GCE

Physics B (Advancing Physics)

Unit G491: Physics in Action

Advanced Subsidiary GCE

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations

Annotation	Meaning
B0D	Benefit of doubt given
CON	Contradiction
$\stackrel{*}{ }$	Incorrect response
ECF	Error carried forward
FT	Follow through
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
\wedge	Omission mark
RE	Rounding error
SF	Error in number of significant figures
\wedge	Correct response
AE	Arithmetic error
2	Wrong physics or equation
BP	Blank page symbol

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
\boldsymbol{I}	alternative and acceptable answers for the same marking point
$\mathbf{(1)}$	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Uords which are not essential to gain credit
ecf	Underlined words must be present in answer to score a mark
AW	Or reverse argument forward
ORA	

Subject-specific Marking Instructions

Do not penalise RE rounding error more than once on this paper. SF significant figure error apply to Q2 only - penalise 1 or 4 or more SF. Please annotate scripts as much as possible at the point of application of the mark / error to help checking and review. Please add BP (Blank Page) annotation to the "last page" appended to Q10 (diii) to show you have checked it before awarding your mark for the last answer. Also add BP to all blank Additional Object pages checked.

| Question | | | Answer | Marks | Guidance | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | | | A V $; \quad$ A s $; \mathrm{A} \mathrm{V}^{-1}$ | 3 | not any equivalent non-listed units e.g. W ; C ; S
 accept A/V | | |
| | | | | | | | |

Question		Answer	Marks	Guidance	
$\mathbf{2}$		$3.0 \times 10^{8} / 1.7 /$ $=1.76 \times 10^{8}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) / 1.8 \times 10^{8}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) / 180000000\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	1 1	accept in words / algebra rearranged for method mark expect answer correct to 2 or 3 SF otherwise SF penalty on 1, 4 or more figures	
			Total	$\mathbf{2}$	

Question		Answer	Marks	Guidance
3		$\begin{aligned} & (40 \times 4.5) / 280 \quad \text { potential divider method } \\ & =0.64(3)(\mathrm{V}) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	allow one mark for getting $I=16$.(1) $\mathrm{mA} / 0.016(1) \mathrm{A}$ and 2 marks for $V=0.0161 \times 40=0.64(4)(V)$ bare correct answer scores 2
		Total	2	

Question			Answer	Marks	Guidance
4	(a)		any ONE correct point for 1 mark: e.g. f falls and rises again (slow) / lowest in middle mean frequency in range 2.7 to 3.3 kHz the variation lasts in range 0.4 to 0.6 s lowest f in range 2.2 to 2.4 kHz highest f in range 3.2 to 3.5 kHz bandwidth / frequency range in range 0.8 to 1.3 kHz	1	if second point is CON scores 0 accept rapid / fast / tiny f fluctuations / warbles (at $\approx 30 \mathrm{~Hz}$) ignore references to noise / bare f changes / varies / multiple frequencies
	(b)		method $f_{\text {mean }} \times$ duration $\quad l$ evaluation 1500 (oscillations)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	allow method mark for a $f \times t$ allow must be in range 1000 to 2000 (oscillations) not counting slow f variations e.g. 14
			Total	3	

Question		Answer	Marks	Guidance	
$\mathbf{5}$	(a)	(equal steps along the f axis) represent equal multiples of frequency / increase by a constant factor	1	accept frequency increases $\times 10$ (for equal distances) increases by powers of ten	
	(b)	$320(\mathrm{~Hz})$	1	accept 300 to $400(\mathrm{~Hz})$	
	(c)	e.g. $(10 \mathrm{k}-100)=9900(\mathrm{~Hz})$ (in range 9890 to 10400 Hz$)$	1	expect the difference to be calculated not limits stated accept other correctly estimated bandwidths based on: f high in range 10 to 10.5 kHz and f low in range 100 to 110 Hz	
			Total	$\mathbf{3}$	

Question		Answer	Marks	Guidance
6	(a)	(-) 0.80 (D)	1	evaluation ignore second -ve sign if inserted
	(b)	$\begin{aligned} & \text { (wave curvature from } 0.25 \mathrm{~m})=-4.0 \mathrm{D} \\ & -4+P=-0.8 \\ & \text { extra curvature }=(-0.8-(-4)) \\ & \quad=+3.2(\mathrm{D}) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	method ignore answers based on single application of lens formula evaluation allow 2 marks +3.2 (D) without any method not-3.2 (D) / 4.8 (D)
		Total	3	

Section B

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} \& Answer \& Marks \& Guidance \\
\hline 8 \& (a) \& \& not straight line (through origin) / not proportional \& 1 \& accept \(R\) not constant / graph curves / not linear / gradient not constant ignore not through origin \\
\hline \& (b) \& (i) \& \(284 \pm 1 \mathrm{~mA}\) from graph \begin{tabular}{r}
\(3.1(4) \Omega\) \\
\(21 .(1) \Omega\)
\end{tabular}\(\quad\) and 1.7 W \& \[
\begin{aligned}
\& 1 \\
\& 2
\end{aligned}
\] \& \begin{tabular}{l}
evaluation \\
allow \(R\) and \(P\) values which round to correct values from \\
"close" but out of range currents
\end{tabular} \\
\hline \& (b) \& (ii) \& \begin{tabular}{l}
filament / lamp heats / temperature rises (due to power dissipated) \\
resistivity or resistance increases with \(T\) / conductivity or conductance decreases with \(T\)
\end{tabular} \& \[
1
\]
\[
1
\] \& \begin{tabular}{l}
Allow as filament / lamp heats its resistance / resistivity rises scores 2 / \(R\) changes with \(T\) scores 1 \\
not just \(R\) changes, must have correct sense wrt \(T\) change ignore descriptions of microstructure
\end{tabular} \\
\hline \& (b) \& (iii) \& \begin{tabular}{l}
\[
\begin{aligned}
\& L=R A / \rho \quad / \quad 3.1 \times 3.2 \times 10^{-10} / 5.6 \times 10^{-8} \\
\& =1.8 \times 10^{-2}(\mathrm{~m}) / 1.796 \times 10^{-2}(\mathrm{~m}) / 0.02(\mathrm{~m} \text { to } 1 \mathrm{SF})
\end{aligned}
\] \\
assumption: 35 mA causes negligible heating of filament (so very near room temperature still) / \(R=3.1 \Omega\) at room temperature
\end{tabular} \& \begin{tabular}{l}
1 \\
1 \\
1
\end{tabular} \& \begin{tabular}{l}
transposed equation in algebra / numbers (any \(R\) in range 3.1 to \(21 \Omega\)) / words \\
evaluation mark only for correct \(R\) value \\
allow ecf on incorrect \(R\) from first line of table for 2 marks \\
accept any statement that conveys the lowest \(R\) or \(3.1 \Omega\) is the resistance at or near to \(20^{\circ} \mathrm{C}\) or room temperature not just filament is at room temperature
\end{tabular} \\
\hline \& (b) \& (iv) \& \[
\begin{aligned}
\& R \propto \rho \quad \text { or } \quad A / L \text { factors cancel } \quad \text { or } \\
\& \left(R{ }_{3000} A / L\right) /\left(R_{20} A / L\right)=R_{3000} / R_{20} \text { or }=21 / 3.1 \\
\& =6.7 / 6.8 \quad \text { (from rounding) }
\end{aligned}
\] \& 1
1 \& \begin{tabular}{l}
reasoning accept full calculation \(\rho\) ratio \\
allow ecf on \(R\) ratio from their table \\
evaluation allow 7 i.e. to 1 S.F. and 6 from (rounding 2 cm) bare answer max 1
\end{tabular} \\
\hline \& (c) \& \& \begin{tabular}{l}
metals have a (high density) of free / delocalised electrons ; \\
which act as charge carriers / electrons move ; transfer energy gained to lattice vibrations or positive ions / electrons collide or scatter with positive ions \\
lattice / positive ion vibrations: increase (with \(T\)) / "resist" electron flow (so resistivity rises) / scatter electrons
\end{tabular} \& 2

1 \& | any 2 points one mark each |
| :--- |
| accept cations $=$ positive ions and |
| oscillations $=$ vibrations AW |
| QoWC only award $3^{\text {rd }}$ mark if at least 2 terms correct use and spelling |
| not ref to atoms rather than positive ions not positive ions move / translate |

\hline \& \& \& Total \& 14 \&

\hline
\end{tabular}

Question			Answer	Marks	Guidance
9	(a)		D ; A ; B	3	
	(b)	(i)	$\begin{aligned} & \text { method e.g. } 0.4 \times 10^{9}(\mathrm{~Pa}) / 0.01 \\ & 4.0 \times 10^{10}(\mathrm{~Pa}) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	from graph allow one POT error in method mark accept answers in range (3.9 to 4.1) $\times 10^{10}(\mathrm{~Pa})$
	(b)	(ii)	$\begin{array}{lll} \hline x=\varepsilon L & l & 0.0075 \times 420 \\ =3.2(\mathrm{~m}) & & \end{array}$	1 1	method in algebra / numbers / words evaluation accept 3.15 (m) to 3 S.F.
	(c)	(i) (ii)	A because strongest I highest UTS or stiffest / largest Young modulus to bear load of lift / small extension of cable strong bonds / slip or dislocation motion prevented by pinning / impurities in lattice B because has largest plastic region / greatest strain before breaking / is toughest / has largest area under graph to absorb or dissipate energy from collision as layers of atoms slide over each other / by dislocation motion	1 1 1 1 1 1	alloy and property identified not any other material score 0/3 desirability of stated property for application explained explanation by microstructure accept slip / slide alloy and property identified allow $1 / 3$ max if D is chosen and correct microstructure explanation of plastic flow desirability of stated property for application explained ignore any reference to collision time explanation by microstructure QoWC only max 6 if at least one bold term in each of (i) and (ii) and $3 / 3$ in both parts
			Total	13	

Question			Answer	Marks	Guidance
10	(a)	(i)	$2^{4}=16$	1	accept $\log _{2}(16)=4 / 2 \times 2 \times 2 \times 2=16 / 0000$ to 1111 gives 16 alternatives
	(a)	(ii)	$\begin{aligned} & 500 \times 300 \times 4 \\ & 75 \text { k(bytes) } \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	method to give 600 kbits evaluation need to divide by 8 to convert to bytes
	(a)	(iii)	$75 \mathrm{k} \times 90 \times 5=34$ Mbytes	1	allow ecf on a(ii) $\times 90 \times 5$ correctly evaluated accept binary $\mathrm{k}=1024$ gives 33 Mbytes
	(b)		image atom / actual atom $=2 \mathrm{~mm} / 270 \mathrm{pm}=7.4 \times 10^{6}$	1	accept answers in range (7 to 8) $\times 10^{6}$ accept also image atom estimates at about 1 mm giving magnification 3.7×10^{6} or in range (3.1 to 4.1) $\times 10^{6}$ (this includes the data that ≈ 100 atoms span image)
	(c)		atom size $/ \mathbf{m m}$ Resolution $\mathbf{m} /$ pixel $/ \mathbf{x} \mathbf{1 0}^{-11}$ 2 2.1 to 2.4 1 4.1 to 5.0 $0.8(3)$ 5.3 to 5.5	2	award $2 / 2$ for resolutions in ranges shown (diff. atom size) If resolution out of these ranges then allow 1 / 2 for a clear complete method in words method 1 : (number of atoms x diameter of atom) / number of pixels method 2 (distance on image / no.of pixels) then divide by Mag ALLOW ecf from (b) on "sensible" Mag (above 1000) in method 2 for 2/2 marks

\begin{tabular}{|c|c|c|c|c|}
\hline (d) \& (i) \& \begin{tabular}{l}
gradient: drawn appropriate \(\Delta\) based on tangent / tangent on graph / intercept values e.g. 320/0.48 / sub values in \(\Delta y / \Delta x\) \\
(-) \(670\left(\mathrm{pA} \mathrm{nm}{ }^{-1}\right)\)
\end{tabular} \& 1
1 \& \begin{tabular}{l}
method allow reasonable tangents for 1 method mark i.e. tangent kisses curve within \(\pm 1\) square of \(h=0.25 \mathrm{~nm}\) only accept chord if small enough to be in range \\
evaluation accept in range 600 to \(750\left(\mathrm{pA} \mathrm{nm}^{-1}\right)\) ignore -ve sign \\
not just \(160 / 0.25=640\left(\mathrm{pA} \mathrm{nm}{ }^{-1}\right)\) i.e. no gradient just current / height values scores \(0 / 2\) not bare \(640\left(\mathrm{pA} \mathrm{nm}{ }^{-1}\right)\) scores 0 allow other bare answers in range \(2 / 2\)
\end{tabular} \\
\hline (d) \& (ii) \& one single and one double peak aligned with atoms
\[
260 \pm 20 \mathrm{pA}
\] \& 1

1 \& | shape of graph allow any indication of a min between double peaks / any profile of peaks (e.g. triangular) not dips in current / any currents starting from 0 or obviously less than 100 pA |
| :--- |
| peak current in range 240 to 280 pA |

\hline (d) \& (iii) \& raster scan / x-y scan at pixel spacing / produces current value that can be digitised / pixel values determined by size of current / different currents produce different colours / shades / current converted by A to D converter into pixel / binary values (for image) \& 1 \& any sensible point: relating pixel values to currents OR mapping / scanning / sampling process details OR relating higher currents to brightness in image

\hline \& \& Total \& 12 \&

\hline \& \& Total Section B \& 39 \&

\hline \& \& Paper Total \& 60 \&

\hline
\end{tabular}

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England

OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553
UKAS
MANAGEMENT
© OCR 2015

