1 Introduction 5

How to use this handbook 5

2 Overview of practical skills requirements 6

Summary of the assessment model 6
Summary of the practical skills required 7
AS Level candidates and the Practical Endorsement 7

3 Practical skills assessed in a written examination 8

Planning 8
Implementing 9
Analysis 9
Evaluation 11

4 Practical skills assessed in the Practical Endorsement 13

Introduction to the OCR Practical Endorsement 13
Planning activities to cover the Endorsement requirements 13
Tracking achievement 20
Monitoring arrangements 21
Assessing the Practical Endorsement 22
Access arrangements 22

5 Planning your practical scheme of work 23

An approach to planning 23

Appendix 1: Health and safety 29

Appendix 2: Apparatus list 32
1 Introduction

New GCE A/AS Level specifications in Physics have been introduced for teaching from September 2015. Guidance notes are provided within specifications to assist teachers in understanding the requirements of each unit.

This Handbook plays a secondary role to the specification itself. The specification is the document on which assessment is based and this Handbook is intended to elaborate on the content of the specification to clarify how skills are assessed and what practical experience is necessary to support an assessment. The Practical Skills Handbook should therefore be read in conjunction with the specification.

During their study of Physics, candidates are expected to acquire experience of planning, implementation, use of apparatus and techniques, analysis and evaluation. These skills will be indirectly assessed in the written examinations at both AS and A Level. In addition, certain planning and implementation skills will be directly assessed at A Level only, through the Practical Endorsement.

This Handbook offers guidance on the skills required for both assessments, clarifies the arrangements for the Practical Endorsement, and gives suggestions towards planning a practical scheme of work that will cover all requirements.

How to use this handbook

Sections 2–4 of this handbook describe the assessment of practical skills in the AS and A Level qualifications. These sections elaborate on the information provided in the specification. Teachers are particularly advised to carefully read Section 4, which sets out the requirements for the Practical Endorsement – the direct assessment of practical skills in the A Level qualifications.

Section 5 provides guidance on planning the practical scheme of work, bringing together the various aspects that should be taken into account. The guidance in this section is intended to be supportive rather than prescriptive.

The Appendices provide reference information on various topics.

- Appendices 1 and 2 provide information on health and safety and apparatus requirements, and may be useful to share with technicians.
- Appendix 3 gives some further guidance on the practical skills set out in specification Section 1.2.1, which are covered in the Practical Endorsement. This section is intended to support centres in planning how they will develop these skills.
- Appendices 4–7 give additional information on skills related to recording and presenting experimental data, covering measurements, units, graphs and referencing respectively. This content could be shared with learners to help them develop an appropriate level of skill.
- Appendix 8 lists a number of useful resources, including additional resources and support provided by OCR.
- Appendix 9 is a guide to finding additional documentation on Interchange.
2 Overview of practical skills requirements

Summary of the assessment model

The practical skills assessment model is similar to the assessment model for the UK driving test, consisting of a theoretical and a practical component.

The driving theory test assesses whether you know how to drive a car, what the rules of the road are, and whether you can spot hazards. The theory test is centrally administered by the UK government, and all candidates sit a test of a similar format.

The practical driving test assesses whether you can put your knowledge into practice and actually drive a car. It is directly assessed by an examiner, who determines whether you have achieved the minimum standard. While certain skills must always be demonstrated, the experience of the assessment will be quite different from one candidate to the next, depending on the route taken, traffic conditions, hazards encountered, and so on.

Similarly, the assessment of practical skills in the GCE Physics qualifications consists of two components.

- The 'theoretical' component is an *indirect* assessment of practical skills through a written examination. This assessment is integrated into the written assessments of physics knowledge and understanding, administered by OCR and taken at the end of the course.

- The 'practical' component is a *direct* assessment of practical skills displayed by candidates as they are performing practical work. This is assessed by the teacher across the whole of the course.

The indirect, written assessment is a component of both AS and A Level Physics. The direct assessment, known as the Practical Endorsement, is a component of A Level Physics only.

The skills required for the practical skills assessments are set out in Module 1 of each specification: Development of practical skills in physics. Module 1 is divided into two sections:

- **Section 1.1** of the specification covers skills that are assessed indirectly in a written examination. These skills may be assessed in any of the written papers that constitute the written assessment, at both AS and A Level. Assessment of practical skills forms a minimum of 15% of the written assessment at both AS and A Level.

- **Section 1.2** of the specification covers skills that are assessed directly through the Practical Endorsement. Candidate performance is teacher-assessed against the Common Practical Assessment Criteria. If the candidate has demonstrated achievement in the competencies described, the teacher awards a Pass. The Practical Endorsement is ungraded.

 The Practical Endorsement is a component of the assessment at A Level only. There is no direct assessment of practical skills at AS Level. Performance in the Practical Endorsement is reported separately to the performance in the A Level as measured through the externally assessed components.
Summary of the practical skills required

Skills assessed in the written examinations
The skills assessed in the written examination cover the following areas:

- Planning
- Implementing
- Analysis
- Evaluation

Questions assessing these practical skills will be embedded in contexts relating to the content of the specification. The specification learning outcomes beginning 'techniques and procedures …' indicate types of practical activity that may form the context for the assessment of practical skills. Candidates should be able to apply any of the above skills within any of these practical contexts.

Skills assessed through the Practical Endorsement
The skills assessed through the Practical Endorsement cover the areas of Planning and Implementing, specifically the following:

- Independent thinking
- Use and application of scientific methods and practices
- Research and referencing
- Instruments and equipment

Candidates must exemplify their skill in these areas through use of the apparatus and techniques listed in the specification, Section 1.2.2

Within Appendix 5 of the specification, a structure comprising 12 Practical Activity Groups (PAGs) is presented that demonstrate how the required skills and techniques for the Practical Endorsement may be covered in the minimum 12 activities. Centres are permitted to assess a wider range of practical activities for the Practical Endorsement, which may include splitting the requirements of individual PAGs across multiple activities.

AS Level candidates and the Practical Endorsement

There is no direct assessment of practical skills within the AS Level qualification. However, AS Level candidates will benefit from completing the type of practical activities recommended within the Practical Endorsement, as well as others, for the following reasons:

- completing practical activities will help to develop the practical skills that are assessed in the written examination
- completing practical activities will support understanding of the content of the specification
- candidates who decide to continue to take the A Level qualification after completing AS Level will be able to use their performance on Practical Endorsement activities completed in their first year towards the Practical Endorsement, as long as appropriate records have been kept.
Practical skills assessed in a written examination

Planning

Specification Section 1.1.1.

Learners should be able to demonstrate and apply their knowledge and understanding of:

- experimental design, including to solve problems set in a practical context
- identification of variables that must be controlled, where appropriate
- evaluation that an experimental method is appropriate to meet the expected outcomes.

Experimental design should include selection of suitable apparatus, equipment and techniques for the proposed experiment.

Learners will benefit from having been given the opportunity to design simple experiments, and receiving feedback on their plans. Additionally, they should routinely be asked to consider why experiments are performed in the way they are, and how the experimental set-up contributes to being able to achieve the expected outcome. Learners could be asked what might be the effect of changing aspects of the method.

Example questions

The figure below shows an arrangement used to investigate how the kinetic energy of a toy car varies with its distance \(d \) from the top of the ramp.

![Diagram of toy car on a ramp](image)

Design a laboratory experiment to determine the kinetic energy of the car at one particular distance \(d \) from the top of the ramp.

In your description pay particular attention to

- how the apparatus is used
- what measurements are taken
- how the data is analysed

AS Level Physics A, Sample Question Paper H156/01 question 22(b)
Implementing

Specification Section 1.1.2.

Learners should be able to demonstrate and apply their knowledge and understanding of:

- how to use a wide range of practical apparatus and techniques correctly
- appropriate units for measurements
- presenting observations and data in an appropriate format.

The practical apparatus and techniques that may be assessed are those outlined in the specification statements related to practical techniques and procedures and, for A Level only, those covered in the Practical Endorsement.

Learners will be expected to understand the units used for measurements taken using common laboratory apparatus. See Appendix 5 for units commonly used in practical work in physics.

Appropriate presentation of data includes use of correct units and correct number of decimal places for quantitative data. This skill also includes appropriate use of tables and graphs for presentation of data.

Further information on recording measurements and the use of graphs is given in Appendices 4 and 6, respectively.

Example questions

The figure shows a capacitor-resistor circuit. Describe how the time constant of this circuit can be determined experimentally in the laboratory.

![Capacitor-resistor circuit diagram]

A Level Physics A, Sample Question Paper H556/02 question 20(c)

Analysis

Specification Section 1.1.3.

Learners should be able to demonstrate and apply their knowledge and understanding of:

- processing, analysing and interpreting qualitative and quantitative experimental results
- use of appropriate mathematical skills for analysis of quantitative data
- appropriate use of significant figures
- plotting and interpreting suitable graphs from experimental results, including:
 (i) selection and labelling of axes with appropriate scales, quantities and units
 (ii) measurement of gradients and intercepts.
Learners will benefit from having practised these skills in a range of practical contexts. Many of the skills and techniques that form part of the Practical Endorsement will also be suitable for practising these skills.

Appendix 4 gives further information about the use of significant figures. Appendix 5 gives further information about the plotting of graphs. See also the Mathematical Skills Handbook for further guidance on the mathematical skills required in analysing experimental results, and in other areas of quantitative physics.

Example questions

A motorcyclist riding on a level track is told to stop via a radio microphone in his helmet. The distance \(d \) travelled from this instant and the initial speed \(v \) are measured from a video recording.

Explain why the student predicts that \(v \) and \(d \) are related by the equation

\[
d = \frac{v^2}{2a} + vt
\]

where \(a \) is the magnitude of the deceleration of the motorcycle and \(t \) is the thinking time of the rider.

The student decides to plot a graph with \(dv^{-1} \) on the y-axis against \(v \) on the x-axis.

Explain why this is a sensible decision.

The measured values of \(v \) and \(d \) are given in the table.

<table>
<thead>
<tr>
<th>(v) / ms(^{-1})</th>
<th>(d) / m</th>
<th>(dv^{-1}) / s</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ± 1</td>
<td>13.0 ± 0.5</td>
<td></td>
</tr>
<tr>
<td>15 ± 1</td>
<td>24.5 ± 0.5</td>
<td>1.63 ± 0.14</td>
</tr>
<tr>
<td>20 ± 1</td>
<td>39.5 ± 0.5</td>
<td>1.98 ± 0.12</td>
</tr>
<tr>
<td>25 ± 1</td>
<td>57.5 ± 0.5</td>
<td>2.30 ± 0.11</td>
</tr>
<tr>
<td>30 ± 1</td>
<td>79.0 ± 0.5</td>
<td>2.63 ± 0.10</td>
</tr>
<tr>
<td>35 ± 1</td>
<td>103.0 ± 0.5</td>
<td>2.94 ± 0.09</td>
</tr>
</tbody>
</table>

Complete the missing value of \(dv^{-1} \) in the table, including the absolute uncertainties. Use the data to complete the graph below. Four of the points have been plotted for you.
Use the figure to determine the values of a and t, including their absolute uncertainties

A Level Physics A, Sample Question Paper H556/03 question 2

Evaluation

Specification Section 1.1.4.

Learners should be able to demonstrate and apply their knowledge and understanding of:

- how to evaluate results and draw conclusions
- the identification of anomalies in experimental measurements
- the limitations in experimental procedures
- precision and accuracy of measurements and data, including margins of error, percentage errors and uncertainties in apparatus
- refining experimental design by suggestion of improvements to the procedures and apparatus.

Learners will benefit from having practised these skills in a range of practical contexts. As a matter of course, learners should be encouraged to think carefully about the procedure they are performing and how it relates to the content of the specification; this will better place them to draw appropriate conclusions, identify anomalous and unexpected results, and identify limitations in procedures. Many activities included in the Practical Endorsement, as well as others, can be
extended to allow learners to consider errors and uncertainties, and suggest improvements to procedures.

Appendix 4 provides further information on precision, accuracy and errors, as well as identifying anomalous results.

Example questions

A researcher connects the circuit as shown to determine the resistivity of a new metal designed from waste metals. The wire has length 0.75 m and cross-sectional area 1.3×10^{-7} m2. The ammeter reading is 0.026 A and the voltmeter reading is 1.80 V.

![Circuit diagram]

Calculate the resistivity of the metal.

The resistivity of the metal in (c)(i) is larger than the value predicted by the researcher.

Explain one possible limitation of the experiment.

AS Level Physics A, Sample Question Paper H156/01 question 24(c)
4 Practical skills assessed in the Practical Endorsement

Introduction to the OCR Practical Endorsement

In order to pass the Practical Endorsement, candidates must demonstrate by the end of the two-year A Level course that they consistently and routinely exhibit the competencies described in the Common Practical Assessment Criteria (CPAC), listed in Section 5 of the specification. These competencies must be developed through a practical programme that encompasses the skills, apparatus and techniques listed in section 1.2 of the specification, and must comprise a minimum of 12 practical activities.

In the OCR specifications, 12 Practical Activity Groups (PAGs) are presented, which provide opportunities for demonstrating competency in all required apparatus and techniques. Additionally, all of the required skills can be developed through the PAGs. Some of the required skills are explicitly included in the requirements for individual PAGs, while others can be developed as a matter of course across the full range of activities.

The PAGs have been designed so that activities can be chosen that directly support the specification content. PAG1–5 support concepts that are likely to be taught in the first year of A Level, while PAG6–9 support concepts from the second year of A Level. PAG10 and PAG11 are less scaffolded activities, designed for development of the investigative skills covered in Module 1.2.1, and can be used to bring together knowledge from across the course. Finally, PAG12 allows candidates to demonstrate research skills and apply investigative approaches, and may link in with any content from the course or beyond.

Planning activities to cover the Endorsement requirements

The Practical Activity Groups

Table 1 on the next page lists the 12 Practical Activity Groups (PAGs) with the minimum of skills and use of apparatus and techniques to be covered in each. The groups have been designed to include the types of activities that will support the requirements of the Practical Endorsement, as well as the assessment of practical skills within the written examinations.

Table 1 can be used to construct a practical scheme of work that covers all requirements. Centres are not required to stick rigidly to this table, as long as overall all the requirements are covered. For example, the skills included in PAG12 could be covered as part of an activity described for another PAG, rather than as a separate activity. That is fine, as long as at least 12 activities are completed overall.

Centres are not required to cover the skills and techniques for each PAG in a single activity. Some PAGs cover a range of skills, and centres may prefer to split these out. For example, PAG5 could be covered through a series of stand-alone activities, focusing on light waves, water waves or microwaves as stand-alone practicals. Risk assessments could be completed for any or all of these.

The Common Practical Assessment Criteria (CPAC) can be applied to candidate performance across all practical work performed throughout the A Level course. It is not the intention that assessment of the Practical Endorsement should only be based on performance in 12 activities, one from each PAG. For example, if you run multiple activities involving the construction of electric circuits, candidates’ performance across all these activities could be taken into account, not just their performance in an activity selected explicitly to cover PAG3.
<table>
<thead>
<tr>
<th>Practical activity group (PAG)</th>
<th>Techniques/skills covered (minimum)</th>
<th>Example of a suitable practical activity (a range of examples will be available from the OCR website and centres can devise their own activity)</th>
<th>Specification reference (examples)</th>
</tr>
</thead>
</table>
| 1 Investigating motion | • Use of appropriate analogue apparatus to measure distance, angles\(^1\), mass\(^2\) and to interpolate between scale markings\(^3\)
• Use of a stopwatch or light gates for timing
• Use of ICT such as computer modelling, or data logger with a variety of sensors to collect data, or use of software to process data\(^4\)
• Use of methods to increase accuracy of measurements, such as set square or plumb line | Acceleration of free fall | 3.1.2(b)(ii) |
| 2 Investigating properties of materials | • Use of calipers and micrometers for small distances, using digital or vernier scales\(^5\)
• Use of appropriate analogue apparatus to measure length\(^6\) and to interpolate between scale markings\(^3\)
• Use of appropriate digital instruments to measure mass\(^2\) | Determining Young’s Modulus for a metal | 3.4.2(d)(ii) |
| 3 Investigating electrical properties | • Use of appropriate digital instruments, including multimeters\(^7\), to measure current\(^8\), voltage\(^9\), resistance\(^10\)
• Use calipers and micrometers for small distances, using digital or vernier scales\(^5\)
• Correctly constructing circuits from circuit diagrams using DC power supplies, cells, and a range of circuit components | Determining the resistivity/conductivity of a metal | 4.2.4(a)(ii) |
<table>
<thead>
<tr>
<th>Practical activity group (PAG)</th>
<th>Techniques/skills covered (minimum)</th>
<th>Example of a suitable practical activity</th>
<th>Specification Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Investigating electrical circuits</td>
<td>• Use of appropriate digital instruments, including multimeters(^7), to measure current(^8), voltage(^9), resistance(^{10}) • Correctly constructing circuits from circuit diagrams using DC power supplies, cells, and a range of circuit components, including those where polarity is important • Designing, constructing and checking circuits using DC power supplies, cells, and a range of circuit components</td>
<td>Investigation of potential divider circuits</td>
<td>4.3.3(c)(i), 4.3.3(c)(ii)</td>
</tr>
<tr>
<td>5 Investigating waves</td>
<td>• Use of appropriate analogue apparatus to measure length(^6), angles(^1) and to interpolate between scale markings(^3) • Use of a signal generator and oscilloscope, including volts/division and time-base • Generating and measuring waves, using microphone and loudspeaker, or ripple tank, or vibration transducer, or microwave/radio wave source • Use of a laser or light source to investigate characteristics of light, including interference and diffraction • Use of ICT such as computer modelling</td>
<td>Determination of the wavelength of light and sound by two source superposition with a double-slit and diffraction grating</td>
<td>4.4.3(a)(ii), 4.4.3(h)(ii)</td>
</tr>
<tr>
<td>Practical activity group (PAG)</td>
<td>Techniques/skills covered (minimum)</td>
<td>Example of a suitable practical activity</td>
<td>Specification Reference</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------------</td>
<td>---</td>
<td>-------------------------</td>
</tr>
</tbody>
</table>
| 6 Investigating quantum effects | • Use of appropriate digital instruments, including multimeters\(^7\), to measure current\(^8\), voltage\(^9\)
• Correctly constructing circuits from circuit diagrams using DC power supplies, cells, and a range of circuit components, including those where polarity is important
• Use of a laser or light source to investigate characteristics of light, including interference and diffraction
• Use of methods to increase accuracy of measurements | Determination of the Planck constant using LEDs | 4.5.1(e)(ii) |
| 7 Investigating ionising radiation | • Safe use of ionising radiation, including detectors
• Use of ICT such as computer modelling, or data logger with a variety of sensors to collect data, or use of software to process data\(^4\) | Absorption of α or β or γ radiation | 6.4.3(b)(ii) |
| 8 Investigating gases | • Use of appropriate analogue apparatus to measure pressure, volume, temperature and to interpolate between scale markings\(^3\) | Determining an estimate of absolute zero using variation of gas temperature with pressure | 5.1.4(d)(iii) |
| 9 Investigating capacitors | • Use of appropriate digital instruments, including multimeters\(^7\), to measure current\(^8\), voltage\(^9\), resistance\(^10\)
• Use of appropriate digital instruments to measure time
• Designing, constructing and checking circuits using DC power supplies, cells, and a range of circuit components
• Use of ICT such as computer modelling, or data logger with a variety of sensors to collect data, or use of software to process data\(^4\) | Determining time constant using the gradient of \(\ln V\) or \(\ln I\)–time graph | 6.1.3(a)(ii), 6.1.3(c) |
<table>
<thead>
<tr>
<th>Practical activity group (PAG)</th>
<th>Techniques/skills covered (minimum)</th>
<th>Example of a suitable practical activity</th>
<th>Specification Reference</th>
</tr>
</thead>
</table>
| 10 Investigating simple harmonic motion | • Use of appropriate digital instruments to measure time
• Use of appropriate analogue apparatus to measure distance and to interpolate between scale markings\(^3\)
• Use of methods to increase accuracy of measurements, such as timing over multiple oscillations, or use of fiduciary marker, set square or plumb line
• Use of ICT such as computer modelling, or data logger with a variety of sensors to collect data, or use of software to process data\(^4\) | Investigating the factors affecting the period of a simple harmonic oscillator | 5.3.1(c)(ii) |
| 11 Investigation | • Apply investigative approaches and methods to practical work | Determination of the specific heat capacity of a material | 5.1.3(b)(i) |
| 12 Research skills | • Use online and offline research skills
• Correctly cite sources of information | The principles behind the operation of the Global Positioning System
The use of radioactive materials as tracers in medical imaging | Opportunities throughout specification |

These techniques/skills may be covered in any of the groups indicated.

It is expected that the following skills will be developed across all activities, regardless of the exact selection of activities. The ability to:

- safely and correctly use a range of practical equipment and materials (1.2.1 b)
- follow written instructions (1.2.1 c)
- keep appropriate records of experimental activities (1.2.1 e)
- make and record observations/measurements (1.2.1 d)
- present information and data in a scientific way (1.2.1 f)
- use a wide range of experimental and practical instruments, equipment and techniques (1.2.1 j)

Table 1 refers mainly to learning outcomes in Section 1.2 of the specification. In a few instances, references are included to the Common Practical Assessment Criteria (CPAC), to ensure coverage of criteria that are not explicitly stated in the learning outcomes.

Some of the learning outcomes in Section 1.2 are generic, i.e. they could be covered in many different activities.
The learning outcome ‘designing, constructing and checking circuits using DC power supplies, cells and a range of electronic components’, 1.2.2(k), needs to be covered across the selection of activities.

It is expected that there will be ample opportunities to develop and demonstrate the following skills across the whole practical course, regardless of the exact selection of activities:

- safely and correctly use a range of practical equipment and materials, 1.2.1(b)
- follow written instructions, 1.2.1(c)
- make and record observations/measurements, 1.2.1(d)
- keep appropriate records of experimental activities, 1.2.1(e)
- present information and data in a scientific way, 1.2.1(f)
- use appropriate tools to process data, carry out research and report findings, 1.2.1(g)
- use a wide range of experimental and practical instruments, equipment and techniques, 1.2.1(j).

Practical Activity Support Service

OCR does not require specific activities to be completed for each PAG. Centres may select activities of their own, or provided by third parties, and map these against the requirements.

Centres may contact OCR’s Practical Activity Support Service (PASS) with queries regarding selection of activities for the Practical Endorsement: pass@ocr.org.uk

Centres may contact the service regarding individual activities that they wish to carry out. Centres may request advice on whether

- they have correctly mapped learning outcomes / CPAC against an activity
- they have correctly selected an activity that will cover the requirements for a particular PAG.

Centres should not submit full schemes of work to the service for advice on whether the full Practical Endorsement requirements have been covered. However, queries requiring clarification of the requirements and advice on the general approach to planning are welcome.

Activities provided by OCR

OCR has produced three example activities for each PAG, comprising student sheets and teacher/technician guidance. Centres may use these directly in their centres, adapt them to their requirements, or merely use them as reference for the types of activity that would satisfy the criteria for each PAG and the Endorsement as a whole.

The example activities are available on Interchange. See Appendix 9 for details on how to access them.

Table 2 lists the activity titles of the OCR example activities for A Level Physics.
Table 2 PAG activities provided by OCR

<table>
<thead>
<tr>
<th>PAG1</th>
<th>PAG7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Comparing methods of determining g</td>
<td>7.1 Observing the random nature of radioactive decay</td>
</tr>
<tr>
<td>1.2 Investigating terminal velocity</td>
<td>7.2 Investigate the absorption of alpha, beta & gamma by differing materials</td>
</tr>
<tr>
<td>1.3 Investigating the effect of initial speed on stopping distance</td>
<td>7.3 Determine half-life (using an ionisation chamber)</td>
</tr>
<tr>
<td>PAG2</td>
<td>PAG8</td>
</tr>
<tr>
<td>2.1 Determining the Young Modulus for a metal</td>
<td>8.1 Estimate a value for absolute zero from gas pressure and volume</td>
</tr>
<tr>
<td>2.2 Force/extension characteristics for arrangements of springs</td>
<td>8.2 Investigating the relationship between pressure and volume</td>
</tr>
<tr>
<td>2.3 Investigating a property of plastic</td>
<td>8.3 Estimating the work done by a gas as its temperature increases</td>
</tr>
<tr>
<td>PAG3</td>
<td>PAG9</td>
</tr>
<tr>
<td>3.1 Determining the resistivity of a metal</td>
<td>9.1 Investigating the charging and discharging of capacitors</td>
</tr>
<tr>
<td>3.2 Investigating electrical characteristics</td>
<td>9.2 Investigating capacitors in series and parallel</td>
</tr>
<tr>
<td>3.3 Determining the internal resistance and maximum power available from a cell</td>
<td>9.3 Investigating the factors affecting the capacitance of a capacitor</td>
</tr>
<tr>
<td>PAG4</td>
<td>PAG10</td>
</tr>
<tr>
<td>4.1 Investigating resistance</td>
<td>10.1 Investigate the factors affecting simple harmonic motion</td>
</tr>
<tr>
<td>4.2 Investigating circuits with more than one source of e.m.f.</td>
<td>10.2 Observing forced and damped oscillations</td>
</tr>
<tr>
<td>4.3 Investigating potential divider circuits including a non-ohmic device</td>
<td>10.3 Comparison of static and dynamic methods of determining spring stiffness</td>
</tr>
<tr>
<td>PAG5</td>
<td>PAG11</td>
</tr>
<tr>
<td>5.1 Determining the wavelength of light with a diffraction grating</td>
<td>11.1 Investigating transformers</td>
</tr>
<tr>
<td>5.2 Determining the speed of sound in air using a resonance tube</td>
<td>11.2 Determining the specific heat capacity of a material</td>
</tr>
<tr>
<td>5.3 Determining frequency and amplitude of a wave using an oscilloscope</td>
<td>11.3 Determining the magnetic field of a magnet</td>
</tr>
<tr>
<td>PAG6</td>
<td>PAG12</td>
</tr>
<tr>
<td>6.1 Determining the Planck constant</td>
<td>12.1 Materials presentation</td>
</tr>
<tr>
<td>6.2 Experiments with light</td>
<td>12.2 Research report</td>
</tr>
<tr>
<td>6.3 Experiments with polarisation</td>
<td>12.3 An appreciation of an aspect of How Science Works</td>
</tr>
</tbody>
</table>
Tracking achievement

Requirements for record keeping
Centres will be required by OCR to provide the following information to a Monitor on any potential monitoring visit (see following section for monitoring arrangements):

- Plans to cover all practical requirements, such as a scheme of work to show how sufficient practical activities will be carried out to meet the requirements of CPAC, incorporating all the skills and techniques required over the course of the A Level.
- A record of each practical activity that is carried out and the date it was done.
- A record of the criteria assessed in each practical activity.
- A record of learner attendance.
- A record of which learners met which criteria and which did not.
- Evidence of learners' work associated with particular
- Any associated materials provided e.g. written instructions.

Centres are free to choose the method of evidencing learners' work that best suits them, taking into consideration any constraints in a particular centre, e.g. large cohort, budget.

Possible suitable methods include the use of a lab book, a folder of relevant sheets or a collection of digital files.

PAG activities provided by OCR will provide instructions as to the types of evidence required depending on the nature of the particular activity.

The PAG tracker
OCR has developed an Excel spreadsheet that can be used to track the progress of a class through the Practical Endorsement. This tool has a number of functions and is designed to be used alongside the PAG activities provided by OCR. These activities and the tracker can be found on Interchange.

Teachers can use the PAG tracker by firstly entering their class data into the spreadsheet. The OCR PAG activities have all been mapped to the skills, techniques and Common Practical Assessment Criteria (CPAC) that need to be covered or considered when tracking the progress of students through their practical activities. This then means that it is only necessary to enter the date that a particular activity is completed for:

- all learners to be recorded as present, and
- the skills, techniques and criteria covered by that activity to be recorded as achieved by all students.

If any learner is absent, or fails to demonstrate competency in an element of the activity, it is very easy to change that cell to absent or not achieved as appropriate.

Other functions include being able to check which skills, techniques and criteria a particular activity covers, being able to find an activity that covers particular skills, techniques and criteria and the ability to look at a whole class in terms of how many times they have achieved particular skills, techniques and criteria.
It is possible to enter and map practical activities that centres have developed themselves so the tracker is very flexible in terms of the activities carried out. If a centre would like any advice about the mapping of practical activities, then they will be able to get in touch with the Science Subject Specialists at OCR by emailing the Practical Activity Support Service at pass@ocr.org.uk

It is suggested that Centres use the tracker as evidence for items 2–5 of the list of record keeping requirements above. Therefore by using this tool, along with a scheme of work, any student sheets used and the learner’s evidence, the internal monitoring of the Practical Endorsement should be very easy to administer.

Monitoring arrangements

Monitoring visits
All centres will receive one monitoring visit in one of the sciences offered by that centre in the first two years of teaching (from September 2015). Large centres will be visited for all three sciences.

The purpose of the monitoring process is to ensure that centres are planning and delivering appropriate practical work, and making and recording judgements on learner competences to meet the required standards.

On the day of the visit the monitor will:

- observe a practical activity
- review the records kept by the centre and by learners (see Tracking achievement above)
- talk with staff and learners.

Following the visit, the monitor will complete a record of the visit, which will be copied to the centre. The record will state that the monitor is satisfied whether the centre is meeting the requirements for the Practical Endorsement. The report may additionally offer guidance on improvements that could be made by the centre.

Should a centre dispute the outcome of a monitoring visit, a repeat visit by an alternative monitor may be requested.

Arrangement of visits
Centres are no longer required to make any advance registration for the Practical Endorsement from September 2017, as the Awarding Organisations (AOs) will use information from centre entries for the reformed A levels in biology, chemistry and physics in the previous summer examination series to jointly plan monitoring visits for the September 2017 to May 2019 and subsequent cycles.

Centres will be monitored for a different science than that which was monitored in the previous monitoring cycle. The first contact with a centre will be from the AO with which the science to be monitored was previously entered. This first contact will be with the exams officer (or other nominated school contact) before making arrangements with the lead teacher for that subject, including the requirement for the centre to supply the monitor with timetable information for the agreed date to allow the identification of a practical lesson to observe.

Monitoring visits will follow the same procedures as for 2015 to 2017 and large centres will continue to be monitored for biology, chemistry and physics.

Standardisation

Lead teachers are required to have undertaken the free online training provided (available and accessible to all teachers at: https://practicalendorsement.ocr.org.uk) on the implementation of the Practical Endorsement. They should also ensure that all other teachers of that science within the centre are familiar with the requirements so that:

- all candidates are given an adequate opportunity to fulfil the requirements of the Practical Endorsement
- standards are applied appropriately across the range of candidates within the centre.

Assessing the Practical Endorsement

The Practical Endorsement is directly assessed by teachers. The assessment is certificated Pass or Not-classified.

In order to achieve a **Pass**, candidates will need to have met the expectations set out in the Common Practical Assessment Criteria (CPAC) (see Table 2 in the specification, Appendix 5) including demonstrating competence in all the skills, apparatus and techniques in sections 1.2.1 and 1.2.2 of each specification. Candidates can demonstrate these competencies in any practical activity undertaken throughout the course of study. The 12 OCR Practical Activity Groups (PAGs) described in the specification provide opportunities for demonstrating competence in all required skills, together with the use of apparatus and practical techniques for each subject.

Candidates may work in groups, but must be able to demonstrate and record independent evidence of their competency. This must include evidence of independent application of investigative approaches and methods to practical work.

Teachers who award a Pass need to be confident that the candidate consistently and routinely exhibits the required competencies before completion of the A Level course.

Access arrangements

There are no formal access arrangements for the Practical Endorsement.

Centres may make reasonable adjustments to their planned practical activities to allow candidates with disabilities to participate in practical work. Where such adjustments allow these candidates to independently demonstrate the competencies and technical skills required, without giving these candidates an unfair assessment advantage, centres may award a Pass for the Practical Endorsement.

For example, candidates who are colour blind can use colour charts to help them identify colour changes. Alternatively, practical activities can be selected that involve changes that such candidates are able to observe without such assistance.

Candidates who are not physically able to perform some or all of the required practical work independently cannot achieve a Pass in the Practical Endorsement. However, they can access all the marks within the written examinations, and will benefit from having been given the opportunity to experience all practical work, perhaps with the help of a practical assistant. An application for Special Consideration for such candidates should be made in the standard way.
5 Planning your practical scheme of work

In planning the practical scheme of work, centres need to ensure sufficient opportunities are provided to support candidates’ development of understanding and skill in the following areas:

- practical skills assessed in the written examinations (identified in specification Section 1.1)
- practical techniques and procedures assessed in the written examinations (identified throughout the content modules of the specifications)
- practical skills assessed through the Practical Endorsement (identified in specification Section 1.2, for A Level only)
- conceptual understanding which can be supported through practical work.

This section presents an approach to planning a practical scheme of work that takes into account all of the above. The information in this section is presented for guidance only; there is no prescribed approach.

An approach to planning

On the following pages, sample tables are presented for each of the specifications (Physics A and Physics B (Advancing Physics)), which could be used as a starting point for planning the practical scheme of work within centres. The structure of the tables is informed by one possible approach to planning:

1. Identify the learning outcomes within the specification that relate to knowledge and understanding of practical techniques and procedures.
2. Identify which of these learning outcomes relate to Practical Activity Groups, so that carrying out practical work in support of these learning outcomes will also meet certain requirements within the Practical Endorsement. For both GCE Physics specifications, PAGs 1–11 relate to activity types that will also directly support learning outcomes assessed in the written examinations.
3. Select practical activities that will adequately cover the requirements identified so far.
4. Consider how to incorporate coverage of PAG12. The research, citation and investigative skills covered in PAG12 may be developed in the context of any topic in the specification (or beyond). You may elect to:
 a. develop these skills in an area not already included in the PAGs
 b. use this type of activity to give additional support in an area of practical activity already covered
 c. run this type of activity as a ‘mini-investigation’, giving candidates some freedom of choice of topic.
5. Identify how the chosen practical activities can be used to support development of the practical skills assessed in the written examinations. Modify the choice of activities, or add activities, if more support is required.
6. Identify how the chosen practical activities can be used to support other learning outcomes within the specification. Again, if insufficient opportunities have been identified, consider modifying the choice of activities or adding additional activities.

Note that a much wider range of practical work can be carried out than is suggested by the learning outcomes specifically related to practical techniques and procedures.
The learning outcomes related to techniques and procedures form just one potential starting point for planning the practical scheme of work. It is equally possible to begin by considering the work you wish to carry out to support conceptual understanding, and then checking that other requirements have been covered. Alternatively, you could begin by planning sufficient work to cover the requirements of the Practical Endorsement.

Sample planning tables
The following sample tables are also available as editable Word files on Interchange.

The Activities column is left blank for centres to complete. This reflects the fact that OCR does not specify particular practical activities that need to be carried out.

The Examinable skills column suggests which practical skills assessed in the written examinations could be developed in the context of particular types of activities. This is a non-prescriptive and non-exhaustive list; centres should adjust this information according to their selected activities and their overall scheme of work.

Certain skills may be expected to form part of any practical activity. These are not explicitly referenced in the table, and include:

- presenting observations and data
- processing and interpreting results.

Certain other skills could be developed in almost any practical activity. These include:

- experimental design
- evaluation of method
- evaluating results
- identifying limitations in procedures.

However, there are certain types of procedure that particularly lend themselves to developing problem solving and evaluation skills, and these have been identified in the tables.

Finally, certain skills will be limited to certain types of activity. This primarily concerns skills related to recording, processing and evaluating quantitative measurements, and the controlling of variables. Opportunities for developing these skills are identified in the tables.

The Other LOs supported column can be used to identify other learning outcomes within the specification that can be taught through the practical activities. Again, the opportunities identified in the sample tables are non-prescriptive and non-exhaustive.
Physics A sample planning table

<table>
<thead>
<tr>
<th>Learning outcome</th>
<th>PAG</th>
<th>Activity</th>
<th>Examinable skills</th>
<th>Other LOs supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.2 (b) acceleration g of free fall and its experimental determination using a falling object</td>
<td>1.1</td>
<td>Comparing methods of determining g</td>
<td>1.2.1(b)(c)(d)(e)(g)</td>
<td>3.1.1(a), 3.1.2(a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2.2(a)(c)(d)(k)</td>
<td></td>
</tr>
<tr>
<td>3.2.2 (c) motion of objects falling in a uniform gravitational field in the presence of drag</td>
<td>1.2</td>
<td>Investigating terminal velocity</td>
<td>1.2.1(c)(d)(e)(f)</td>
<td>3.1.1(a)(b)(c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2.2(a)(b)(c)(d)(e)</td>
<td>3.1.2(a)(b)(d)</td>
</tr>
<tr>
<td>3.1.2 (a)(ii) techniques and procedures used to investigate the motion and collisions of objects</td>
<td>1.3</td>
<td>Investigating the effect of initial speed on stopping distance</td>
<td>1.2.1(b)(c)(d)(e)(f)(g)(h)(i)</td>
<td>3.1.1(a)(b)(c), 3.3.1(b), 3.3.2(a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2.2(a)(d)(k)</td>
<td></td>
</tr>
<tr>
<td>3.4.2(c) stress, strain and ultimate tensile strength</td>
<td>2.1</td>
<td>Determining the Young Modulus for a metal</td>
<td>1.2.1(b)(c)(d)(e)(f)(g)(h)(i)</td>
<td>3.4.2(d)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2.2(a)(b)(c)(e)</td>
<td></td>
</tr>
<tr>
<td>3.4.1(d)(ii) techniques and procedures used to investigate force–extension characteristics for arrangements which may include springs, rubber bands, polythene strips</td>
<td>2.2</td>
<td>Force/extension characteristics for arrangements of springs</td>
<td>1.2.1(c)(d)(e)(f)</td>
<td>3.4.1(a)(b)(c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2.2(a)(b)(c)(e)</td>
<td>3.4.2(c)(d)(f)</td>
</tr>
<tr>
<td>3.4.2(c) stress, strain and ultimate tensile strength</td>
<td>2.3</td>
<td>Investigating the properties of a plastic</td>
<td>1.2.1(b)(c)(d)(e)(f)(j)</td>
<td>3.4.1(a)(b)(d)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2.2(a)(b)(c)(e)</td>
<td>3.4.2(c)(e)(f)</td>
</tr>
<tr>
<td>4.2.4(a) Resistivity and the equation $R = \rho L/A$</td>
<td>3.1</td>
<td>Investigation to determine the resistivity of a metal</td>
<td>1.2.1(b)(c)(d)(h)(i), 1.2.2(b)(e)(f)(k)</td>
<td>4.2.3(a)(b)(c)</td>
</tr>
<tr>
<td>4.2.3(c)(ii) techniques and procedures used to investigate the electrical characteristics for a range of ohmic and non-ohmic components</td>
<td>3.2</td>
<td>Investigating electrical characteristics</td>
<td>1.2.1(a)(b)(c)(d)(e)(f)(j)</td>
<td>4.2.1(a)(b), 4.2.2(a), 4.2.3(a)(b)(c)(i), 4.3.3(a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2.2(b)(f)(g)</td>
<td></td>
</tr>
<tr>
<td>4.3.2(c)(ii) techniques and procedures used to determine the internal resistance of a chemical cell or other source of e.m.f.</td>
<td>3.3</td>
<td>Determine the internal resistance of a cell/ Maximum power theory</td>
<td>1.2.1(a)(b)(c)(d)(e)(f)(g)(j)</td>
<td>4.2.2(a)(b)(c), 4.2.3(a), 4.2.5(a), 4.3.1(e), 4.3.2(a)(b)(c)(i)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2.2(b)(f)</td>
<td></td>
</tr>
<tr>
<td>4.3.1(c)(d)(e) analysis of circuits with components including both</td>
<td>4.1</td>
<td>Investigating resistance</td>
<td>1.2.1(a)(b)(c)(d)(e)(f)(j)</td>
<td>4.2.1(a)(b), 4.22(a)</td>
</tr>
<tr>
<td>Learning outcome</td>
<td>PAG</td>
<td>Activity</td>
<td>Examinable skills</td>
<td>Other LOs supported</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>series and parallel</td>
<td></td>
<td></td>
<td>1.2.2(b)(g)</td>
<td>4.3.3(a)(c)</td>
</tr>
<tr>
<td>4.3.1(f) analysis of circuits with more than one source of e.m.f.</td>
<td></td>
<td>Investigating circuits with more than one source of e.m.f.</td>
<td>1.2.1(a)(b)(c)(d)(e)(f)(j) 1.2.2(b)(f)(g)(k)</td>
<td>4.1.1(g) 4.2.1(a)(b) 4.2.2(a)(b)(c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.3.1(a)(b)(e) 4.3.2(a)(b)(c)(i)(ii)</td>
</tr>
<tr>
<td>4.3.3(c)(ii) techniques and procedures used to investigate potential divider</td>
<td></td>
<td>Using non-ohmic devices as sensors</td>
<td>1.2.1(a)(b)(d)(e)(f)(j) 1.2.2(a)(b)(g)</td>
<td>4.2.1(a)(b), 4.2.2(a), 4.2.3(c)(i)(ii)(d), 4.2.4(c), 4.3.1(c)(e), 4.3.3(a)(b)(c)(i)</td>
</tr>
<tr>
<td>circuits which may include a sensor such as a thermistor or an LDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5.2(g)(h) determining the wavelength of light using transmission diffraction</td>
<td></td>
<td>Determining the Wavelength of Light with a Diffraction Grating</td>
<td>1.2.1(b)(c)(d) 1.2.2(a)(j)</td>
<td>4.4.3(c)(d)</td>
</tr>
<tr>
<td>grating</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4.4(e)(ii) techniques and procedures used to determine the speed of sound</td>
<td></td>
<td>Determining the speed of sound in air using a resonant tube</td>
<td>1.2.1(b)(c)(d)(e)(f)(j) 1.2.2(a)(c)(f)(h)(i)</td>
<td>4.4.1(b)(i)(ii)(c)(d), 4.4.4(a)(b)(f)</td>
</tr>
<tr>
<td>in air by formation of stationary waves in a resonance tube</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4.1(b)(ii) techniques and procedures used to use an oscilloscope to</td>
<td></td>
<td>Determining frequency and amplitude of a wave using an oscilloscope</td>
<td>1.2.1(b)(c)(d)(e)(f)(j) 1.2.2(a)(h)(f)(i)</td>
<td>4.4.1(b)(i)(c)</td>
</tr>
<tr>
<td>determine frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.1(a)(b)(c)(d) Photons, Planck constant and energy eV</td>
<td></td>
<td>Determining the Planck constant</td>
<td>1.2.1(b)(c)(h)(i) 1.2.2(b)(c)(f)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4.2(d)(ii) techniques and procedures used to investigate refraction and</td>
<td></td>
<td>Experiments with light</td>
<td>1.2.1(c)(d)(e)(f)(j) 1.2.2(a)(c)(l)(j)</td>
<td>4.4.1(f)(i), 4.4.2(d)(i)(ii)(e)</td>
</tr>
<tr>
<td>total internal reflection of light using ray boxes, including transparent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rectangular and semi-circular blocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4.1(f)(iii) techniques and procedures used to observe polarising effects</td>
<td></td>
<td>Experiments with polarisation</td>
<td>1.2.1(c)(d)(e)(f)(j) 1.2.2(a)(b)(l)(j)</td>
<td>4.4.1(f)(i) 4.4.2(c)</td>
</tr>
<tr>
<td>using microwaves and light</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© OCR 2018 Version 1.3
AS and A Level Physics
<table>
<thead>
<tr>
<th>Learning outcome</th>
<th>PAG</th>
<th>Activity</th>
<th>Examinable skills</th>
<th>Other LOs supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2 d(ii)</td>
<td>1.1</td>
<td>Comparing methods of determining g</td>
<td>1.2.1(b)(c)(d)(e)(g) 1.2.2(a)(c)(d)(k)</td>
<td>4.2(a)(iv)(c)(iii)</td>
</tr>
<tr>
<td>4.2 d(iii)</td>
<td>1.2</td>
<td>Investigating terminal velocity</td>
<td>1.2.1(c)(d)(e)(f) 1.2.2(a)(b)(c)(d)(e)</td>
<td>4.2(a)(vii)(b)(ii)(c)(iii)</td>
</tr>
<tr>
<td>4.2 d(i)</td>
<td>1.3</td>
<td>Investigating the effect of initial speed on stopping distance</td>
<td>1.2.1(b)(c)(d)(e)(f)(g)(h)(i) 1.2.2(a)(d)(k)</td>
<td>4.2(a)(iv)(vii) 4.2(b)(i)(ii)(c)(vii)(viii)</td>
</tr>
<tr>
<td>3.2d(ii)</td>
<td>2.1</td>
<td>Determining Young Modulus for a metal</td>
<td>1.2.1(b)(c)(d)(e)(f)(g)(h)(i) 1.2.2(a)(b)(c)(e)</td>
<td>3.2a(iv)(b)(i)(ii)(iii)(c)(ii)</td>
</tr>
<tr>
<td>3.2a(i)</td>
<td>2.2</td>
<td>Force/extension characteristics for arrangements of springs</td>
<td>1.2.1(c)(d)(e)(f) 1.2.2(a)(b)(c)(e)</td>
<td>3.2(b)(i)(ii)(c)(ii)</td>
</tr>
<tr>
<td>3.2a(ii)</td>
<td>2.3</td>
<td>Investigating the properties of a plastic</td>
<td>1.2.1(b)(c)(d)(e)(f)(j) 1.2.2(a)(b)(c)(e)</td>
<td>3.2(a)(i)(iii)(b)(i)(d)(i)</td>
</tr>
<tr>
<td>3.1.2d(ii)</td>
<td>3.1</td>
<td>Investigation to determine the resistivity of a metal</td>
<td>1.2.1(b)(c)(d)(h)(i), 1.2.2(b)(e)(f)(k)</td>
<td>3.1.2(b)(i)(ii)(c)(iii)</td>
</tr>
<tr>
<td>3.1.2d(i)</td>
<td>3.2</td>
<td>Investigating electrical characteristics for a range of ohmic and non-ohmic components using voltmeters and ammeters</td>
<td>1.2.1(a)(b)(c)(d)(e)(f)(j) 1.2.2(b)(f)(g)</td>
<td>3.1.2(a)(vii)(b)(ii)(iii)(c)(i)</td>
</tr>
<tr>
<td>3.1.2d(v)</td>
<td>3.3</td>
<td>Determine the internal resistance of a cell/ Maximum power theory</td>
<td>1.2.1(a)(b)(c)(d)(e)(f)(g)(j) 1.2.2(b)(f)</td>
<td>3.1.2(a)(iii)(iv)(v)(b)(iii)(c)(i)</td>
</tr>
<tr>
<td>3.1.2c(iii)</td>
<td>4.1</td>
<td>Investigating resistors</td>
<td>1.2.1(a)(b)(c)(d)(e)(f)(j) 1.2.2(b)(g)</td>
<td>3.1.2(a)(iii)(vii)(b)(ii)(c)(ii)</td>
</tr>
<tr>
<td>3.12d(v)</td>
<td>4.2</td>
<td>Investigating circuits with more than one source of e.m.f.</td>
<td>1.2.1(a)(b)(c)(d)(e)(f)(j) 1.2.2(b)(f)(g)(k)</td>
<td>3.1.2(a)(i)(iii)(iv)(vii) 3.1.2(b)(ii)(c)(ii)</td>
</tr>
<tr>
<td>Learning outcome</td>
<td>PAG</td>
<td>Activity</td>
<td>Examinable skills</td>
<td>Other LOs supported</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>--</td>
<td>------------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>3.1.2(d)(iii) use of potential divider circuits, which may include sensors such</td>
<td>4.3</td>
<td>Using non-ohmic devices as sensors</td>
<td>1.2.1(a)(b)(d)(e)(f)(j)</td>
<td>3.1.2(a)(iii)(vii)</td>
</tr>
<tr>
<td>as thermistors and LDRs</td>
<td></td>
<td></td>
<td>1.2.2(a)(b)(g)</td>
<td>3.1.2(b)(ii)(iii)(c)(ii)(d)(iv)</td>
</tr>
<tr>
<td>4.1a(v) diffraction by grating</td>
<td>5.1</td>
<td>Determining the Wavelength of Light with a</td>
<td>1.2.1(b)(c)(d)</td>
<td>4.1(c)(iii)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diffraction Grating</td>
<td>1.2.2(a)(j)</td>
<td></td>
</tr>
<tr>
<td>4.1d(v) determining the speed of sound in air by formation of stationary waves</td>
<td>5.2</td>
<td>Determining the speed of sound in air using a resonant tube</td>
<td>1.2.1(b)(c)(d)(e)(f)(j)</td>
<td>4.1(a)(i)(c)(i) (iii)(d)(i)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2.2(a)(c)(f)(h)(i)</td>
<td></td>
</tr>
<tr>
<td>4.1d(i) using an oscilloscope to determine frequencies</td>
<td>5.3</td>
<td>Determining frequency and amplitude of a wave using an oscilloscope</td>
<td>1.2.1(b)(c)(d)(e)(f)(j)</td>
<td>3.1.2(v), 4.1(b)(i)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2.2(a)(h)(f)(i)</td>
<td></td>
</tr>
<tr>
<td>4.1c(iv) the energy carried by photons across the spectrum $E = hf$</td>
<td>6.1</td>
<td>Determining the Planck constant</td>
<td>1.2.1(b)(c)(h)(i)</td>
<td>4.1(a)(vi)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2.2(b)(c)(f)</td>
<td></td>
</tr>
<tr>
<td>3.1.1d((i) determination of power or focal length of a converging lenses</td>
<td>6.2</td>
<td>Experiments with light</td>
<td>1.2.1(c)(d)(e)(f)(j)</td>
<td>3.1.1b(i)(c)(ii)(iii), 4.1(a)(iii)(c)(iii)</td>
</tr>
<tr>
<td>4.1d(ii) determining refractive index for a transparent block</td>
<td></td>
<td></td>
<td>1.2.2(a)(c)(i)(j)</td>
<td></td>
</tr>
<tr>
<td>3.1.1d(ii) observing polarising effects using microwaves and light</td>
<td>6.3</td>
<td>Experiments with polarisation</td>
<td>1.2.1(c)(d)(e)(f)(j)</td>
<td>3.1.1(a)(b)(i)(d)(ii)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2.2(a)(b)(i)(j)</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 1: Health and safety

This appendix provides information on Health and Safety issues while carrying out practical experiments.

Before carrying out any experiment or demonstration based on this guidance, it is the responsibility of teachers to ensure that they have undertaken a risk assessment in accordance with their employer’s requirements, making use of up-to-date information and taking account of their own particular circumstances. Any local rules or restrictions issued by the employer must always be followed.

Useful information can be found at www.cleapss.org.uk (available to CLEAPSS members only).

Hazard labelling systems

The CLP regulations were launched in 2010, and fully implemented across the EU in 2015. The ‘CHIP’ system is no longer in active use, but some older containers may still carry the CHIP symbols, and learners may come across them in older reference works. It is important that learners are taught to use both systems, particularly if centres are still using chemicals carrying CHIP hazard symbols. While in the physics classroom (dangerous) chemicals are not routinely used, it is important for both staff and learners to be familiar with the hazard labels.

OCR recognises the CLP system as the default system in current use. OCR resources indicate hazards using the CLP system.

CLP pictograms are also accompanied by a ‘signal word’ to indicate the severity of the hazard.

‘DANGER’ for more severe; ‘WARNING’ for less severe.

‘CHIP’ system (being phased out)
Non-Ionising Radiation

The light from lasers and high-power LEDs is classed as non-ionising radiation and the use of these light sources may cause significant risk of serious, irreversible eye or skin damage. In the UK, according to BS EN 60825-1:2007, there are 7 classes of lasers: 1, 1M, 2, 2M, 3R, 3B and 4. A class 1 laser poses the lowest risk, class 4 the highest. In the USA and other countries different standards are used, and these lasers are not recommended for use in the UK classroom.

Lasers should only be acquired from reputable suppliers and have all relevant warning labels and certifications. Laser pointers sold online may have a power greatly exceeding their labelling and may lack essential safety features and may be especially dangerous.

CLEAPSS publishes guidance on the use of lasers in the classroom on their website, http://www.cleapss.org.uk/attachments/article/0/PS52.pdf and strongly advises only Class 1 or 2 lasers are used in a classroom setting. Other classes including Class 1M and 2M present an unacceptable risk.

Ionising Radiation

If radioactive substances are to be used during practicals adequate protection for all students and staff is essential. Guidance is given by CLEAPSS

http://www.cleapss.org.uk/download/L93.pdf

Electrical Safety

The use of electrical equipment poses risks of fatal injury if mishandled. Discussing the full regulations is beyond the scope of the current document. CLEAPSS publishes guidance on this important topic

http://www.cleapss.org.uk/attachments/article/0/Sec06.pdf

Risk assessments

In UK law, health and safety is the responsibility of the employer. Employees, i.e. teachers, lecturers and technicians, have a duty to cooperate with their employer on health and safety matters. Various regulations, but especially the COSHH Regulations 2002 and the Management of Health and Safety at Work Regulations 1999, require that before any activity involving a hazardous procedure or harmful micro-organisms is carried out, or hazardous chemicals are used or made, the employer must provide a risk assessment. A useful summary of the requirements for risk assessment in school or college science can be found at

http://www.ase.org.uk/resources/health-and-safety-resources

For members, the CLEAPSS guide, Managing Risk Assessment in Science* offers detailed advice. Most education employers have adopted a range of nationally available publications as the basis for their Model Risk Assessments. Those commonly used include:

 Now out of print but sections are available at
 http://www.ase.org.uk/resources/health-and-safety-resources;

CLEAPSS Hazcards.*

CLEAPSS are in the process of updating the Hazcards, the latest edition being the CLP Edition, 2014. At present, CLP Hazcards have only been published for some chemicals. For other chemicals, the CHIP Hazcard is referenced and should be consulted.

CLEAPSS Laboratory Handbook*;

Where an employer has adopted these or other publications as the basis of their model risk assessments, the teacher or lecturer responsible for overseeing the activity in the school or college then has to review them, to see if there is a need to modify or adapt them in some way to suit the particular conditions of the establishment.

Such adaptations might include a reduced scale of working, deciding that the fume cupboard provision is inadequate or the skills of the candidates are insufficient to attempt particular activities safely. The significant findings of such risk assessment should then be recorded, for example on schemes of work, published teachers’ guides, work sheets, etc. There is no specific legal requirement that detailed risk assessment forms should be completed, although a few employers require this.

Where project work or individual investigations, sometimes linked to work-related activities, are included in specifications this may well lead to the use of novel procedures, chemicals or microorganisms, which are not covered by the employer’s model risk assessments. The employer should have given guidance on how to proceed in such cases. Often, for members, it will involve contacting CLEAPSS (or, in Scotland, SSERC).

*These, and other CLEAPSS publications, are on the CLEAPSS website. Note that CLEAPSS publications are only available to members. For more information about CLEAPSS - go to www.cleapss.org.uk. In Scotland, SSERC (www.sserc.org.uk) has a similar role to CLEAPSS.
Appendix 2: Apparatus list

This appendix lists the apparatus likely to be required in order to complete a practical scheme of work that covers all requirements of the qualification. Teachers and technicians should bear in mind that activities that would support the qualification may require additional apparatus not on this list. Resources provided by OCR detail the apparatus needed for individual activities.

It should be noted that centres are required to carry out a minimum of 12 practical activities over two years. OCR have provided 18 alternatives for the first year and a total of 36 alternatives for the full two years. This list of apparatus incorporates the requirements for all 36 activities.

Standard Equipment

- Beakers (including 1 litre beakers)
- Bench pulley
- Bosses
- Bunsen burner
- Calipers or vernier measurement system
- Clamps
- Conical flasks
- Fibre board mat
- G clamps
- Heatproof mat
- Kettle
- Magnet
- Masses, including 100g and 1kg
- Mass holder
- Material clamps
- Measuring cylinders
- Metal bars including aluminium, copper and steel or iron
- Metal blocks (suitable for determination of shc)
- Metre rules
- Micrometer screw gauge
- Rubber tubing
- Springs
- Stainless steel ruler
- Stands
- Steel ball bearings
- Tube or tall measuring cylinder
- Wooden block

Electronic Equipment

- Ammeter
- Data logging system
- Digital multimeter with capacitance range
- Electric heater (12V)
- Interrupt card
- Light-gates
• Loudspeaker
• Mass balance
• Oscilloscope
• Resistance decade box
• Stop clock
• Signal generator
• Variable power supply
• Voltmeter

Electronic Components

• Capacitors (470 μF and other suitable values)
• Constantan wire (28 swg)
• Crocodile clips
• Diode
• Lamps (1.25 to 2.5V torch bulbs)
• LDR
• Leads
• LEDs, a variety of different coloured light-emitting diodes
• Potentiometer
• Resistors
• Rheostat
• Switch
• Thermistor (NTC)
• Transformer coils with differing numbers of turns
• Transformer cores (laminated)

Optical Components

• Diffraction grating of known lines per mm
• Laser suitable for classroom use
• Lens stands
• Lenses with at least two differing focal lengths
• Microwave emitter and receiver
• Optical pins
• Plain white screen
• Polarising filters (can be lenses from 3D glasses or sunglasses)
• Polarising grid for microwaves
• Ray box or similar light source
• Semi-circular glass or plastic block
• Transparent rectangular block

Consumables

• Bun-cases
• Card or black paper
• D cell batteries and holders
• Drawing pins
• Elastic bands
• Ice
• Paper towels
• Photocopied sheets with protractor scale
• Plastic bags (various types)
• Plasticine
• String
• Viscous liquid

Radioactive materials

• Counter
• Geiger-Müller (GM) tube
• Materials to place between source and detector
• Protactinium generator
• Radioactive object (gas mantle in sealed bag)
• Radioactive sources

Gases

• Barometer
• Boyle’s Law apparatus
• Capillary tube
• Mercury
• Mercury in glass thermometer
• Plastic syringe or gas syringe
• Plastic syringe or gas syringe with the outlet sealed or clamped

Capacitors

• Insulating materials
• Metal sheets or aluminium foil covered card
• Multimeter with capacitance range

Simple Harmonic Motion

• Pendulum bob
• Position encoder for data logger
• String
• Ultrasonic distance sensor for data logger
• Vibration generator
Student equipment

- Calculator
- Protractor
- Ruler
- Set square

PPE

- Safety goggles

Additional requirements

In order to fulfil the requirements of the skills set out in Section 1.2.1 of the specification, candidates will require access to the following.

- Data logging software
- Graph plotting and data analysis software (e.g. Microsoft Excel)
- Textbooks, websites and other sources of scientific information
- A means of recording practical activity undertaken towards the Practical Endorsement, for example a logbook, binder to collect loose sheets, or means to create and store digital files
- Chemical data or hazard sheets

Lab Books

Students can keep their records in any appropriate form including the use of a ring binder or other folder. Should your centre wish to purchase lab books there are educational suppliers who stock a wide variety of these. Two such suppliers are:

Grosvenor House Paper, Kendal,
www.ghpkendal.co.uk/index.php?route=product/search&filter_name=science

Frank Berry Otter, Chesterfield
http://www.frankberry.co.uk/storefront/evolution_ProductResults.html?strSearch=Laboratory
Appendix 3: Guidance on practical skills

Section 1.2.1 of the specification covers the general practical skills which candidate should develop and practice during their course. This appendix includes suggestions about how this process of skills development can be managed.

This section provides guidance which teachers can use to assist how they teach the required skills, as well as things to look out for in assessing whether candidates are performing the skills competently. This section is not intended as a ‘mark scheme’, or statement of the minimum standard required for a pass in individual activities.

Practical skills (specification Section 1.2.1)

1.2.1(a) apply investigative approaches and methods to practical work
Candidates are expected to be able to think independently about solving problems in a practical context. This means that candidates should develop their own ideas about how to approach a task, before perhaps discussing them with other candidates and joining together as a group to put an agreed plan into effect.

Demonstrating investigative approaches could include:
- choosing the materials, or amounts of materials, to use
- choosing which variables to measure and which to control
- deciding what measurements or observations to make and when to make them
- choosing apparatus and devising a procedure that is safe and appropriate.

Applying investigative approaches should include completing tasks that do not include complete step by step instructions. However, activities may still be structured in some form. For example:
- providing a basic method, with candidates asked to modify this to measure the effect of changing a certain variable
- providing a limited range of equipment, with candidates asked to think about how they can use what they have been given to solve a practical problem
- providing a certain amount of information, allowing candidates to consider how to use familiar techniques or procedures to investigate and solve a problem.

1.2.1(b) safely and correctly use a range of practical equipment and materials
Candidates should be shown how to use practical equipment when it is first met, through a demonstration by the teacher or technician. Good quality videos of many techniques are available online which could be used to complement such a demonstration (see e.g. links in Appendix 8: Resources).

Hazards, and the ways in which risks should be minimised, should be explicitly explained to candidates whenever equipment is used for the first time, and on subsequent occasions as required. Candidates should also be shown how to handle equipment and materials safely so they adopt a standard routine whenever they need to use these. Some pieces of equipment or procedures are associated with particular hazards and candidates should be clearly shown how they need to be handled to minimise the risk involved. In some cases, the hazards may be such that it is good practice for candidates perform the practical work under the direct supervision of the teacher.
Increasingly, candidates should be able to use common laboratory equipment safely with minimal prompting. They should be doing this routinely and consistently by the end of the course.

Candidates will be expected to be able to identify hazards and understand how to minimise risk. This skill can be developed by asking them to devise their own risk assessments. The risk assessment should identify the hazards associated with materials and techniques that candidates will be using, and describe the steps that they will take to minimise the risks involved. Teachers should always check risk assessments and make sure candidates are aware of any errors or omissions before they begin the practical activity.

Risk assessments have been included in the OCR Practical Endorsement structure as part of PAG7, radioactive materials frequently offer a number of different types of hazard to consider. However, candidates could demonstrate this skill in the context of any type of activity. Performing a risk assessment also gives the opportunity to demonstrate research and citation skills.

More detail about the safe use of equipment and materials is given in Appendix 1: Health and safety.

1.2.1(c) follow written instructions

In many activities candidates will be asked to follow written instructions. It is helpful if they are first given the aims of the activity so they are clear what is expected of them and what they should expect to learn from the activity. An introduction is also a good idea so that candidates can fit what they are doing into a bigger picture.

It is quite common for candidates to be given too much information and be asked to do too many things at the same time. Research suggests that when many candidates follow complex instructions they are not able to think about the theoretical implications and explanations of their task at the same time. It is probably better to focus on these issues before and after the practical task itself. Providing candidates with instructions to look through before the practical session allows them to think about what is needed and to visualise what they will do in advance of the practical session.

1.2.1(d) make and record observations and measurements

Candidates need to be able to make measurements using a range of equipment. Since some of these types of measurement are used frequently, teachers might assume a competence in using familiar devices when the appropriate skill has not yet been sufficiently developed. Taking measurements is a skill that should be clearly demonstrated to candidates.

See Appendix 4: Measurements and Appendix 5: Units for more detail about how to record measurements appropriately.

Observations should be recorded using appropriate scientific vocabulary and should be precise. Candidates can have a tendency to use vague and ambiguous language. Asking candidates to comment on good and less good practice in recording observations is a good way of raising awareness of these issues. Examples of ambiguous or incorrect language include:

- mentioning energy conversion, without specifying the type of energy (e.g. ‘the ball increases in velocity when dropped due to the conversion of energy’ instead of ‘when the ball is dropped gravitational potential energy is converted to kinetic energy increasing the velocity of the ball as it drops’).
- giving an example of a limitation without sufficient detail (e.g. ‘the time wasn’t measured very accurately’ instead of ‘using a stopwatch to measure the oscillation time of the pendulum introduced an error due to the reaction time of the experimenter’).
- giving an example of an improvement without sufficient detail (e.g. ‘the accuracy can be improved by making a video’ rather than ‘by making a video of the swinging pendulum and analysing frame-by-frame, the error in determining the displacement d can be greatly reduced over trying to determine d while the pendulum is swinging’).
Candidates need opportunities to develop their observational skills in activities where they play an important role. Qualitative tests are important opportunities for developing the skill of recording observations accurately, but observations are important in any practical activity.

1.2.1(e) keep appropriate records of experimental activities
Candidates should routinely record their observations and measurements so that they have a permanent record. These records should be made during the laboratory session and are the primary evidence of the outcomes of experiments. It should be clear to what experiment the measurements or observations refer.

Where experimental procedures have been provided they do not need to be written out again, but they should be kept as part of the record. If an activity has involved a more investigative approach where candidates have developed any part of the procedure, they should keep a record of what they actually did.

The record may also show how the candidate has processed raw data, perhaps by using graphs or calculations, and the conclusions they have drawn. In some cases candidates may also evaluate their practical activity by calculating errors and/or commenting on the limitations of experimental procedures. These skills are not assessed in the Practical Endorsement, but are valuable in understanding the purpose of a practical activity, and will be assessed in the written examinations.

Records may be kept in a laboratory notebook, in a loose-leaf file or electronically. Candidates should record measurements and observations during laboratory sessions immediately, but these could be transferred to the permanent record later; for example, if there is no means of entering data into an electronic record in the lab.

1.2.1(f) present information and data in a scientific way
Candidates should present information and data in ways that are appropriate for that information or data. In many cases this will involve the use of tables. These should include an explanatory title, clear headings for columns and relevant units for measurements (see Appendix 4: Measurement and Appendix 5: Units for further details).

Graphs should be of an appropriate type for the information or data involved. Further detail about drawing and using graphs is given in Appendix 6: Graphical skills.

Some information is best presented by using clear, well labelled diagrams or potentially using annotated photographs.

1.2.1(g) use appropriate software and tools to process data, carry out research and report findings
The most obvious tools and software used for processing data are calculators and spreadsheets. Spreadsheets provide a very effective way of processing data, particularly when the amount of data is large. They can be used to sort data, carry out calculations and generate graphs. Graphs drawn using spreadsheets should not be too small, should have a clear title and the axes should be clearly labelled. Where more than one graph is drawn using the same axes it should be clear what each graph refers to.

If records are kept electronically, candidates will routinely make use of a word processing package to report their findings. Short video clips can be used to show changes over time. Digital images, podcasts and PowerPoint presentations also provide creative ways in which candidates can personalise their individual record of practical activities.

Experiments with very short or very long timescales of data collection lend themselves to the use of a data logger. Examples are fast motions, the charging of a capacitor or calorimetry. Candidates need training in how to use both the hardware and associated software to collect data, particularly if choices need to be made about measurement scales or when a trigger is used to start data collection. In a report or in a lab book it is usually better to present collected data graphically rather than recording a large amount of raw data on paper.
1.2.1(h) use online and offline research skills including websites, textbooks and other printed scientific sources of information

Candidates should be given opportunities to use both online and offline research skills in the context of practical activities. A useful starting point might be finding reliable information to devise a risk assessment for an experiment. Safety data sheets, such as the CLEAPSS Student Safety Sheets (accessible without a login) are a good place to start. More detail about sources of information is given in Appendix 1: Health and safety.

In other situations candidates might consult websites, textbooks or scientific journals to clarify or suggest experimental techniques and/or to provide supporting background theory to practical activities.

1.2.1(i) correctly cite sources of information

Where a candidate records information that they have looked up they should provide an accurate reference so that readers can find the information. Details of how to do this are given in Appendix 7: Referencing.

1.2.1(j) use a wide range of experimental and practical instruments, equipment and techniques appropriate to the knowledge and understanding included in the specification

It is expected that candidates will carry out practical work throughout their course and will therefore use a wide range of experimental and practical instruments, equipment and techniques appropriate to the knowledge and understanding included in the specification. The minimum of apparatus and techniques that each candidate must use is listed in specification Section 1.2.2. Suggested apparatus for use during the course is also provided in Appendix 2: Apparatus list.
Appendix 4: Measurements

This appendix provides background information on terms used in measurement, and conventions for recording and processing experimental measurements. This information relates to skills assessed both in the written examinations and in the Practical Endorsement, notably 1.1.2(c), 1.1.3(c), 1.1.4(b), 1.1.4(d), 1.2.1(d), 1.2.1(f).

Useful terms

Accuracy is a measure of the closeness of agreement between an individual test result and the true value. If a test result is **accurate**, it is in close agreement with the true value. An accepted reference value may be used as the true value, though in practice the true value is usually not known.

Anomaly (outlier) is a value in a set of results that is judged not to be part of the inherent variation.

Confidence is a qualitative judgement expressing the extent to which a conclusion is justified by the quality of the evidence.

Error (of measurement) is the difference between an individual measurement and the true value (or accepted reference value) of the quantity being measured.

Precision is the closeness of agreement between independent measurements obtained under the same conditions. It depends only on the distribution of random errors (i.e. the spread of measurements) and does not relate to the true value.

Repeatability is the precision obtained when measurement results are produced over a short timescale by one person (or the same group) using the same equipment in the same place.

Reproducibility is the precision obtained when measurement results are produced over a wider timescale by different people using equivalent equipment in different (but equivalent) places.

Resolution is the smallest change in the quantity being measured that can be detected by an instrument.

Uncertainty is an estimate attached to a measurement which characterises the range of values within which the true value is asserted to lie. This is normally expressed as a range of values such as 44.0 ± 0.4.

Validity can apply to an individual measurement or a whole investigation. A measurement is valid if it measures what it is supposed to be measuring. An investigative procedure is valid if it is suitable to answer the question being asked. Validity will be reduced, for example, if no negative control is included in an investigation into the efficacy of a therapeutic drug.

The ASE booklet *The Language of Measurement* (Campbell 2010) provides information on these and other terms along with examples of their use. In particular please note that **Reliability** will no longer be used. As the authors of the booklet say:

“The word ‘reliability’ has posed particular difficulties because it has an everyday usage and had been used in school science to describe raw data, data patterns and conclusions, as well as information sources. On the strong advice of the UK metrology institutes, we avoid using the word ‘reliability’ because of its ambiguity. For data the terms ‘repeatable’ and ‘reproducible’ are clear and therefore better. For conclusions from an experiment, evaluative statements can mention ‘confidence’ in the quality of the evidence.”
Uncertainties

Whenever a measurement is made, there will always be some doubt about the result that has been obtained. An uncertainty in a measurement is an interval that indicates a range within which we are reasonably confident that the true value lies.

Uncertainties technically depend on a range of factors related to measurements, including both systematic and random errors. Determining uncertainties based on the spread of data obtained is not required within the context of AS and A Level Physics. Rather, an estimation of uncertainty is made based on the characteristics of the equipment used.

Uncertainties in apparatus and equipment

When using any apparatus, learners should check whether the apparatus itself is marked with the uncertainty. This is, for example, generally the case for volumetric glassware used to measure specific volumes of liquid, such as volumetric flasks and pipettes frequently used in A Level Chemistry. The degree of uncertainty in these cases depends on the class of apparatus.

For example, a 100 cm³ measuring cylinder is graduated in divisions every 1 cm³.

- A Class A measuring cylinder has an uncertainty of half a division or 0.5 cm³ in each measurement
- A Class B measuring cylinder has an uncertainty of a whole division or 1 cm³ in each measurement.

In the absence of information provided on the equipment, the following assumptions are made regarding the uncertainty in each measurement:

- When using apparatus with an analogue graduated scale, the uncertainty is assumed to be ± half the smallest graduation.

 For example a 30 cm rule has divisions of 1 mm and an uncertainty of half a division, or 0.5 mm. When measuring a distance the uncertainty has to be taken into account twice and it is overall 1 mm.

 An analogue meter with scale markings each 0.2 V has an uncertainty of 0.1 V.

- When using digital apparatus, the uncertainty is presumed to be ± the resolution of the apparatus in each measurement.

 For example, a two-decimal place balance has an uncertainty of ±0.01 g in each measurement and a voltmeter with three significant figures which has an uncertainty of ±0.1 V in the 0-20 V range will have an uncertainty of ±1 V in the 0-100 V range.

The basis of the assumption for electronic apparatus is that the electronic circuit is designed to avoid “hunting” which is the rapid cycling from one figure to another in the final digit. This is achieved by programming the equipment to go up to the next value at a level greater than 0.5, and to go to the lower value at a level below 0.5, this could be going up at 0.7 and down at 0.3. As we are not aware of that value we can only assume ±1 digit in the final digit.

Learners should be able to calculate a percentage uncertainty for a measurement from the absolute uncertainty for the apparatus used. See worked examples on the next page.

Because of the variability in uncertainties associated with equipment, assessments will frequently state the absolute uncertainty in any measurement given to allow candidates to calculate the percentage uncertainty. If no information is given, the uncertainty in each reading is derived from the resolution of the apparatus used as explained above.
Measurement of time

Whilst a stopwatch measures time with a resolution of say 0.001 s, the operator reaction time is significantly longer, increasing the total uncertainty in the measurement, in which case a reasonable estimate for the uncertainty would be the reaction time of the operator.

A light gate measures time with the same resolution of 0.001 s, but has a significantly lower total uncertainty as it eliminates the reaction time of the operator.

Examples of uncertainties

Some examples are shown below. Note that the actual uncertainty on a particular item of equipment may differ from the values given below. An item of equipment may have different uncertainties for different range settings.

- **Ruler**
 - A ruler with marks every 1mm has an uncertainty of 1mm for a distance measurement
 - A caliper has an uncertainty of 0.01 mm when used by a skilled operator

- **Voltmeter**
 - A voltmeter has an uncertainty of 0.1V in the 0-20V range
 - The same voltmeter has an uncertainty of 1V in the 0-100V range

- **Time Measurement**
 - A stopwatch measures time with a resolution of 0.01s, however the operator reaction time is significantly longer, increasing the total uncertainty in the measurement
 - A light gate measures time with the same resolution of 0.01s, but has a significantly lower total uncertainty as it eliminates the reaction time

Worked examples

The significance of the uncertainty in a measurement depends upon how large a quantity is being measured. It is useful to quantify this uncertainty as a percentage uncertainty

\[
\text{percentage uncertainty} = \frac{\text{uncertainty}}{\text{quantity measured}} \times 100\%
\]

For example, a two-decimal place balance may have an uncertainty of 0.005 g.

For a mass measurement of 2.56 g

- percentage uncertainty = \(\frac{0.005}{2.56} \times 100\% = 0.20\% \)

For a mass measurement of 0.12 g, the percentage uncertainty is much greater

- percentage uncertainty = \(\frac{0.005}{0.12} \times 100\% = 4.2\% \)

Multiple measurements

Where quantities are measured by difference, there will be an uncertainty in each measurement, which must be combined to give the uncertainty in the final value. The principle of the following example can be applied to other quantities measured by difference.

The difference in length of a rod due to a change in temperature is to be found. The absolute uncertainties of both measurements are summed up to give the uncertainty in the change in length.

Using a rule to determine the elongation of a metal rod due to thermal expansion
Length when cold = 54.3 cm uncertainty = 0.1 cm
Length when hot = 55.2 cm uncertainty = 0.1 cm
Increase in length = 0.9 cm overall uncertainty = 2 × 0.1 cm

\[
\text{percentage uncertainty in the elongation} = \frac{2 \times 0.1}{0.9} \times 100\% = 22\%
\]

While there is a negligible percentage uncertainty in each length measurement, the overall percentage uncertainty in the elongation is much greater and care should be taken to ensure the measurement technique and apparatus are appropriate.

Note

We are aware that some textbooks available do not give a consistent message regarding the treatment of uncertainties. In OCR Physics A and B we will therefore allow both half the smallest division as the absolute uncertainty for a measuring instrument and the smallest division itself as the absolute uncertainty. This will ensure that we do not penalise candidates in any examination - since this ambiguity is not their fault.

The guidance on electronic instruments differs from guidance previously provided by OCR and other sources which state that the uncertainty for digital apparatus is half the resolution, e.g. ±0.005 g for a two-decimal place balance. The guidance here has been updated for consistency across the OCR suite of A level sciences. For assessment purposes, approaches correctly using either the resolution or half the resolution as the uncertainty will be considered acceptable.

Recording measurements

When using a digital measuring device (such as a modern top pan balance or ammeter),

- record all the digits shown (Note: when using a digital timer such as a stopwatch, do not record to more than two decimal places.)

When using a non-digital device (such as a ruler or a measurement cylinder),

- record all the figures that are known and, where appropriate, an additional estimated figure may be allowed

Reading a ruler

A ruler is graduated in divisions every 1 mm. A ruler is a non-digital device, so we record all figures that are known for certain. We can estimate a further figure.

Using the half-division rule, the estimation is 0.5 mm. The overall uncertainty in any distance measured always comes from two measurements, so the overall uncertainty = 2 × 0.5 mm = 1 mm.

In a distance measurement covering the entire 300 mm length of the ruler, the uncertainty is small

\[
\text{percentage uncertainty} = \frac{2 \times 0.5}{300.0} \times 100\% = 0.3\%
\]

For shorter distances, the percentage uncertainty becomes more significant. For measuring a distance of 25 mm:

\[
\text{percentage uncertainty} = \frac{2 \times 0.5}{25.0} \times 100\% = 4\%
\]
Mean values
When calculating the mean value of measurements, it is acceptable to increase the number of significant figures by 1.

Presentation of results

Table headings
It is expected that all table column (or row) headings will consist of a quantity and a unit.

The quantity may be represented by a symbol or written in words. There must be some kind of distinguishing notation between the quantity and the unit. Learners should be encouraged to use solidus notation, but a variety of other notations are accepted. Quantities should be represented with a symbol in italics, while units are upright. For example:

\[\frac{T}{°C} \quad T \,(°C) \quad T \text{ in } °C \quad \frac{T}{°C} \]

are all acceptable as column headings.

Learners should avoid notations that do not distinguish between the quantity and the unit, such as

\[T \text{ cm} \quad T_{cm} \quad \text{just ‘cm’} \]

The logarithm of a quantity can only be taken if a quantity has no units. Therefore, the quantity is divided by an initial value or its unit before taking the logarithm. The resulting logarithm then has no units.

Consistency of presentation of raw data
All raw readings of a particular quantity should, where possible, be recorded to the same number of decimal places. These should be consistent with the apparatus used to make the measurement (see above).

Significant figures

How many significant figures should be used?
The result of a calculation that involves measured quantities cannot be more certain than the least certain of the information that is used. So the result should contain the same number of significant figures as the measurement that has the smallest number of significant figures.

A common mistake by students is to simply copy down the final answer from the display of a calculator. This often has far more significant figures than the measurements justify.

Rounding off
When rounding off a number that has more significant figures than are justified (as in the example above), if the last figure is between 5 and 9 inclusive round up; if it is between 0 and 4 inclusive round down.

For example, the number 3.5099 rounded to:

- 4 sig figs is 3.510
- 3 sig figs is 3.51
- 2 sig figs is 3.5
1 sig fig is 4

Notice that when rounding you only look at the one figure beyond the number of figures to which you are rounding, i.e. to round to three sig fig you only look at the fourth figure.

How do we know the number of significant figures?

When rounding 228.5 to 2 significant figures, an incorrect approach would be to round to 230. When seen in isolation, it would be impossible to know whether the final zero in 230 is significant (and the value to 3 sig figs) or insignificant (and the value to 2 sig figs).

In such cases, standard form should be used and is unambiguous:

- 2.3×10^2 is to 2 sig figs
- 2.30×10^2 is to 3 sig figs

When to round off

It is important to be careful when rounding off in a calculation with two or more steps.

- Rounding off should be left until the very end of the calculation.
- Rounding off after each step, and using this rounded figure as the starting figure for the next step, is likely to make a difference to the final answer. This introduces a **rounding error**.

Learners often introduce rounding errors in multi-step calculations.

Example

The resistance of a resistor is determined by measuring the potential difference and current. The voltmeter reads 12.0 V and the ammeter 1.3 mA.

The resistance can be found using $R=\frac{V}{I}$.

Using a calculator the resistance is then $12.0/(1.3 \times 10^{-3})=9.2307 \, \text{kΩ}$.

Since the least certain measurement (the current) is only to 2 significant figures, the answer should also be quoted to 2 significant figures.

Therefore, the resistance to the correct number of significant figures is $R=9.2 \, \text{kΩ}$

It should be noted however, that if this figure is to be used in subsequent calculations then the rounding off should not be applied until the final answer has been obtained.

For example, the resistor is used in a circuit to determine the capacitance of a capacitor. The circuit was found to have a time constant $\tau=RC=0.31 \, \text{s}$

Using the calculator value of 9.2307 kΩ

- $C = 3.3584 \times 10^{-5} \, \text{F}$
- rounding to 2 sig figs gives $C = 3.36 \times 10^{-5} \, \text{F}$

Using the rounded value of 9.2 kΩ to determine the capacitance

- $C = 3.3696 \times 10^{-5} \, \text{F}$
- rounding to 2 sig figs gives $C = 3.37 \times 10^{-5} \, \text{F}$ and we have a ‘rounding error’.
Logarithms

Significant figures in logarithmic quantities often pose difficulties for learners. Often it is not appreciated by learners that the characteristic is a place value and is not ‘significant’ in relation to the precision of the data. The table below illustrates this. All values for x are given to three significant figures.

<table>
<thead>
<tr>
<th>x</th>
<th>log(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.53</td>
<td>0.403</td>
</tr>
<tr>
<td>25.3</td>
<td>1.403</td>
</tr>
<tr>
<td>253</td>
<td>2.403</td>
</tr>
<tr>
<td>2.53×10^5</td>
<td>6.403</td>
</tr>
<tr>
<td>2.52×10^5</td>
<td>6.401</td>
</tr>
<tr>
<td>2.54×10^5</td>
<td>6.405</td>
</tr>
</tbody>
</table>

Clearly the characteristic must be given, but it can be seen that changes the last figure in the value of x will change the third decimal place in the value of log(x). Therefore it would be sensible to quote log(x) to three decimal places if the values of x are correct to three significant figures. The characteristic fulfils the same role as $\times 10^n$ in the standard notation, which is also not considered part of the number of significant figures.
Errors in procedure

The accuracy of a final result also depends on the procedure used. For example, in a calorimetry experiment, the measurement of a temperature change may be precise but there may be large heat losses to the surroundings which affect the accuracy of the overall result.

When determining the acceleration of free fall \(g \) by dropping objects, ignoring air resistance may significantly affect the accuracy. Compare dropping an inflated balloon and a stone of a similar shape and volume from the same height: air resistance will cause the balloon to fall much slower than the stone. The value for \(g \) found with the balloon will thus have a much lower accuracy than the one found using the stone.

A more trivial example is using the wrong scale on a measurement device, such as using inches instead of centimetres on a rule.

Anomalous readings

If a piece of data was produced due to a failure in the experimental procedure, or by human error, it would be justifiable to remove it before analysing the data. For example if a time lapse measurement is clearly different to the other readings taken for that particular data point it might be judged as being an outlier and should be ignored when the mean time is calculated.

However, data must never be discarded simply because it does not correspond with expectation.

Percentage Difference

Learners may be asked to determine the difference between experimental values and accepted values. ‘Experimental values’ are those that are derived from measurement or calculation, whereas ‘accepted’ or ‘theoretical’ values are values that are accepted by the scientific community. The percentage difference between an experimental and accepted value is determined as follows:

\[
\text{percentage difference} = \frac{\text{experimental value} - \text{accepted value}}{\text{accepted value}} \times 100\%
\]

In many cases there will be no ‘accepted value’, especially since most experiments are performed to find out something ‘new’. However it is considered good practice when developing a new experiment to first try to perform a measurement that does have an accepted value the result can be compared to. The scientist can then assess if their experiment is accurate.

References

The ASE booklet *The Language of Measurement* (ISBN 9780863574245) provides additional guidance on many of the matters discussed in this section.
Appendix 5: Units

Learners are expected to use the following units for measurements made and in associated calculations during the course of the practical work carried out to support the GCE Physics qualifications. Records of measurements should always include the relevant units. There are 7 SI base units, all other units are derived from the 7 base units. Practicals and other assessed work may require the derivation of units by the learner and may include derived units not included below.

Base Units

<table>
<thead>
<tr>
<th>Unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>m</td>
</tr>
<tr>
<td>mass</td>
<td>kg</td>
</tr>
<tr>
<td>time</td>
<td>s</td>
</tr>
<tr>
<td>electric current</td>
<td>A</td>
</tr>
<tr>
<td>temperature</td>
<td>K</td>
</tr>
<tr>
<td>luminous intensity</td>
<td>cd</td>
</tr>
<tr>
<td>amount of substance</td>
<td>mole</td>
</tr>
</tbody>
</table>

Derived Units

<table>
<thead>
<tr>
<th>Unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>area</td>
<td>m²</td>
</tr>
<tr>
<td>volume</td>
<td>m³</td>
</tr>
<tr>
<td>velocity</td>
<td>ms⁻¹</td>
</tr>
<tr>
<td>speed</td>
<td>ms⁻¹</td>
</tr>
<tr>
<td>acceleration</td>
<td>ms⁻²</td>
</tr>
<tr>
<td>momentum</td>
<td>kg ms⁻¹</td>
</tr>
<tr>
<td>density</td>
<td>kg m⁻³</td>
</tr>
<tr>
<td>force</td>
<td>N</td>
</tr>
<tr>
<td>torque</td>
<td>Nm</td>
</tr>
<tr>
<td>momentum</td>
<td>Ns</td>
</tr>
<tr>
<td>energy</td>
<td>J</td>
</tr>
<tr>
<td>work</td>
<td>J</td>
</tr>
<tr>
<td>power</td>
<td>W=Js⁻¹</td>
</tr>
<tr>
<td>pressure</td>
<td>Pa</td>
</tr>
<tr>
<td>gravitational constant</td>
<td>N m² kg⁻²</td>
</tr>
</tbody>
</table>
gravitational field strength N kg\(^{-1}\)
angle \(^{\circ},\text{rad}\)
angular displacement rad
angular velocity rad s\(^{-1}\)
frequency Hz = s\(^{-1}\)
potential difference V
electromotive force (e.m.f.) V
capacitance F
electric resistance \(\Omega\)
electric conductance S
electric resistivity \(\Omega m\)
electric conductivity Sm\(^{-1}\)
electric charge C
electric field strength N C\(^{-1}\), V m\(^{-1}\)
permittivity of free space F m\(^{-1}\)
magnetic flux Wb
magnetic flux density T
permittivity of free space Hm\(^{-1}\)
stress Pa
strain fraction or percent
Young modulus Pa
spring constant N m\(^{-1}\)
temperature K, °C
specific heat capacity J kg\(^{-1}\) K\(^{-1}\)
specific latent heat J K\(^{-1}\)
activity radioactive source Bq
radiation dose Gy=J kg\(^{-1}\)
radiation dose equivalent Sv= J kg\(^{-1}\)
Appendix 6: Graphical skills

Tables

The following guidelines should be followed when presenting results in tables.

- All raw data in a single table with ruled lines and border.
- Independent variable (IV) in the first column; dependent variable (DV) in columns to the right (for quantitative observations) OR descriptive comments in columns to the right (for qualitative observations).
- Processed data (e.g. means, rates, standard deviations) in columns to the far right.
- No calculations in the table, only calculated values.
- Each column headed with informative description (for qualitative data) or physical quantity and correct units (for quantitative data); units separated from physical quantity using either brackets or a solidus (slash).
- No units in the body of the table, only in the column headings.
- Raw data recorded to a number of decimal places appropriate to the resolution of the measuring equipment.
- All raw data of the same type recorded to the same number of decimal places.
- Processed data recorded to up to one significant figure more than the raw data.

Graphs

The following general guidelines should be followed when presenting data in graphs.

There should be an informative title.

Range bars may be used to show the highest and lowest readings for each set of data.

This appendix provides background information on the following graphical skills:

- choice of scale
- plotting of points
- line of best fit
- calculation of gradient
- determination of the y-intercept.

This information relates to skills assessed both in the written examinations and in the Practical Endorsement, notably 1.1.3(d) and 1.2.1(f).

Scales should be chosen so that the plotted points occupy at least half the graph grid in both the x and y directions.
It is expected that each axis will be labelled with the quantity (including unit) which is being plotted. The quantity may be represented by a symbol or written in words. There must be some kind of distinguishing notation between the quantity and the unit. Learners should be encouraged to use solidus notation, but a variety of other notations are accepted. For example:

\[T / ^\circ C \quad T (^\circ C) \quad T \text{ in } ^\circ C \quad \frac{T}{^\circ C} \]

are all acceptable as axis labels.

The logarithm of a quantity has no units. Therefore, the axis label for e.g. pH measurements can be written simply as 'pH'.
The scale direction must be conventional (i.e. increasing from left to right).

Not acceptable - unconventional scale direction

Acceptable - conventional scale direction

This problem often occurs when scales are used with negative numbers. Learners should be encouraged to choose scales that are easy to work with.

Acceptable scale divisions.

Not acceptable - awkward scale on the x-axis.

Learners who choose awkward scales in examinations often lose marks for plotting points (as they cannot read the scales correctly) and calculation of gradient (Δx and Δy often misread – again because of poor choice of scale).
Scales should be labelled reasonably frequently (i.e. there should not be more than three large squares between each scale label on either axis).

Not acceptable - too many large squares with no label

Acceptable - scales have regular labels

There should be no 'holes' in the scale.

Not acceptable - non-linear scale on the x-axis

Acceptable - scale labelling is regular
Plotting of points

Plots in the margin area are not allowed, and will be ignored in examinations. Sometimes weaker candidates (realising they have made a poor choice of scale) will attempt to draw a series of lines in the margin area so that they can plot the 'extra' point in the margin area. This is considered to be bad practice and would not be credited.

Not acceptable - the last point has been plotted in the margin area
Acceptable - all plotted points are on the graph grid

It is expected that all observations will be plotted (e.g. if six observations have been made then it is expected that there will be six plots).

Plotted points must be accurate to half a small square.

Plots must be clear (and not obscured by the line of best fit or other working).

Thick plots are not acceptable. If it cannot be judged whether a plot is accurate to half a small square (because the plot is too thick) then the plotting mark will not be awarded.
Line (or curve) of best fit

There must be a reasonable balance of points about the line. It is often felt that candidates would do better if they were able to use a clear plastic rule so that points can be seen which are on both sides of the line as it is being drawn.

![Graph 1](image1)

Not acceptable - too many points above the line

![Graph 2](image2)

Acceptable balance of points about the line

![Graph 3](image3)

Not acceptable - forced line through the origin (not appropriate in this instance)
The line must be thin and clear. Thick/hairy/point-to-point/kinked lines are not credited.
Determining gradients

All the working must be shown. A 'bald' value for the gradient may not be credited. It is helpful to both candidates and examiners if the triangle used to find the gradient were to be drawn on the graph grid and the co-ordinates of the vertices clearly labelled.

The length of the hypotenuse of the triangle should be greater than half the length of the line which has been drawn.

The values of ∆x and ∆y must be given to an accuracy of at least one small square (i.e. the 'read-off' values must be accurate to half a small square).

If plots are used which have been taken from the table of results then they must lie on the line of best fit (to within half a small square).

Candidates should remember to use appropriate units when reporting gradient values.
Intercept

The \(y \)-intercept must be read from an axis where \(x = 0 \). It is often the case that candidates will choose scales so that the plotted points fill the graph grid (as they should do) but then go on to read the \(y \)-intercept from a line other than \(x = 0 \).

Not acceptable – the \(y \)-intercept is found from the line \(x = 5 \)

Acceptable – the value taken from the line \(x = 0 \)

Alternatively, the intercept value can be calculated, recognising that a straight-line graph has the basic formula \(y = mx + c \). Substituting the gradient value and a set of coordinates on the line of best fit and solving the equation will give the intercept.
Appendix 7: Referencing

One of the requirements of the Practical Endorsement is that candidates demonstrate that they can correctly cite sources of information. The point of referencing is to provide the sources of information that have been used to produce the document, and to enable readers to find that information. There are many different systems of reference in use; the most important thing for candidates to appreciate this level is that they should be consistent in how they reference, and that they provide sufficient information for the reader to find the source.

Systems of citation

Wherever a piece of information that has been retrieved from a source is provided in a text, an in-text citation should be included that links to the full original source in the reference list.

There are two main systems of in-text citation: the Vancouver system, which uses numerical citations, and the parenthetical system (of which the Harvard system is the best known version), in which limited reference information is given in brackets in the text.

Candidates are likely to find the Harvard system easier to handle. However, candidates should be aware of the Vancouver system as they may come across this system in their secondary research.

It does not matter which system candidates use in the context of the requirements for the Practical Endorsement. However, referencing should be complete and consistent. If candidates are already using a particular referencing system in another area of study, for example for an Extended Project qualification, it would make sense if they use the same system within their Physics studies.

Vancouver system

The Vancouver system looks like this:

The first laser was successfully operated in 1960 by a team lead by Theodore Maiman¹.

The full references are given in a numbered list at the end of the document, with each number linked to the appropriate reference, e.g.:

The references are ordered in the sequence in which they are first cited in the text. The numbers are repeated in the in-text citations as required, so the same number is always used to cite a given reference.

Parenthetical (Harvard) system

The parenthetical system looks like this:

The first laser was successfully operated in 1960 by a team lead by Theodore Maiman (Hecht, 1987)

The author(s) and date of the work are included in brackets at the appropriate point in the text. In this case, the list of full references at the end of the document is ordered alphabetically, and the references are not numbered.

For multi-author works, the full list of names is usually not given in in-text references. Rather, the first name is given followed by 'et al.'. This is commonly done for works with more than three authors.
While different referencing systems have minor variations in how they present complete references, the basic information provided is always very similar, and based on the principle of providing sufficient information so that the reader can find the information source.

An overview is given below of standard referencing formats for the types of sources that students are likely to cite.

Books

General reference format:

Authors (year), *Title*, edition (if relevant), publisher's location, publisher

For example:

For books that have an editor or editors, include (ed.) or (eds) after the names.

If a book does not have named authors or editors, the reference begins with the title, e.g.:

CLEAPSS Laboratory Handbook (2001), Uxbridge, CLEAPSS School Science Service

Journal articles

General reference format:

Authors (year), ‘Article title’, *Journal title*, vol. no, issue no, pp. xxx–xxx

For example:

Websites

General reference format:

Authors (year), *Title*. [online] Last accessed date: URL

For example:

Dianna Cowern (2015), *Crazy pool vortex* [online] Last accessed 22 April 2015: [https://www.youtube.com/watch?v=pnJEG9r1o8](https://www.youtube.com/watch?v=pnjEG9r1o8)

Webpages and online resources frequently do not have individual authors. In that case, the name of the organisation is given.

Similarly, it is often not possible to find the year in which online material or documents were produced. In that case, use the year in which the information was sourced.

If no author or organisation can be found, reference the website by title. However, in that case due consideration should be given as to whether the website is a trustworthy source!
Appendix 8: Resources

General resources

There are many resources available to help teachers provide support to candidates. These include both books and websites.

Useful websites are:

- CLEAPSS at www.cleapss.org.uk
- the Institute of Physics (IoP) at http://www.iop.org/
- physics.org by IoP at http://www.physics.org/
- American Physical Society (APS) at http://www.aps.org/
- the ASE at www.schoolscience.co.uk

CPD

OCR runs CPD courses every year, and these include sessions either wholly or partly to support the practical assessments, both in the written examinations and through the Practical Endorsement. More details about CPD provision are available at www.cpdhub.ocr.org.uk

Practical Activity Support Service

OCR Subject Specialists are available to offer support and guidance on all aspects of the practical assessments. Centres can request guidance with regard to mapping their own activities, or activities provided by third parties, against the requirements of the Practical Endorsement to confirm whether the activities meet the requirements for any of the Practical Activity Groups.

Centres can direct queries regarding the Practical Endorsement to the OCR Science Team through: pass@ocr.org.uk.

For other, more general, queries about any aspects GCE Physics specifications, please contact: ScienceGCE@ocr.org.uk
Appendix 9: Interchange help sheet

Activities to support the Practical Endorsement can be obtained via OCR’s secure website, Interchange (https://interchange.ocr.org.uk).

Copies of the Data Sheets for Physics A and Physics B (Advancing Physics), Practical Skills Handbook, the Tracker and any other supporting documents are also available via Interchange.

Most of the documents are PDF files. You need Acrobat Reader for this. Free copies are available to download from http://www.adobe.com/uk/products/acrobat

You may also need a zip program such as WinZip or PKZip to extract the files. Most versions of Windows have a built in zip extractor.

How to use OCR Interchange

Your Examinations Officer is probably using OCR Interchange to administer qualifications already. If not, they will need to register. The website address for Interchange is: https://interchange.ocr.org.uk

Your Examinations Officer will be able to:

- download the relevant documents for you by adding the role of ‘Science Coordinator’ to their other roles or
- make you a New User (Science Coordinator role) so that you can access the GCE from 2015 pages and download documents when you need them.

Registering for Interchange

If your Examinations Officer is not already a registered user of Interchange then he/she will need to register before the activities can be downloaded.

This is a straightforward process:

- Go to the website – https://interchange.ocr.org.uk;
- The first page has a New User section;
- Click on Sign Up to access the OCR Interchange Agreement Form 1;
- Download this document and fill in your details;
- Return the form by post to OCR Customer Contact Centre, Westwood Way, Coventry, CV4 8JQ or fax the form back to 024 76 851633;
- OCR will then contact the Head of Centre with the details needed for the Examinations Officer to access OCR Interchange.

How the page works

Hovering the mouse pointer over an Activity or document link generates a summary of the file. Simply clicking on the Activity link allows you to download the zipped material to your desktop. The zip file contains all three sample activities for a given PAG with a student sheet and a teacher/technician sheet. All files have a unique name so there is no danger of overwriting material on your computer.
E-mail updates

To be notified by e-mail when changes are made to the GCE Physics page on Interchange please e-mail GCEsciencteasks@ocr.org.uk including your centre number, a contact name and the subject line GCE Physics. It is strongly recommended that all centres register for e-mail updates.

Log in with the details from your Exams Officer

First click here

Then click here
Science coordinator materials

- Qualification level – Click GCE from 2015
- All subjects
- Professional Development
- Supporting materials
- Any important notices will appear

Practical activities will appear here

How to sign up for updates

E-mail updates

To be notified by e-mail when changes are made to the OCR Physics page please email practicals@ocr.org.uk including your centre number, centre name, a contact name and the subject the OCR Physics.

Supporting materials available to download, e.g. Practical Skills Handbook, Tracker.

AS and A Level Physics
We'd like to know your view on the resources we produce. By clicking on the ‘Like’ or ‘Dislike’ button you can help us to ensure that our resources work for you. When the email template pops up please add additional comments if you wish and then just click ‘Send’. Thank you.

Whether you already offer OCR qualifications, are new to OCR, or are considering switching from your current provider/awarding organisation, you can request more information by completing the Expression of Interest form which can be found here: www.ocr.org.uk/expression-of-interest

OCR Resources: the small print
OCR’s resources are provided to support the delivery of OCR qualifications, but in no way constitute an endorsed teaching method that is required by OCR. Whilst every effort is made to ensure the accuracy of the content, OCR cannot be held responsible for any errors or omissions within these resources. We update our resources on a regular basis, so please check the OCR website to ensure you have the most up to date version.

This resource may be freely copied and distributed, as long as the OCR logo and this small print remain intact and OCR is acknowledged as the originator of this work.

Our documents are updated over time. Whilst every effort is made to check all documents, there may be contradictions between published support and the specification, therefore please use the information on the latest specification at all times. Where changes are made to specifications these will be indicated within the document, there will be a new version number indicated, and a summary of the changes. If you do notice a discrepancy between the specification and a resource please contact us at: resources.feedback@ocr.org.uk.

OCR acknowledges the use of the following content:
Square down and Square up: alexwhite/Shutterstock.com

Please get in touch if you want to discuss the accessibility of resources we offer to support delivery of our qualifications: resources.feedback@ocr.org.uk.

Looking for a resource?
There is now a quick and easy search tool to help find free resources for your qualification: www.ocr.org.uk/i-want-to/find-resources/