
 {
 Random chance = new Random();
 int block;

 if (activeMonsterHealth > 0)
 {
 //Player attacks monster
 TextOutput.Text = "Monster 1 has " + activeMonsterHealth + " hit
points, you set a defensive stance" + "\r\n" + TextOutput.Text;
 activeMonsterHealth = (int)((double)activeMonsterHealth -
(double)chance.Next(5, 10) * 0.5);
 //Monster attacks player
 TextOutput.Text = "You have " + playerHealth + " hit points.. the
monster attacks you!" + "\r\n" + TextOutput.Text;

 block = chance.Next(4, 7) * chance.Next(0,1);
 playerHealth = playerHealth - block;
 if (block == 0)
 {
 TextOutput.Text = "You have blocked all damage that the monster
did to you!" + "\r\n" + TextOutput.Text;
 }
 else
 {
 TextOutput.Text = "You have failed to block and the monster hit
you for" + block + "hit points" + "\r\n" + TextOutput.Text;
 }
 //Output results
 TextOutput.Text = "You have " + playerHealth + " hitpoints left" +
"\r\n" + TextOutput.Text;
 if (activeMonsterHealth <= 0)
 {
 TextOutput.Text = "The monster has died" + "\r\n" +
TextOutput.Text;
 }
 else
 {
 TextOutput.Text = "The monster has " + activeMonsterHealth + "
hitpoints left" + "\r\n" + TextOutput.Text;
 }
 }
 else if (playerHealth <= 0)
 {
 TextOutput.Text = "Hahahahha you died!" + "\r\n" + TextOutput.Text;
 }

 else if (activeMonsterHealth <= 0)
 {
 TextOutput.Text = "The monster is already dead, you hack into it's
squishy dead body.... and get covered in goo!" + "\r\n" + TextOutput.Text;
 }

 return activeMonsterHealth;
 }

 private void BlockButton_Click(object sender, EventArgs e)
 {
 //Input block into combat method
 string action = "block";

119 | P a g e

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

103 © OCR 2015

 combatSystem(action);
 }

 private void HealButton_Click(object sender, EventArgs e)
 {
 //Heals the player for a random amount between 30 and 40
 if (hPotionNo > 0)
 {
 Random heal = new Random();
 int healthBoost = heal.Next(30, 40);
 hPotionNo--;
 playerHealth = playerHealth + healthBoost;

 if (playerHealth <= 100)
 {
 TextOutput.Text = "You swig a potion from your backpack and heal.
Your health increased by " + healthBoost + " hitpoints" + "\r\n" + TextOutput.Text;
 TextOutput.Text = "You now have " + playerHealth + " hitpoints" +
"\r\n" + TextOutput.Text;
 }

 else
 {
 playerHealth = 100;
 TextOutput.Text = "You swig a potion from your backpack and heal
yourself to full health" + "\r\n" + TextOutput.Text;
 TextOutput.Text = "You now have " + playerHealth + " hitpoints" +
"\r\n" + TextOutput.Text;
 }
 }

 else
 {
 TextOutput.Text = "You have no heal potions and stay at " +
playerHealth + " hitpoints" + "\r\n" + TextOutput.Text;
 }
 }

 private void OKButton_Click(object sender, EventArgs e)
 {
 //Activates environmental objects depending on player position
 if (playerX == 3 && playerY == 2)
 {
 if (lever32 == false && enemy1Alive == false)
 {
 TextOutput.Text = "You operate the lever and hear a clunking
noise." + "\r\n" + TextOutput.Text;
 lever32 = true;
 }
 else if (lever32 == false && enemy1Alive == true)
 {
 TextOutput.Text = "The lever is being guarded.. fight to the
death!" + "\r\n" + TextOutput.Text;
 lever32 = false;
 }
 else if (lever32 == true)
 {
 TextOutput.Text = "It appears that you have already used this
lever!" + "\r\n" + TextOutput.Text;
 }
 }

120 | P a g e

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

104 © OCR 2015

 if (playerX == 2 && playerY == 1)
 {
 if (lever21 == false)
 {
 TextOutput.Text = "You operate the lever and hear a clunking
noise." + "\r\n" + TextOutput.Text;
 lever21 = true;
 }
 else if (lever21 == true)
 {
 TextOutput.Text = "It appears that you have already used this
lever!" + "\r\n" + TextOutput.Text;
 }
 }
 }

 private void inventoryUpdate(string[] inventory)
 {
 //Updates the inventory box with the most recent values
 InventoryBox.Text = "";
 for (int i = 0; i < 5; i++)
 {
 InventoryBox.Text = InventoryBox.Text + "Item: " + inventory[i] +
"\r\n" ;
 }
 }

 private void statsUpdate()
 {
 //Updates the stat box with the most recent values
 StatBox.Text = "";
 StatBox.Text = StatBox.Text + "Sword: " + sword + " Dmg: " +
currentSwordValue + "\r\n";
 StatBox.Text = StatBox.Text + "Armor: " + armour + " Def: " +
currentArmourValue + "\r\n";
 StatBox.Text = StatBox.Text + "Shield: " + shield + " Blk: " +
currentShieldValue + "\r\n";
 }

 private void NewButton_Click(object sender, EventArgs e)
 {
 //Restarts the application.
 Application.Restart();
 }

 private void ExitButton_Click(object sender, EventArgs e)
 {
 //Closes application.
 Application.Exit();
 }

 private void LoadButton_Click(object sender, EventArgs e)
 {
 //On button click, loads the values stored in the text file onto global
variables.
 using (StreamReader loadGame = new StreamReader(@"C:\Save.txt"))
 {
 riddleDoor1 = Convert.ToBoolean(loadGame.ReadLine());
 passDoor1 = Convert.ToBoolean(loadGame.ReadLine());
 lockedDoor1 = Convert.ToBoolean(loadGame.ReadLine());
 lever32 = Convert.ToBoolean(loadGame.ReadLine());
 collect32 = Convert.ToBoolean(loadGame.ReadLine());

121 | P a g e

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

105 © OCR 2015

 collect30 = Convert.ToBoolean(loadGame.ReadLine());
 lever21 = Convert.ToBoolean(loadGame.ReadLine());
 currentShieldValue = Convert.ToInt16(loadGame.ReadLine());
 currentSwordValue = Convert.ToInt16(loadGame.ReadLine());
 currentArmourValue = Convert.ToInt16(loadGame.ReadLine());
 keyNo = Convert.ToInt16(loadGame.ReadLine());
 hPotionNo = Convert.ToInt16(loadGame.ReadLine());
 shield = loadGame.ReadLine();
 sword = loadGame.ReadLine();
 armour = loadGame.ReadLine();
 enemy3Alive = Convert.ToBoolean(loadGame.ReadLine());
 enemy2Alive = Convert.ToBoolean(loadGame.ReadLine());
 enemy1Alive = Convert.ToBoolean(loadGame.ReadLine());
 enemy3Health = Convert.ToInt16(loadGame.ReadLine());
 enemy2Health = Convert.ToInt16(loadGame.ReadLine());
 enemy1Health = Convert.ToInt16(loadGame.ReadLine());
 playerHealth = Convert.ToInt16(loadGame.ReadLine());
 inventory[0] = loadGame.ReadLine();
 inventory[1] = loadGame.ReadLine();
 inventory[2] = loadGame.ReadLine();
 inventory[3] = loadGame.ReadLine();
 inventory[4] = loadGame.ReadLine();
 inventoryLocation = Convert.ToInt16(loadGame.ReadLine());
 playerX = Convert.ToInt16(loadGame.ReadLine());
 playerY = Convert.ToInt16(loadGame.ReadLine());
 statsUpdate();
 inventoryUpdate(inventory);
 PlayerCurrentPos(playerX, playerY);
 TextOutput.Text = "You have loaded a previous save." + "\r\n" +
TextOutput.Text;
 }

 }
 private void MenuButton_Click(object sender, EventArgs e)
 {
 //On button click, writes current values of all global variables to a text
file.
 using (StreamWriter saveGame = new StreamWriter(@"C:\Save.txt"))
 {
 saveGame.WriteLine(riddleDoor1);
 saveGame.WriteLine(passDoor1);
 saveGame.WriteLine(lockedDoor1);
 saveGame.WriteLine(lever32);
 saveGame.WriteLine(collect32);
 saveGame.WriteLine(collect30);
 saveGame.WriteLine(lever21);
 saveGame.WriteLine(currentShieldValue);
 saveGame.WriteLine(currentSwordValue);
 saveGame.WriteLine(currentArmourValue);
 saveGame.WriteLine(keyNo);
 saveGame.WriteLine(hPotionNo);
 saveGame.WriteLine(shield);
 saveGame.WriteLine(sword);
 saveGame.WriteLine(armour);
 saveGame.WriteLine(enemy3Alive);
 saveGame.WriteLine(enemy2Alive);
 saveGame.WriteLine(enemy1Alive);
 saveGame.WriteLine(enemy3Health);
 saveGame.WriteLine(enemy2Health);
 saveGame.WriteLine(enemy1Health);
 saveGame.WriteLine(playerHealth);
 saveGame.WriteLine(inventory[0]);

122 | P a g e

EXEMPLAR CANDIDATE WORKA LEVEL COMPUTING UNIT F454 COMPUTING PROJECT

106 © OCR 2015

 saveGame.WriteLine(inventory[1]);
 saveGame.WriteLine(inventory[2]);
 saveGame.WriteLine(inventory[3]);
 saveGame.WriteLine(inventory[4]);
 saveGame.WriteLine(inventoryLocation);
 saveGame.WriteLine(playerX);
 saveGame.WriteLine(playerY);
 saveGame.Close();
 TextOutput.Text = "You have saved your progress." + "\r\n" +
TextOutput.Text;
 }

 }
 }
}

123 | P a g e

Th
e

sm
al

l p
ri

nt

We’d like to know your view on the resources we produce. By
clicking on the ‘Like’ or ‘Dislike’ button you can help us to ensure
that our resources work for you. When the email template pops
up please add additional comments if you wish and then just click
‘Send’. Thank you.

If you do not currently offer this OCR qualification but would like to
do so, please complete the Expression of Interest Form which can be
found here: www.ocr.org.uk/expression-of-interest

OCR Resources: the small print
OCR’s resources are provided to support the teaching of OCR
specifications, but in no way constitute an endorsed teaching
method that is required by the Board and the decision to use
them lies with the individual teacher. Whilst every effort is made
to ensure the accuracy of the content, OCR cannot be held
responsible for any errors or omissions within these resources. We
update our resources on a regular basis, so please check the OCR
website to ensure you have the most up to date version.

© OCR 2015 – This resource may be freely copied and distributed,
as long as the OCR logo and this message remain intact and OCR is
acknowledged as the originator of this work.
OCR acknowledges the use of the following content:
Square down and Square up: alexwhite/Shutterstock.com

Please get in touch if you want to discuss the accessibility of
resources we offer to support delivery of our qualifications:
resources.feedback@ocr.org.uk

OCR is part of Cambridge Assessment, a department of the University of Cambridge.
For staff training purposes and as part of our quality assurance programme your call may
be recorded or monitored. © OCR 2015 Oxford Cambridge and RSA Examinations is a
Company Limited by Guarantee. Registered in England.
Registered office 1 Hills Road, Cambridge CB1 2EU. Registered company number
3484466. OCR is an exempt charity.

General qualifications
Telephone 01223 553998
Facsimile 01223 552627
Email general.qualifications@ocr.org.uk

ocr.org.uk/alevelreform
OCR customer contact centre

We will inform centres about any changes to the specification. We
will also publish changes on our website. The latest version of our
specification will always be the one on our website
(www.ocr.org.uk) and this may differ from printed versions.

Copyright © OCR 2015. All rights reserved.

Copyright
OCR retains the copyright on all its publications, including the
specifications. However, registered centres for OCR are permitted to
copy material from this specification booklet for their own internal use.

www.ocr.org.uk/expression-of-interest
mailto:resources.feedback%40ocr.org.uk?subject=
mailto:general.qualifications%40ocr.org.uk?subject=
ocr.org.uk/alevelreform
www.ocr.org.uk

