Qualification Accredited

AS and A LEVEL

Exemplar Candidate Work

BIOLOGY A & B (ADVANCING BIOLOGY)

Contents

	Page
Question 1 responses	3
Question 2 responses	30
Question 3 responses	52
Question 1 marks	82
Question 2 marks	83
Question 3 marks	84

H022/02 Sample question paper – Question 1 responses

5

(c) Explain a possible mechanism for the loading and transport of sugars in the phloem.

Ht 1005 achierly hearsported and of conjourners colls to Sucrauraing lume colls, then not to hearsported and of conjourners colls to Sucrauraing defense back into the conjourners colls across the coll with the conjugation membrane and cell wall. This there are a leafurer of meror and coll which causes consend which agradient which leads to the defense of meror and one following which from a fleshed vacuing while from any fleshed to have free any drottelie promise in the majorist causes of high different permise where of high drottelies permise in the cells of the phloen. Thus proven may be linear as allowed files translocat on

	(2)
	5
(c)*	Explain a possible mechanism for the loading and transport of sugars in the phloem.
	· Mass flow
	loading of sugar inveases
	the hieldestatic pressure,
	unloading of engers deenenses
	me hydrestunic messure:
	Sugar and omer ensignilates
	would hope an area of one
	high highestubic messure to an
	brea los los hydrostatic
	messure in the bre sugar is
	harry sted to different pers
	· suger loaded into sieve hibes
	lowers me water petential,
	hilse, in wearse in hydrostatic
	pressure.
	· a sink, - organ mones. out of
	sink, > ongar mones out of viene hibes, water potential
	increases wither man & sumoundly
	all water mones out
	increases higher mones out all water mones out lovering hydrestan's pressure.
© OCR 20	H022/02 Turn over

(3)

5

The mass flow hypothesis. Buenes Sugars With sucrose are loaded at the source: companion cells use ATP energy to actively transport H+ ions into the surrounding tissue. Hence a diffusion gradient is set up so H+ ions diffuse back into (down diffusion gradient) campanion cells of through cotronsporter proteins which enable the H+ ions to bring sucrose molecular into the companion cells managed sucrose to diffuse companion cells managed diffuses, in to seive tube element through plasmodels mata (down concentration gradient). V decreases in S. T. element so exate moves in by asmosis, increasing hydrostatic pressure at the source; water each moves from higher phydrostatic pressure, carrying sucrose [6] with it, along seive tube element to the sink	c)*	Explain a possible mechanism for the loading and transport of sugars in the phloem.
actively transport H+ ions into the surrounding tissue. Here a diffusion gradient is set up so H+ ions diffuse back into companies cells of through cotronsporter proteins which enable the H+ ions to bring success molecules into the with them. companies cells too Concentration of success builds up in eausing sucrose to diffuse companies cells mandaged diffuses into seive tube element through plasmodelsmata (down concentration gradient) => Y decreases in S. T. element so water moves in by asmosis, increasing hydrostatic pressure at the source; water examples moves from higher phydrostatic pressure, carrying sucrose [6]		The mass flow hypothesis. Guerre Sugars Musi sucrose are
a diffusion gradient is set up so H+ ions diffuse back into reampanion cells. I through cotronsporter proteins which enable the H+ ions to bring sucrose molecules into the with them. companion cells the Concentration of sucrose builds up in causing sucrose to diffuse companion cells manuface diffuses, in to seive tube element through plasmodesmata (down concentration gradient.) => Y decreases in S. T. element so water moves in by asmosis, increasing hydrostatic pressure at the source; water reactioned moves from higher phydrostatic pressure carrying sucrose [6]		loaded at the source: companion cells use ATP energy to
enable the H+ ions to bring success molerula into the with them. companion cells the Concentration of success builds up in causing success to diffuse companion cells mandrate diffuses in to seive tube element through placemodes mata (down concentration gradient) ? I decreases in S. T. element so water moves in by asmosis, increasing hydrostatic pressure at the source, water extension to lower moves from higher phydrostatic pressure, carrying success [6]		actively transport H+ ions into the surrounding tissue. Hence
enable the H+ ions to bring success molerula into the with them. companion cells the Concentration of success builds up in causing success to diffuse companion cells mandrate diffuses in to seive tube element through placemodes mata (down concentration gradient) ? I decreases in S. T. element so water moves in by asmosis, increasing hydrostatic pressure at the source, water extension to lower moves from higher phydrostatic pressure, carrying success [6]		a diffusion gradient is set up so H+ ions diffuse back into
enable the H+ ions to bring success molerula into the with them. companion cells the Concentration of success builds up in causing success to diffuse companion cells mandrate diffuses in to seive tube element through placemodes mata (down concentration gradient) ? I decreases in S. T. element so water moves in by asmosis, increasing hydrostatic pressure at the source, water extension to lower moves from higher phydrostatic pressure, carrying success [6]		companies cells through cotransporter proteins which
companion cells the Concentration of success builds up in causing success to diffuse companion cells mandementally sees to be element through plasmodes mata (dean concentration gradient) -> "I decreases in S. T. element on what moves in by asmoris, increasing hydrostatic pressure at the source; water man to lower to lower moves from higher phydrostatic pressure, carrying success [6]		
through plasmodesmata (dean concentration gradient) -> "I decreases in S. T. element on what moves in by asmoris, increasing hydrostatic pressure at the source; water na to lower moves from higher phydrostatic pressure, carrying sucrose [6]		companion cells too Concentration of success builds up in
through plasmodesmata (dean concentration gradient) -> "I decreases in S. T. element on what moves in by asmoris, increasing hydrostatic pressure at the source; water na to lower moves from higher phydrostatic pressure, carrying sucrose [6]		companios cells mandras diffages f in to seive tube element
increasing hydrostatic pressure at the source; water as moves from higher A hydrostatic pressure, carrying sucrose [6]		
moves from higher phydrostatic pressure, carrying sucrose [6]		
		to lower.

(c)*	Explain a possible mechanism for the loading and transport of sugars in the phloem.
	The mechanism is called transforation it transports sugars
	Passin by mass flow, for the looding of sugars trus involves
	companies cells and the since take elements. Hydrogen ions are
	moved out of the compenior cells the to part people unlosopeding
	probably ATP this photographic Att ion geometration gradient burging
	bould with it a surrosse nucleulse who he companion cell mon backer
	though the plasmodesounta reaching the sieve like of element.
	For the transport this is due to high hydrostribe pressure
	born the source as worter moves into the cells whom he sucrossers,
	to latoure out the water volential by omnosis. This raises a How
	flow the presume gradient high to low throught the sieve plates
	which are perferented to the sink thank were the tage [6]

H022/02


(c)* Explain a possible mechanism for the loading and transport of sugars in the phloem.

Translatation is the movement of astimulates

throughout a plant through phloem. The comparion
cells have large numbers of mitochonomian, the

production of ATP primps H* was only of cytoplasm

to sumsunding hissue Diffusing back in report in an inith sicrose by use of cu-transporter proteins and the companion cell has a higher concentration of sucrose than the phosicie hubes there is a lawer water potential so they more through plasmo desmalar by diffusion. This increases sucrose lavels I water potential in sucreases sucrose lavels. I water potential in sucreases sucrose lavels I water potential in sucreases sucrose lavels I water potential in sucreases sucrose.

(c)*	Explain a possible mechanism for the loading and transport of sugars in the phloem.
	One possible mechanism is translocation. This is
	the movement of assimilates (Sugar) to where they are
	needed in the plant: phloen consists of two elements,
	the Sieve tube and the Companion Cells. In the
	Companion Cell H+ ions on move into the mesophyll
	Cells by active transport Causing the Concentration of
	Sucrase to increase, and moves into the show tube by
	diffusion or other transport. Water then moves tha Osmosis
	from adjacent Cells wto the Sieve tobe, lacreasing the hydrostation pressure (HP) this HP gradient Causes the water and dissolved
	succose tomore (by mass flow) to a part where the HP is less.
	At the Sink the Successe diffuses into a Companion cell. [6]
	Therefore the water potential is less in the Sieve tube Causing it to move into adjacent cells.

	5
(c)*	Explain a possible mechanism for the loading and transport of sugars in the phloem. Hydrotter for S Transco (dvion 15 Fe Me Chanism
	irmoves sugars from he source to he siny. Ht long
	LEOUR ME Companion GIIs to FRANSOMY YI TOUSING WE
	SUCHOR COMPANYADVIOR FOLLAGORE THIS TOUSES SURTOSE
	to many of the fe late the Sieversbe by dissoring
	Waver moves throse sieue rube by osmosis Fie
	hydrostatic pressure increases causing the sugar to
	MOVE LOWA FE PHIDEM.

	8
	5
(c)*	Explain a possible mechanism for the loading and transport of sugars in the phloem.
	The mechanism is translatocahoa.
	conjunion cells achirely transport
	[6]
© OCR 20	H022/02 Turn over

		·	•			into
kwou	dig to	mas	, couren	tration	gendient	man
	- 77		,			Us Carrys
						luvi
•						• • • • • • • • • • • • • • • • • • • •
		v				nt 120
jallon	~ hy	osuu	MisCast	akia	yelmla	liz.
prone	u uh	in	Janes	male	ny plulos	t.
		 	V	7	0	•
***************************************			************		••••••	***************

)*	Explain a possible mechanism for the loading and transport of sugars in the phoem.
	The mechanism is translocation.
	Comparion cells actively transport protons
	into surrounding tossues. a Concentration
	gradient meas it ions overlie back into
	comparion ceus carrying sucose thangh
	carrier protess. The gucose the noves
	by defision twoigh plasmodesmata uno
	sieve-tube elevents. Water Follows by
	ornesis, creating horostatic pressured
	who which to forces sap along
	phloen.
	(6)

(c)*	Explain a possible mechanism for the loading and transport of sugars in the phloem.
	attions pumped out at companion rells by actual transport
	into surrounding solution (ATP used in process)
	OH TON THEN bind to survey waterales which are then realisabled
	into the companion cell by cottanspower povers (dolly on)
	o Surose then althres into sieve the element across nome our
	plasmo demana X
	Transport wars by manstocanon where assimilars are
	moved from mroughout the plant in the pulseur tissue
	K Surrose locating into phlaem at source rauses waser
	potential potential in sieve tube element to move in vou osmosts
	thus producing a pressure that as a a driving per 161

(12

5

(c)*	Explain a possible mechanism for the loading and transport of sugars in the phloem.
	Wanslocowien - hydrogen jone diffice our and then book in
	again because of the soncentration gradient while
	Corrying Signes but with them There Sugar are then
	actively looded that the Sieve bloe element using ATP
	Created in the Companion cell's mitoringpaine. The
	increase in sugar Concentration in the sieve liber
	lowers the water parential within the cell cousing motor
	to enter i'v una asmosis. With this brild up of worm and
	Sugar at the kop of the photom of pressure gradient
	going downwood in formed forcing the traverland supply
	downwards. The Sugar diffigur With the six where it is
	processed/used hibited the water earn is aimais to [6]
	Minimum J.C.
	A ST WINNER
	maintain the pressure gradient production the pressure of the
	Reference and the second secon
	The state of the s
	La Company Com

COCR 2014 Turn over

© OCR 2014

5
(c)* Explain a possible mechanism for the loading and transport of sugars in the phloem. The comparion cell of the phloem actually transport H+ ions out into the surrounding. H35 we what the H+ ions return to the companion cell cotransporter preferm allow them to bring sucrose with them. The surrouse concentration in the companion
cell builds up, they waves by
digusion into the sieuc cell.
[6]
6

Turn over

H022/02

c)*	Explain a possible mechanism for the loading and transport of sugars in the phloem.
	The companion cells actively transport
	Ht ions into the surroundings. This creates
	a concentration gradient of Ht ions. The
	HT ions objected more back into the companion
	couls by facilitated diffusion, and with
	them they bring sucrose (sugar)
	molecules. This deates a concentration
	gradient of sucrose molecules from the
	Companion cells to the sience tube elements)
	Sucrose mares by 1900 pacilitated
	diffusion into the son store tube
	elements.

H022/02

(c)*	Explain a possible mechanism for the loading and transport of sugars in the phloem.
	Sugaronie sucrose are transported by inter
	pliser by Harslocalor. Sucreses
	transported into the photen by achive transport.
	white the congration cells using ATP.
	actively transports hydrogen ions out of
	the will cytoplasmand no therewounds
	gra area This creak a diffusion
	gradiers know allows Hisos Sach
	in softate using corresponder problem
	with survive brigging + 10 to the Conganh
	you she were the offuses
	Who the the puber throughthe [6]
	plashodes Mera

© OCR 2014

H022/02

(c)*	Explain a possible mechanism for the loading and transport of sugars in the phloem.
	Explain a possible mechanism for the loading and transport of sugars in the phloem.
	H+ consout of the call, they
	diffuse back down the concentration
	gradient canging sucross
	molecules with the holp of
	cotransporter proteins. The companier
	cell those, has pores called
	plasmadesmata and the House
	diffused from the composition
	cello to the siere tube claments
	dain the concentration
	gradient [6]

c)*	Explain a possible mechanism for the loading and transport of sugars in the phloem.
	Companion cells (rext to the tulandar sieve elements)
	actively transport H+ ions out of the cell, so they they
	can diffuse back into the companion can by somoris,
	carrying sugar with then (is solution). The sugar (surpre etc.)
	can the diffuse through plannedemates into the
	sierre tube element.
	Once in the phloen, sugas can be transported by
	wass flow The high sugar concertration near the source
	means water moves into the photon by asmosis, raising pressure. This creates a concentration gradual,
	so the dissolved sugar more along the phoen
	buards lower hughostatic pressure at the sink, where 161
	sugas can diffuse out of the phoen followed by water (by osmosis), maintaining maintaining the lover hydrostatic pressure to ensure the pressure gradient is kept.
	(by osmosis), maning maintaining the lover hydrostatic
	bresser in pisser our biesser dispersion

H022/02

(18)

	5
(c)*	Explain a possible mechanism for the loading and transport of sugars in the phloem.
	Sugar is actively loaded who the phloem lovering the water must, water then moves in by ormoris
	from the 1 A This increases the pressure
	at this end of the phoem
	At the sink, Phloem sugar is removed
	from the phloen and used. This increases the
	water potential in the phloem, causing water to
	move out of the phloem by ormosir
	This decreases the pressure at this end of
	the phloen, Sugar nove down the pressure
	gradient, couring the transport of
	sugar in the photoen [6]
© OCR 201	4 H022/02 Turn over

	(19)
	5
(c)*	
(c)*	Explain a possible mechanism for the loading and transport of sugars in the phloem. Bugas are located by arture transport. and ormands a consentration gradient. is created to help and browning and transportation. Fransportation Transports can make up the and down the pt phlorens by the process of auture fransports. Macalada alguines ATP: [6]
© OCR 20	14 H022/02 Turn over

(c) Explain a possible mechanism for the loading and transport of sugars in the phloem. At the popular parks of the plant device phose smallers and sells actually. Any on the process of actual target of the actually. Ausophall cells labour to gards a success cole cells of the confidence of the co	(20)
At the lop/and policy of the plant down photosynatters Success & made are resident Companion cells actually prime in the probs of acture leasant. It has not respectful alls where it gams a success include and different the gams a success adjunces. The his phoen because the sea see concentrate and the phoen because the sea see concentrate and the phoen is success to phoen it checks as to make also enters the phoen it checks a force of the phoen it is phoen. The phoen is success to the phoen it is and a success to the phoen it is the phoen in phoen the deverses so want also leaves.	5
© OCR 2014 H022/02 Turn over	(c)* Explain a possible mechanism for the loading and transport of sugars in the phloem. At the poparal puts of the plant during photosing these small puts of the plant during photosing these smalls small puts of active transport. It is not the process of active transport. It is not the company cells structured and diffuses back into the company cells structured and diffuses back into the company cells structured and diffuses back into the small photon to the small photon. It is process the called active loading. As success entern the phloen of deverses to water also express the inverses his desidate pressure the phloen. At the har puts of the phloen the success down the phloen. At the har puts of the phloen the deverses so water also. I plant the success to water also.
	© OCR 2014 H022/02 Turn over

(c)*	Explain a possible mechanism for the loading and transport of sugars in the phloem.
	Active transport is a following
	mechanism. Sugars leave the pholoem &
	then hydrogen ions leave the companion
	ells. Sugars attach to hydrogen
	ions and more into the companion
	alls through where transport & then
	can make into the phloton through
	sieve cells. The phloen Will then
	allow the mansport of sugars due
	to the inergy they still contain
	from the active transport
	[6]
	[0]

(c)*	Explain a possible mechanism for the loading and transport of sugars in the phloem.
	Active transport lands Expose into
	the phloem. It is then moved down
	the dipposion gradient which is set up by
	He movement of hydrogen ions due to ATP
5	one in the phlon Gater potential is
	decreased and hydrostatic pressure is increased.
	Water moves down the sieu e tube from high
	hydrostatic pressure to low hydrostatic pressure
	Sugar maleades then use active transport
	to make to sorrounding cells reducing
	hydrootatic pressure so mechanism
	Continues [6]

(c)* Explain a possible mechanism for the loading and transport of sugars in the phloem. water makes by osmosis ostatic pressure in the held element o water moves from ystostatic pessive down [6] Turn over © OCR 2014 H022/02

(c)*	Explain a possible mechanism for the loading and transport of sugars in the phloem.
	One consist is root premie which is would
	toy the outre transport of name town into
	The same of the sa
	the phoem
	Firstly, H+ ions are moved outside 1 the companion
	cells by active transport. These bond with quiese
	ox and other sugar outside the phoem and then
	the H+ ions then diffuse back into the
	comminon all carrying the eagur with it.
	The my any then diffuse into the sieve
	tube through the plasmodernate. This lowers the
	when potential in the sieve tube. Water of moves [6]
	down the water potential gradient by ormois. This
	causes mass flow in the direction where sugar is
	dejuient.

© OCR 2014

H022/02

			(25)
		5	
	Companion all for some was a some with a some way we have a some with a some way and the photon hours and he have a some way a so	umponion alle moste de la	gars in the phloem. The phloem sione claumb I know how he sugar or both I so white brought and The sure how he I she sure through I she sure through Le growne in the source Le she how he [6]
c	OCR 2014	H022/02	Turn over
c	OCR 2014	H022/02	Turn over

	5
(c)*	Explain a possible mechanism for the loading and transport of sugars in the phloem.
	Each seize tube element has a companion Coll
	that can pass molecules or ions across a
	desmalementa, a gap in the all vall between the
	cells. The companion all makes fit ions into the
	Seine tube, This causes Sugars to distuse into
	Cells. The Composition are moves fit ions into the by active transport Seine tube, This causes Sugars to disture into the Companion and the Companion and the Companion and the Companion and the Starting
	in town gladient. The H+ ions the ran
	ca cerus to the companion cur so the dissurion
	yudgest go (awe) the sucre to ento the
	Jen tabe.

H020/02 Sample question paper – Question 2 responses

	11
	(ii) Explain why it is important for the survival of the llama that the llama haemoglobin dissociation curve is to the left of the camel haemoglobin dissociation curve.
	They live in places with lower 1: Pa of
	oxyger and so need a high attenty for
(b)*	Describe how the structure of llama hamoglobin is likely to be different from that of camel haemoglobin with reference to the four levels of protein structure.
	The different anino acid on one &
	B chairs of each notecute means
	the pinary stricture is different.
	Therefore the sace However the secondary,
	tertian and quarternay the three are
	most likely the same as there is very
	little alteration to princy stackie.
	[6]
(c)	Collagen is a fibrous protein.
	State three properties of a fibrous protein that are different from those of a globular protein.
	1 Am Insoluble
	2 Stuctural 3. Fibrous
	[3]
© OCR 2014	H020/02 Turn over

	(ii) Explain why it is important for the survival of the llama that the llama haemoglobin dissociation curve is to the left of the camel haemoglobin dissociation curve.
	Mis means the clawa hacunglebin has a higher ashining exhiv
	exagen and home A becames more sarvered and than the counter
(b)*	Describe how the structure of flama hamoglobin is likely to be different from that of carnel haemoglobin with reference to the four levels of protein structure.
	O Deffernt primary structure Corder and sequence of comino acids in
	. The polypopode (mains).
	a station secondary sovertire Children mechanism) as different amino
	acids cause a different overall charge
	o Defrut ornal 3 dimensions stage (tertaing startum)
	O This can asked the grademary structure.
	LP Dotatront awino and constituent may lead to a change in the
	aviolate of hydrophythalpholan Repour interactions, disulphide
	bridges , route and Aydrogen bonds this shope is a lterel.
	o Different number of peptide bands beforeen anothervies
	[6]
(c)	Collagen is a fibrous protein. State three properties of a fibrous protein that are different from those of a globular protein.
	1. Insoluble dibrous groteins compared to soluble globular proteins. 2. Fibrous proteins are much stronger than globular pureins.
	2. Fibrous, proteins are much stronger shan globular gusteins
	2. Fibrous, proteins are uncu stronger shan globular gurtius 3. No Globular proteins can have an active soe and hence act as enzymes [3]

© OCR 2014

H020/02

© OCR 2014

H020/02

1	4
	11
	(ii) Explain why it is important for the survival of the llama that the llama haemoglobin dissociation curve is to the left of the camel haemoglobin dissociation curve.
	so it can take it oxygenat alove
	pop as it was at in an area
	[2]
(b)*	Describe how the structure of llama hamoglobin is likely to be different from that of camel haemoglobin with reference to the four levels of protein structure.
	Llana Hb would have a higher
	affirity for ongen soit pickery
	oxygen more easily
	[6]
(c)	Collagen is a fibrous protein. State three properties of a fibrous protein that are different from those of a globular protein.
	1. no hydrophobic - hydrophilie interactions
	2 planais proteirs are solvable in water
	3 globular proteins have a proot of
	O

© OCR 2014

H020/02

11 (ii) Explain why it is important for the survival of the Ilama that the Ilama haemoglobin dissociation curve is to the left of the camel haemoglobin dissociation curve. (b)* Describe how the structure of llama hamoglobin is likely to be different from that of camel haemoglobin with reference to the four levels of protein structure. [6] (c) Collagen is a fibrous protein. State three properties of a fibrous protein that are different from those of a globular protein. [3] © OCR 2014 H020/02 Turn over

	(ii) Explain why it is important for the survival of the llama that the llama haemoglobin dissociation curve is to the left of the camel haemoglobin dissociation curve.
	The lema lives in a low oxygen environment
	So requires a higher affinity to a oxygen in its namographin
	than an animal a toke higher oxygen conditions e.g. the campel
(b)*	Describe how the structure of llama hamoglobin is likely to be different from that of camel haemoglobin with reference to the four levels of protein structure.
	ilama harmoglobin must have a different order
	of amino acidy in its primary structure rulling
	in a different shape in the secondary structure is
	a different number of a-believe and B-pleated cheets
	form. This leads to d different 3D globular
	Muse in the Certiary structure, as the namegolobin
	forms different by drogen, ionic and disulfide band
	and has different hydrophoton hydrophobia
	ordered the transfer of the second of the se
	orteractions. This results in the 4 polypeptide
	chains in the Certific quaternary structure to
	bond differently. This possible in the llama harmoglosin
	having a higher affective for oxygen [6]
(c)	Collagen is a fibrous protein. State three properties of a fibrous protein that are different from those of a globular protein.
	1 insouluble
	2 Jonny Jibrin
	3 derye
	[3]

© OCR 2014

H020/02

n.

F

		11
	(ii)	Explain why it is important for the survival of the llama that the llama haemoglobin dissociation curve is to the left of the camel haemoglobin dissociation curve.
		llamen lie in a higher saltimele environment a no
		require harmosphonin that binds to oxygen at a lover
		pentral promure and unloads onegen tennandly [2]
(b)*		ribe how the structure of llama hamoglobin is likely to be different from that of camel oglobin with reference to the four levels of protein structure.
		na naemoepelain has a higher affinity for oxygen
	W.	Innous he would Hibblery avalernay moderne is
		ferent to larnel harmoglehin This is do to be
	. yell	facility regiones of anino variety that rule up
		le metifie alyseptiele species peus prepartiele
	el	rein affects the secondary muctur of he
		uppepted their affecting he beta pealing and
		pha coiling this forms a different
		trang shrikue of each phypepticle chair
		lung a better fit for on melecules to
		ed to be haven group course and acrall
	No	effered grateman smetur de la [6]
(c)	re	gen is a fibrous protein.
(-)	State t	hree properties of a fibrous protein that are different from those of a globular protein.
	1	one shareful when of anine and
	249	My tenrile shought wall remember on entertain
	3\	nsoluble
		[3]

© OCR 2014

H020/02

ř		8
	11	
	(ii) Explain why it is important for the survival of the llama that the llama haemoglobin dissociation curve is to the left of the camel haemoglobin dissociation curve.	
	- llamas live at high altitudes with lower partial	
	pressures of oxygen so need to kind oxygen (with with offinity) better [2]	
(b)*	Describe how the structure of llama hamoglobin is likely to be different from that of camel haemoglobin with reference to the four levels of protein structure.	
	Primary, secondary tertiary structure of	
	& subunits is the same.	
	The primary structure is deflerent for the B	
	subumts due to different amon acid/aguence	
	This means the secondary stare tux differs different	5
	hydrogen usueled a helix & B-streated wheats	
	fam. The testions structure will like wise be different	
	(di-sulfide bridges etc.) * Only I amous acid eplace	2
	30 the structure thould be similar * The shape is	
	The quateran structure will be different as	
	the x and B wints will is teract differently. This	
	means the level of kinding to ongger will differ [6]	
(c)	Collagen is a fibrous protein. State three properties of a fibrous protein that are different from those of a globular protein.	
	1. Not soluble Inonpolar	
	2. Rigid / high tennie strength	
	3. larger	
	[3]	

© OCR 2014

H020/02

11 (ii) Explain why it is important for the survival of the llama that the llama haemoglobin dissociation curve is to the left of the camel haemoglobin dissociation curve. (b)* Describe how the structure of llama hamoglobin is likely to be different from that of camel haemoglobin with reference to the four levels of protein structure. (c) Collagen is a fibrous protein. State three properties of a fibrous protein that are different from those of a globular protein. [3] © OCR 2014 H020/02 Turn over

(ii) Explain why it is important for the survival of the llama that the llama haemoglobin dissociation curve is to the left of the camel haemoglobin dissociation curve.

Llamas live at high altitudes where partial pressure of oxygen is harmaglobin lower than in the desert where camels · lamas preeds

to be able to pick up oxygen from lower partial [2] pressures of oxygen than a canel's does.

Describe how the structure of llama hamoglobin is likely to be different from that of camel

haemoglobin with reference to the four levels of protein structure.

The primary structure of the lama will be different since there different number and order of amino acids in the polypephide chains, This could give rise to a different e.g. with different number of alphahelices or B- pleated sheats ale for these could be at different positions in the chain). Though the overall (tertiary structure) shape 1.0f Llama. haemoglobin will still be globulor, will be slightly different shape to same harmoglobin giving rise to a different overall shape. Llama haemoglobin may have more than 4 polypeptide submit [6] per molecule, enabling each haemoglobin molecule to bind to >4 (c) Collagen is a fibrous protein. Or molecules.

State three properties of a fibrous protein that are different from those of a globular protein.

1. Not water-soluble

2 Strong (used for mechanical strength e.g. collagen) 3... Regular, repetitive sequences of amino acids

© OCR 2014

H020/02

	(ii) Explain why it is important for the survival of the llama that the llama haemoglobin dissociation curve is to the left of the camel haemoglobin dissociation curve.	
	As it requires a higher affinity law oxygen home	****
	It is able to load axygen at a lone potral	••••
	pressure andry its susvival.	2]
(b)*	Describe how the structure of llama hamoglobin is likely to be different from that of camel haemoglobin with reference to the four levels of protein structure.	
	for the formery structum, segmence in anno arrive with be	
	different resulting in a different solypepticle about and segrence,	
	also No there is one different aniho and. The secondary struker	
	will the invariably be different with a different with a	
	princy stretch formuly a different secondary strature, have	
	a change in alpha lulix and befor piented that strohne, help	
	hologether by hydrogen bonds about many voy in number. The	
	further Polsing will form the feethary structure held logither by	
	11-bond 2, iom's handre obiso I phole hands and hydro pholic / hydro pholes	
	had done to the A gray on the anniho acid. However the	
	guakerary shocke is the same 2 maple and lete	
	subunits because a harmedobin statein.	6]
(c)	Collagen is a fibrous protein. State three properties of a fibrous protein that are different from those of a globular protein.	
	1. Insolute	
	2. 5 Goory	
	3. Variabise	
		-1

© OCR 2014

H020/02

	11	
(ii)	Explain why it is important for the survival of the llama that the llama haemoglobin dissociation curve is to the left of the camel haemoglobin dissociation curve. The Clama Neld a higher assisting sor oxygen as they are all high affilted as which have a first cow partial pressure of oxygen	
(b)* Describaemo	ribe how the structure of llama hamoglobin is likely to be different from that of camel toglobin with reference to the four levels of protein structure.	[2]
fre	that have sequence of amino all the bonds war bemany structure are wearer and contion more to allow drygen to part.	19
State three	n is a fibrous protein. ee properties of a fibrous protein that are different from those of a globular protein. DAJ FULL OLD ADF POLAGE	6]
3516	LIOUS PIOTPINS do not have a quadrage structure USUALLY SOM	

© OCR 2014

H020/02

	11	
	(ii) Explain why it is important for the survival of the llama that the llama hadissociation curve is to the left of the camel haemoglobin dissociation curve.	aemoglobin urve.
	· Con Migher officity for oxygen	con pich
	ruy Gre a Courer poz; Cers	Or when
(b)*		
	of each molecule wears the primary or different Nervener the Scanlory	Sautun
	nut quarterosy shouling are no the same as then is very bottle	ord li buly
	to pictory Shulter	allentin

(c)	Collagen is a fibrous protein. State three properties of a fibrous protein that are different from those of a glob	ular protein
	1/woluble	mai protein.
	1. /woluble 2. Shrubum 3. Fibron	
	3	[3]
OCR 2014	H020/02	Turn over

		11
	(ii)	Explain why it is important for the survival of the llama that the llama haemoglobin dissociation curve is to the left of the camel haemoglobin dissociation curve.
		It must be to the left to allow association and
		dissociation of 02 of in higher altitudes where
		02 Concentration is Lower [2]
		ibe how the structure of llama hamoglobin is likely to be different from that of camel oglobin with reference to the four levels of protein structure.
-	На	emoglobin has 2 alpha and 2 beta polypeptides
		n camels one amino acid is different in each
		a polypeptide then the primary structure
		uence of amino acids) will show a different
	ord	
-	The	erefore the two primary structures will coil
	ounc	I fold into two different secondary structures
		cause the hydrogen bands will be present
		different places and the R groups on
	am.	ino acid different so hydrophobic and hydrophillic
		nds in oliff, places.
	State t	refore the further folding to form the [6] ary structure will form two different structural having some is a fibrous protein. The properties of a fibrous protein that are different from those of a globular protein. The properties of a fibrous protein that are different from those of a globular protein. The properties of a fibrous protein that are different from those of a globular protein.
		ibrous have helical structure
	3‡.\!	prous have stronger intermolecular forces
3	* Q1 94 FC	paternary structure will both be different as each the 2 beta poly peptioles will house bloked differenc.
© OCR 2014		
		Les so different hydrogen bonding between the poly perioles as well

	11	
	(ii) Explain why it is important for the survival of the llama that the llama haemoglobin dissociation curve is to the left of the camel haemoglobin dissociation curve.	
	taemoglobin of the lland needs to	D
	se at a right affinity so	*******
(b)*	Describe how the structure of llama hamoglobin is likely to be different from that of carnel haemoglobin with reference to the four levels of protein structure.	A [2]
	Both Ilans and comet hare do	Nifferone
	in the privily should As the	·
	have a difference in the arise acid	
	segrence. This lead or to a char	J
	in the secondary shocke as i	t
	the pring should alob is	
	cold to form it. There are differ	
	It solvojes bonds prosed. So adle	reg
	shape. All this also loads to a	
	difference to the furthery shock	TRA.
	This long as over all along	10
	ne so strate	[6]
	Collagen is a fibrous protein. State three properties of a fibrous protein that are different from those of a globular protein.	
	1iosoluste	
2	2 Strong	110111111
	3. unreactive	
		[3]

© OCR 2014

H020/02

(b)*

11
(ii) Explain why it is important for the survival of the llama that the llama haemoglobin dissociation curve is to the left of the camel haemoglobin dissociation curve.
llamas live at high altitudes where
the partial pressure of Organ is low
whereas as live at low altitules [2]
Describe how the structure of llama hamoglobin is likely to be different from that of camel haemoglobin with reference to the four levels of protein structure.
The sequence of anino acids with obifer
between the two prodeins (paring structure)
In the B subunits the princy spectice differ
Scheen comet and lland by one arise and
The questioning structure is dentical. The
derting structure must be similar as
Smithe determines function of biological
molemles the secondary structure use
not affect as the two proteins
have the same maker of a and
B. Subsants
[6]
Collagen is a fibrous protein. State three properties of a fibrous protein that are different from those of a globular protein.
1 laigh tensile strength
1 laigh teasile strength 2 insoluble
3. fibrous proteins don't take part in metabolic reaction

© OCR 2014

(c)

H020/02

11 (ii) Explain why it is important for the survival of the Ilama that the Ilama haemoglobin dissociation curve is to the left of the camel haemoglobin dissociation curve. Pressore Describe how the structure of llama hamoglobin is likely to be different from that of camel haemoglobin with reference to the four levels of protein structure. [6] (c) Collagen is a fibrous protein. State three properties of a fibrous protein that are different from those of a globular protein. [3]

© OCR 2014

H020/02

	11
	(ii) Explain why it is important for the survival of the llama that the llama haemoglobin
	dissociation curve is to the left of the camel haemoglobin dissociation curve.
	llama's live in mountains where there is limited oxygen,
	so llamas need a high affinity for oxygen to bind to at the lungs of the sopphall cells [2]
(b)*	
	Both Ilama & carel haemoglobin will have a similar primary
	poten structure (sequence of armino acids) and a similar
	secondary structure. However the testary structure will
	costan more balmoglobin have compo
	(containing ites ions) this will cause to
	have a greater of the fire a
	greater surace area , so it increases rate of
	doguson to Ibna henoglobn
	may have less have groups in its testay
	structe to love of concertation so to
	B case of orge martans a steeper dynom
	gadient. Quaternay structure made of 4 polypeptile chairs.
(c)	Collagen is a fibrous protein.
	State three properties of a fibrous protein that are different from those of a globular protein.
	1 \$ Coss-links (covalent bond) & join collager indecider
	2 Tripple Helix Test
	\$4000
	3. 5. 6. 6. 7. 9. [3]

© OCR 2014

H020/02

	11	
	(ii) Explain why it is important for the survival of the llama that the llama haemogl dissociation curve is to the left of the camel haemoglobin dissociation curve.	obin
	Berause oxygen must dissociate more	
	easily as lamers line at high alle	
	where partial pressure of dispers is	[2]
(b)*	Describe how the structure of llama hamoglobin is likely to be different from that of chaemoglobin with reference to the four levels of protein structure.	amel
	Hama haemoglobin is likely to have	
	weaker bonds our than comel have	sofolosin.
	Maria haemigrobin may be forced	1
	less and have a disperent 31)
	Eventure in it terriby level.	
	In their secondary Bruture the	4
	but whely to have different reg	nano
	of I believe and P pleated the	ets

		[6]
(c)	Collagen is a fibrous protein. State three properties of a fibrous protein that are different from those of a globular p	rotein.
	1. Long and thread-like	
	2 insoluble in water	
	3. Strong hydregen bounds hald pepticle together.	cheins.
	together.	[3]
OCR 2014	4 H020/02	Turn over

	11
	(ii) Explain why it is important for the survival of the llama that the llama haemoglobin dissociation curve is to the left of the camel haemoglobin dissociation curve.
	Llana harroglobis must have a greater affinity for
(b)*	as 0_2 is less abondant at high altitudes. This is shown at the graph as a shift to the left, as having with pick up 0_2 (because saturated) at a lower $p0_2$. Describe how the structure of llama hamoglobin is likely to be different from that of camel haemoglobin with reference to the four levels of protein structure. Primary (1°)
	The structure is the order and number of aris
	acids in a polypephiole chain. The 2 of subunits with have the
	some I shucture, but the B submit in the cauch will differ to that of the land by one arise acid. In the secondary structure, the polypephide chairs will still have largely or or helical shope but the different arise acid with a different R (variable) group which were have differently, as the bands cancer the helix to fold up slightly differently, as how and cancel have noglobin have a globular tertians structure so will be roughtly spherical theorems the 1 different arise acid may have an effect. If hydrophysoic or hydrophysic it will charge the hydrophysic interactions and the tertiany structure will alter slightly. If it contains suffer it will allow disulfide bindges etc. So the tertiany structures will alter slightly. If it contains structures will allow disulfide bindges etc. So the tertiany structures will allow have small differences. The have groups in long have some affects be none easily accessible for greater rougen affairly for example, which would be required in a higher altitude environment will less abundant oxygen.
(c)	Collagen is a fibrous protein. State three properties of a fibrous protein that are different from those of a globular protein.
	1. Long, this totian / quaterian structure
	2. High strength/strong
	3. Ofter have a strictural function

© OCR 2014

H020/02

Turn over

[3]

	11	
(b)* \$p • Desc	Explain why it is important for the survival of the llama that the llama haemoglobin dissociation curve is to the left of the camel haemoglobin dissociation curve. The llama haemoglosin mut be all be amounted with a love performence, like where it lives, so that a grant for the delivered and CO2 removed be right for any ribe how the structure of llama hamoglobin is likely to be different from that of camel noglobin with reference to the four levels of protein structure.	wyh Oz
1/1	10 1 1 11 0 01 11 1	1
.Af.	I smules, llearn hoursofthis is different become to	he onek
and The	Sugar of amono aids in defeat in the B subants	اللس
d	any, coaludy when and how many of helices will y	lated
Ly	as of hunds formal, such as hydrogen houls, some hands	the
thy	I have the is 4 show the	The
ww.		**********
******		*****
******		*********

		[6]
	gen is a fibrous protein.	
State	three properties of a fibrous protein that are different from those of a globular protein	n.
1	un soluble (fibron)	
2	ght but has a souded I should, whereas of some	is more thought
34	globule has a souded 3° shown, where fisher of shows fisher has more veved & helis / p flight should be that I foll up into a ball-like should	[3]
© OCR 2014	H020/02	Turn over

H020/02 Sample question paper – Question 3 responses

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge, tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.'

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

Both are practically identical in terms of absentations
features to like their identical body mass of S.Sq.
and a wingspan of 0.22 and 0.21 metre, so
it's not necessarily obvious and the how do not have
dotino physical differences lowever, weir hobitatione
Contracting with the common pipiswelle found in fambad
our appared to soprana pipistrella which are found in
the tree lines bloceover The mage of their echolocation call
is moderately different and can be a way of identifying
them with the Common having a maximum range of
60 kHz and the sepreno having a max range of
47. [6]

© OCR 2014

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge, tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

The a same species as they are very sinder anaromically and lock almost the same. Along have the same mean holy moss.

Or S Soy and almost showing mean many and some the same mean holy moss.

Define, 5:22 = 0.21 Sleep also appear the same meaning by o combined by the same meaning.

As have known colours o to the notice egg mere is no difference.

De also after hand the pipisheles differ in sange of echologamor.

Law with the agely named sograno prestrate hung a lover range of 42-44 hely compared to the common prestrate range of 52-60 Ca much larger range? Common prestrates

Also have a more diverse and sufficiency pread out.

161

© OCR 2014

14

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge, tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

The fact they are very similar anatomically
supports the claim - save mass, ning span
and colour
Also one some habitats supports me
clam.
Howeve non-overlapping ranges of
echolocation suggests a district
arrence between the two groups of
bat - suggesting they are different
species.

© OCR 2014

14

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

Both animals are sinicar sizes, suggesting they could
physically made, which may hint by we the same species.
the similarities in star mass and uningspan and colour
whould also suggest this. However the range
or ecolation or the two animals does not exertep.
this to tell w they may hant disterns comments,
and hour signisicantly dissuent organs for generating
the Sands. This would suggest they are
did swent.) As well as those although they both share
Some habitats (e. g hedgoon s) they inhabit Separate ones,
e.g. the common pipishale of thes in Sarmland, the
Soprano does not this bases up the previous point. [6]

© OCR 2014

14

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

The put they are very sicular occationical
Englorer the claim - Same war, wrugger out
Also the same habitats supports the clair powerer non- ovelopping vauges of echolventing Suggests a distinct difference belower
powerer non- ovelapping range or echolocation
Suggests a distinct difference belower

me 2 pays of but - hygeting they are different splin.
dykepent splin.
[6

© OCR 2014

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

Both pipidrelle have the some body was and similar
line in paith and varies and that is they could
be considered als livel species.

© OCR 2014

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

The Born pip smelles have disserent means who seems
Which support the Spent RESCURIONS Claims type
regardistings top common pipsrelle has a rean
WINGSPAN OF D-22M, For soldy Both
nde disserent echologoion callas. The common Pilismens
(s 52-60 KHz and he soproup (5 45-47 4Hz
This supports the resegriur. Born anim Pirismella,
nave anegamoss of 65.59 end are born
Medilmro Lara 6 roun.

© OCR 2014

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge, tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

have the exact Same mean body mass of significable have the exact Same mean body mass of significable and also a mean miggspan with a difference of only 0.01 m. The Common pipitrelle has a Span at 0.21. Another.

O.22 and the Soprano has a Span of 0.21. Another.

Similarity to Support the Conclusion is that the both have a modium to dark brown Colour. The bath like in hedgrous and woodland areas however there are some differences in habitat. The Common pipistrell live in grassland. Farmland and Suburba & whom areas whereas the Saprano lives in Wetland tree lives and only Suburba and grassland. Call range with the soprano's being 42-47kH2 unlike the Common's 52-60 kH2 range.

© OCR 2014

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge, tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

The fact that the mean ming span is very similizar
0.22 and 0.21m is endence that try are similar species,
also the mean shooty mass is exactly the same but land
easted be which nightly any and 3 miles greates brownen 1900 box of
there one affected by environmental unditions factors, here there
adaptions our changed slightly but essentially the similar species.
However, the range of echolocation call is very different and
they don't convabilist, this could be done to genetic differences
hetween the populations. Fathermore the cours aga awall as well as the Habitate lance herce similar species.
~
[6]

© OCR 2014

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge, tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

The claim is supported by the fact that the time 2 populations have a different cange of echolocation call common pipistrelle 52-60 kHz and soprano pipistrelle 42-47 kHz which suggests they could had different prey audio be different species. Other than hedgegrows, the two also have different habitats which further supports the daim since members of the same species tend to live in similar on the same habitat. However the daim is disallenged by the fact that both types of bat have the same mean body mass (5.5g.) and only an 0.01m difference in the mean wingspan of the face. This evidence alrows are medium to dark brown in colour. This evidence alrows suggests they and be members of the same species so challenges the claim.

© OCR 2014

14

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge, tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

challeng mass sout : 8 and mean body mass
8 Similar aingspein
same volond
support: disposent runge of
support different range of
the draw fals wil
different.
This Monne species ofthe would
be adapted to different environments
species have same opegaal
proposiels, assess analymical and
physiological properties and can [6]
successfully interpreted. In terms of
physical features they are almost identical
COCR 2014 but the HO20/02 herbortat and
behanows is different indicating they
are different.

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge, tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

- support; sufferences are the rarge of echolocation
(this is non overlapping) and habitect of
Common pipi strelle live in Urhan areas Soprano pipi strelle
do not Different range of echolocation - likely to eat diffust
foods I have different mating habits
- Against: very similar habitat and mean
wing you (0.22m / 0.21 m) same colour
& mean body mass - similarites due to same
Similar genes so they are very closely related
[6]

© OCR 2014

14

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge, tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

likely to be put of in different species because
u range of echelocation edigers from 12-60
too 42.47 making them littly to be different openes
also lie in omla helstats ie wood (end, hedgegrens
rand number acces- Huserer have a very amusta
led is 5. Tg body men and muler wangspen
VI 0 22 m an 0.21 m and a similar book bith
medium hours liderte bours: likely ast to
In distint spesies but a species any sterely
pelated.

© OCR 2014

14

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge, tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

One could pressure the tracked organisms were
different species because the mean vingepan of
the common populatelle if 0-22 m while the coprano
existable is 0-21m. The saprano existable of also
has a different gitched call (42-475Hintead of 52-60/2 Hz)
Operate Thre is also a expertise barner, as they like
in different habitats so there is potential for
Speciation and adaption. One could presume they
are the same species because they have the same
wear body man (5.5g) and colour flating that do
cannot be confirmed whother the Base 2 pipitable
are different species because 2 of individuals have [6]
not been tested to see it they partie produce
sertile offing hallenging the researcher's statement

© OCR 2014

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 - 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge, tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

Evaluate the researcher's claim by using the evidence in Table 5.1 to support and to challenge the researcher's conclusion.

con both are extremely limited in both weight and wingspan therefore simularity makes possibility of a distinct species haver as Size hasn't changed when a reproductive barrier has occurred to Along with the colourings which have remained the same as habitats are extremely simular. However the common pipishelle have adapted a better echolocation at 52-60 kHz unlike the Soprano at only 42-47 kHz making the possibility of a species which is distinct as this difference may have been cauted by the environment and the range needed to communicate.

© OCR 2014

^{&#}x27;The common pipistrelle and soprano pipistrelle must be distinct species.

14

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge, tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

They as species has idential mean
body mess and colour and similar
near wingsport this Undlenges the
nean wingsports This Unllenger The vescarber's conclusion as related species
appearance a Monere, the 2 species have a
said rays of echolocation call and
hersitat This supports the conclusion
as related but Speakes would have
simila echolocation cult ranges
[6]

© OCR 2014

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.'

Evaluate the researcher's claim by using the evidence in Table 5.1 to support and to challenge the researcher's conclusion.

On the one hand it is possible to say that they are different species due to the difference in range of echolocation cally common pipistrelle is 52-60 kHz, compare to the much higher 42-47 kHz of the soprano pipistrelle, this difference is possibly due to the different habitats. However, there is no evidence to suggest they cannot breed together to produce fertile offspring and as such a claim about whether they are different species of not cannot be fully supported by the evidence Given. It would however be logical to suggest that the soprano pipestrelle is a subspecies which could become distinct in the future.

© OCR 2014

14

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge, tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

both Populations Share Similar feature	
as similar body mass wingspan	<i>,</i> ,,,,,,,,
Colour, and most habitats are similar	
The only difference is their hearing ,	cinqe
book which may be due to them have	inq
Slightly different diets. Therefore the	
are highly likely to be able to	
interpress as they are so similar	
both genetically and environmentally	
O O	
	[6]

© OCR 2014 H020/02

14

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge, tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

The researchers claim could be supported due
to difference of 5 in the highest 2 lowest
of the range of echolocation call. Also soprano
pinistrelle can survive in wetland whereas
the common pipistrelle connor so they must
have evolved seperately to do so
However they can be seen as the
same species due to the identical mean body
mass, the extremely similar mean wingspan.
their identical colours & the shared
hubitats of weadland, hedgingus &
suburban areas

© OCR 2014

14

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge, tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

both have the same average tody mass and wing span hower the range of echolocation is significantly large for the common pipilrelle (SZ-60 kHz) them the suprand pipitrelle (42-47 kHz) this is a district difference. They both book the same but this we also adapted to have slightly different hobitate. Both can live in wood lands and nedgerours and suburban areas but the common pipitrelle can live in grassland furniand and what we in propose cannot [6] The soprane can use in wetland and tree lives whereas the common Japane does not

© OCR 2014

14

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge, tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

© OCR 2014

^{&#}x27;The common pipistrelle and soprano pipistrelle must be distinct species.

14

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge, tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

They have the some body news, similar
mean wingspan and the same
colouring: However, their range of
echolo Carrion care varies my differs
significantly suggesting the & Sapreuso.
pipiatration has accorpted to it's dipperent
hersitate. The two spaces Ana papulations
Grace Beneral features so courset be
to oustinst. These different nousitals
sharplines is likely to be the influence
of their adaptations and selective
MENSURES: [6]

© OCR 2014

^{&#}x27;The common pipistrelle and soprano pipistrelle must be distinct species.

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge, tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

The recearder dum a remain as
different pair groups have different range of
echolocation call love from 52-60 and the other
From 42-47)
The two populations of boats also live in
Slightly different habitats I some common
pipistrale live a graviand while some common
soprano pipistrelle live in without and parks
[6]

© OCR 2014

14

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pípistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge, tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

The table suggests that both types of pipishelle
are similar is appearance, with similar body mass,
wingspar and color. Harry similar physical appearance supports the idea that the 2 types
are distinct species.
However, the common pipishelle has a higher kHz
and under range of echolocation call and lives in
dier woodland habitate In contrast, the soprano
pipistrelle has a lover kHz and smaller range of
echolocation cally and lives in welter welland
habitab as well as drier woodlands etc. This data
tigget the 2 may be different species after all [6]

© OCR 2014

14

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge, tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

J	rellepation of a species is a group of organise
	whose members are studien to eachother
	in shape bothering and behaviour.
	these two at the same thape with sinite
	mean body has and wing span
	They are have a suricy behavior of
	Sharrow range of echolocater, only (04Hz)
	difference they also are the same colores
	But the Maphtest 3 Shirar Stat
	Stightly tofferents this Draws flies
	are for the same speces
	[6]

© OCR 2014

14

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge, tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

The mean body wass in both but spe	eres
The mean body ross in both but spe is the same, as if their colour. Their	r
near whyspan Is also very simber, but	
The save or providing widere that the	ery
could be district species, or be the	saue.
However the diserces and a colored	
and habitate suggests strongly that the are destrot species, because it suggest they had digned prey and require	щ
are district species, because it suggest	3
They hast dignet prey and require	
deserted tiving conditions	

© OCR 2014

14

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, <u>hedgerows</u> , grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in Table 5.1 to support and to challenge the researcher's conclusion.

Kolh the common and represent proportionally have similar physical characteristics, which challenges the regarders conclusion.

L. g. the where is the same, they have key similar mean wrings and (b. 22 vs. 0.21) and the same mean body mans. A Species has unally control to have very similar or the same foody mans. A Species has usually control to have very similar or the same species have analysed to their descriptions of they have supported by a support of the same of the support of the same (52-60) and the speam may in his suffer that when a support they had on defloot, here you of what and support they had on defloot, here you of what and support they had on defloot, here you of what had here they are supported by the support of the suppor

© OCR 2014

14

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge, tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in **Table 5.1** to support and to challenge the researcher's conclusion.

EVICUTICE SUPPORTING
Edifferent habitating wetland, on
-different range of echolocation au
- different range of echoloration cau - very slightly different mean ung span
Evidence against.
-same mean body mass -very very similar mean wingspan
were very similar mean wingspan
-30ml 600c
- several shared habitats

© OCR 2014

(b)* The pipistrelle is the most common species of bat in Europe.

Table 5.1 shows information about two distinct populations of pipistrelle.

Population	Mean body mass (g)	Mean wingspan (m)	Range of echolocation call (kHz)	Colour	Habitat
Common pipistrelle	5.5	0.22	52 – 60	medium to dark brown	woodland, hedgerows, grassland, farmland, suburban and urban
Soprano pipistrelle	5.5	0.21	42 – 47	medium to dark brown	wetland, woodland edge, tree lines, hedgerows, suburban gardens and parks

Table 5.1

A researcher made the following claim:

'The common pipistrelle and soprano pipistrelle must be distinct species.

Evaluate the researcher's claim by using the evidence in Table 5.1 to support and to challenge the researcher's conclusion.

They have sember colour wingson and mean body mass haverer when now technology was davelgood to calculate the range of echdocation call it became apparent that this way about dyporence It is likely to ture special arein the same genus. They live in some of the same habitats but common pipistreller can live in suburban and whan areas, whereas & somano pipistrelle can live is suburban [6] gardens and parks. However they do live in many of the same places 30 they sailed be the same species

© OCR 2014

H022/02 Sample question paper – Question 1 Marks

Candidate Response	Mark
1	4
2	2
3	6
4	5
5	4
6	3
7	2
8	0
9	2
10	2
11	1
12	2
13	2
14	2
15	2
16	2
17	5
18	2
19	0
20	3
21	0
22	2
23	4
24	2
25	4
26	2

H020/02 Sample question paper – Question 2 Marks

Candidate Response	Mark
1	1
2	3
2 3	0
4	0
5	1
6	6
7	2
8	6
9	3
10	4
11	5
12	1
13	1
14	4
15	3
16	2
17	2
18	0
19	1
20	6
21	4

H020/02 Sample question paper -**Question 3 Marks**

Candidate Response	Mark
1	2
2	4
3	1
4	6
5	1
6	1
7	2
8	0
9	3
10	6
11	1
12	5
13	2
14	6
15	3
16	3
17	4
18	1
19	5
20	2
21	4
22	1
23	2
24	5
25	1
26	6
27	3
28	1
29	4

We'd like to know your view on the resources we produce. By clicking on the 'Like' or 'Dislike' button you can help us to ensure that our resources work for you. When the email template pops up please add additional comments if you wish and then just click 'Send'. Thank you.

If you do not currently offer this OCR qualification but would like to do so, please complete the Expression of Interest Form which can be found here: www.ocr.org.uk/expression-of-interest

OCR Resources: the small print

OCR's resources are provided to support the teaching of OCR specifications, but in no way constitute an endorsed teaching method that is required by the Board and the decision to use them lies with the individual teacher. Whilst every effort is made to ensure the accuracy of the content, OCR cannot be held responsible for any errors or omissions within these resources. We update our resources on a regular basis, so please check the OCR website to ensure you have the most up to date version.

© OCR 2016 – This resource may be freely copied and distributed, as long as the OCR logo and this message remain intact and OCR is acknowledged as the originator of this work.

OCR acknowledges the use of the following content: Square down and Square up: alexwhite/Shutterstock.com

Please get in touch if you want to discuss the accessibility of resources we offer to support delivery of our qualifications: resources.feedback@ocr.org.uk

We will inform centres about any changes to the specification. We will also publish changes on our website. The latest version of our specification will always be the one on our website (www.ocr.org.uk) and this may differ from printed versions.

Copyright © OCR 2016. All rights reserved.

Copyright

OCR retains the copyright on all its publications, including the specifications. However, registered centres for OCR are permitted to copy material from this specification booklet for their own internal use.

ocr.org.uk/alevelreform OCR customer contact centre

General qualifications

Telephone 01223 553998 Facsimile 01223 552627

Email general.qualifications@ocr.org.uk

OCR is part of Cambridge Assessment, a department of the University of Cambridge. For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored. © OCR 2016 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England.

Registered office 1 Hills Road, Cambridge CB1 2EU. Registered company number 3484466. OCR is an exempt charity.

