AS and A Level Physics A

Switching to OCR from Pearson (Edexcel)

Introduction

We are really excited about our GCE Physics A qualification. Whether taking on the AS or the full A Level, this fantastic course is a great qualification for those with an interest in the subject. Why choose Physics A?

- The 'Big Ideas' of Physics are covered
- The topics are selected and structured to underpin the knowledge and understanding needed for the next generation of physicists
- Physics A is enjoyable to teach and learn, giving students the essentials for physics-related higher education courses, as well as many transferable, marketable skills
- There are many opportunities for 'hands-on' practical, linking to our flexible practical assessment model
- The topics of physics are presented in a clear and logical linear order with practical, maths and contextual opportunities highlighted.

Textbook comparison

We have not included a textbook comparison in this switching document as there are a number of textbooks available for each exam board's qualifications, and the order and organisation of content within these textbooks can vary. However, similarities in content across exam boards mean that it is possible to use any textbook for the core content of any board's qualifications. The specification can be used to identify relevant content, as well as that which is not required for a specific qualification. If you need further clarification on any specific content, you can email our Subject Advisor team at science@ocr.org.uk.

Support from OCR

We offer a range of support to teachers of our qualifications. This includes:

- A dedicated Subject Advisor team, with teaching and assessment experience, available to answer your queries and support your delivery of our qualifications. You can contact us by email at <u>science@ocr.org.uk</u> or by phone on 01223 553998.
- Monthly newsletters highlighting new resources, CPD courses, and other news about our qualifications.
- A wide range of support materials, including handbooks covering practical and mathematical skills, delivery guides, lesson elements, practical activity suggestions, candidate exemplar resources, and more.
- Free access to ExamBuilder, our mock assessment service that allows you to create your own bespoke assessments.

- Termly Science Teacher Networks, giving you the opportunity to meet with other teachers and our Subject Advisors.
- CPD courses, including courses for teachers new to teaching our qualifications and courses on outcomes from previous examination series to help inform your teaching.
- You can also follow and interact with our Subject Advisors on Twitter (<u>@ocr_science</u>).

Key differences

OCR Physics A	Pearson (Edexcel) Physics
Flexible practical assessment allows you to select from our suggested activities or use your own preferred practical activities	16 required practical activities you have to deliver
Practical skills take centre stage, detailed in full at the start of the specification in a separate module for clarity and prominence	Required practical activities listed in the specification
A section of multiple choice questions in the exams to allow breadth of coverage. 20 in total at AS and 30 at A level.	Approximately 16 multiple choice questions at AS, approximately 20 at A level

Content

The content within the <u>OCR Physics A specification</u> covers the 'Big Ideas' of physics and will be very familiar. We've laid it out to support the co-teaching of the AS and A level and provide a logical linear progression through the A level.

OCR Physics A	Pearson (Edexcel) Physics
Module 1: Practical skills Planning, implementing, analysis and evaluation Plus all the skills to be covered in the Practical Endorsement	The same practical skills, as mandated by the DfE, are listed in appendix 5a and 5b of the Pearson Edexcel specification
 Module 2: Foundations of physics Physical quantities S.I. units Measurements and uncertainties Scalars and vectors 	 Topic 1: Working as a physicist Base and derived quantities Practical skills Physical measurements Communicating scientific ideas Applications of Science Science in society
 Module 3: Forces and motion Kinematics and dynamics Linear motion Projectile motion Motion with non-uniform acceleration Equilibrium Density [and pressure] Work, energy and power Springs Mechanical properties of materials Newton's laws of motion Momentum 	 Topic 2: Mechanics Moments Motion along a straight line Projectile motion Newton's laws of motion Momentum Work, energy and power Conservation of energy Vectors Topic 4: Materials Stoke's law Density Mechanical properties of materials Springs

OCR Physics A	Pearson (Edexcel) Physics
 Module 4: Electrons, waves and photons Charge and current E.m.f. and p.d. Resistivity and resistance Power Series and parallel circuits Internal resistance Potential dividers Wave motion Electromagnetic waves Superposition Stationary waves Quantum physics Photons The photoelectric effect Wave particle duality 	 Topic 3 Electric circuits Charge and current Current voltage characteristics Resistivity Circuits Potential dividers E.m.f. and internal resistance Drift velocity Electrical power Modelling conduction electrons Topic 5: Wave and particle nature of light Progressive waves Longitudinal and transverse waves Superposition and stationary waves Refraction, diffraction and interference Lense equations Photoelectric effect
 Module 5: Newtonian world and astrophysics Temperature Solid, liquid and gas Thermal properties of materials Ideal gases Circular motion Centripetal force Simple harmonic oscillations Energy of a simple harmonic oscillator Damping Point and spherical masses Newton's law of gravitation Planetary motion Gravitational potential and energy Stars Electromagnetic radiation from stars Cosmology 	 Topic 6 : Further mechanics Impulse Circular motion Collisions Topic 13 : Oscillations Simple harmonic motion Forced vibrations and resonance Damping Topic 9 : Thermodynamics Thermal energy transfer Ideal gases Molecular kinetic theory model Stefan-Boltzmann law Wein's law Topic 10 : Space Luminosity Standard candles/stars Cosmology

OCR Physics A	Pearson (Edexcel) Physics
	 Gravitational field strength and potential Orbits of planets and satellites
 Module 6: Particles and medical physics Capacitors Energy stored by a capacitor Charging and discharging capacitors Point and spherical charges Coulomb's law Uniform electric field Electric potential energy Magnetic fields Motion of charged particles Electromagnetism The nuclear atom Fundamental particles Radioactivity Nuclear fission and fusion Using X rays Diagnostic methods in medicine Using ultrasound 	 Topic 7 : Electric and magnetic fields Coulomb's law Electric field strength Electric potential Capacitance Energy stored by a capacitor Capacitor discharge Motion of charged particles in a magnetic field Magnetic flux density Magnetic flux linkage Electromagnetic induction Alternating current rms voltages and currents Topic 8 : Nuclear and particle physics Particle tracks Particle interactions Mass-energy equivalence Topic 11: Nuclear radiation The nuclear atom Binding energy Radioactivity Fission/fusion
Appendix 5f: Mathematical requirements	Appendix 6: Mathematical skills and exemplifications
 Arithmetic and numerical computation Handling data Algebra Graphs Geometry and trigonometry 	 Arithmetic and numerical computation Handling data Algebra Graphs Geometry and trigonometry

Assessment

OCR Physics A	Pearson (Edexcel) Physics
AS Paper 1: Breadth in Physics, Modules 1-4 50% of AS Written paper 1hr 30 minutes 70 marks	AS Paper 1: Core Physics 1 50% of AS Written paper 1hr 30 minutes 80 marks
Section A multiple choice questions, 20 marks. Section B short structured questions, covering problem solving, calculations, practical and theory, 50 marks.	Section A Topics 1-3 56–60 marks Section B Synoptic 20–24 marks. The paper may include multiple-choice, short open, open-response, calculation and extended writing questions.
AS Paper 2: Depth in Physics, Modules 1- 4 50% of AS Written paper 1hr 30 minutes 70 marks Short structured questions and extended response questions, problem solving, calculations, practical and theory.	AS Paper 2: Core Physics II 50% of AS Written paper 1 hr 30 minutes 80 marks Section A Topics 1,4,5 56-60 marks Section B Synoptic and will include a short article The paper may include multiple-choice, short open, open-response, calculations and extended writing questions.
A Level Paper 1: Modelling Physics, Modules 1, 2, 3 & 5 37% of A level Written paper 2 hours 15 minutes 100 marks Section A multiple choice questions, 15 marks. Section B short structured questions, and extended response questions, problem solving, calculations, practical and theory 85 marks.	A Level Paper 1: Advanced Physics I 30% of A level Written paper 1 hour 45 minutes 90 marks Topics 6-8 plus some from AS1-3 The paper may include multiple-choice, short open, open-response, calculations and extended writing questions.

OCR Physics A	Pearson (Edexcel) Physics
A Level Paper 2: Exploring Physics, Modules 1, 2, 4 & 6 37% of A level Written paper 2 hours 15 minutes 100 marks Section A multiple choice questions, 15 marks. Section B short structured questions and extended response questions, problem solving, calculations, practical and theory 85 marks.	A Level Paper 2: Advanced physics II 30% of A level Written paper 1 hour 45 minutes 90 marks Topics 9-13 plus some from AS 1,5,6 The paper may include multiple-choice, short open, open-response, calculations and extended writing questions.
A Level Paper 3: Unified Physics, Modules 1-6 26% of A level Written paper 1 hour 30 minutes 70 marks	A Level Paper 3: General and practical principles in Physics 40% of A level Written paper 2 hours 30 minutes 120 marks
Short structured questions and extended response questions, problem solving, calculations, practical and theory.	Questions in this paper may draw on any of the topics in this specification. The paper will include synoptic questions that may draw on two or more different topics. The paper will include questions that assess conceptual and theoretical understanding of experimental methods (indirect practical skills) that will draw on students' experiences of the core practicals.

Want to switch to OCR?

If you're an OCR-approved centre, all you need to do is download the specification and start teaching.

Your exams officer can complete an <u>expression of interest form</u> which enables us to provide appropriate support to them. When you're ready to enter your students, you just need to speak to your exams officer to:

- 1. Make estimated entries by 10 October so we can send you any early release materials, prepare the question papers and ensure we've got enough examiners.
- 2. Make final entries by 21 February

If you are not already an OCR-approved centre please refer your exams officer to the <u>centre approval</u> <u>section</u> of our admin guide.

Practical Endorsement Administration (A Level only)

The requirements for the practical endorsement have been set by the Department for Education and Ofqual working with all awarding bodies to ensure a common approach.

Just as when following the AQA A Level Physics qualification, your A Level students studying OCR Physics A will need to demonstrate to you, their teacher(s), that they are consistently and routinely competent in each of the skills and techniques defined for A Level Physicists.

You will need to:

- Keep records of carrying out practical activities as well as your assessment of competence of each of your students in each of these skills and techniques. This can be done, if you wish, using our OCR tracker spreadsheet, available in both fixed format and new flexible format, editable version.
- Designate a 'Lead Teacher' who will need to make sure that they have completed the <u>online Lead</u> <u>Teacher training</u>.
- Email us at <u>science@ocr.org.uk</u> to let us know you've started teaching the qualification. This will
 make sure we have up-to-date information on your centre for planning monitoring visits. When a
 monitoring visit takes place at your centre for Physics it will be carried out by an OCR-appointed
 monitor applying the criteria agreed across all awarding organisations. Up-to-date details on the
 monitoring process are available on the <u>Positive about practical</u> page.

Students need to keep records of their practical work, which can be done in whatever format best suits you and your students, be it a lab book, a loose leaf folder or an electronic record.

Help and guidance are available from our **Positive about practical page**.

Next steps

- 1. Familiarise yourself with the specification, sample assessment materials and teaching resources on the <u>OCR Physics A</u> qualification page of the OCR website.
- 2. Browse the online delivery guides in <u>Teach Cambridge</u> for teaching ideas and our <u>scheme of work</u> to prepare for teaching.
- 3. Ask your exams officer to provide access to our secure resources on <u>Teach Cambridge</u>, or signup for a free trial – allows you to access the latest past/practice papers and use our results analysis service, <u>Active Results</u>.
- 4. Sign up to receive subject updates by email.
- 5. Sign up to attend a <u>training event</u> or take part in webinars on specific topics running throughout the year and or our Q&A webinar sessions every half term.
- 6. Attend one of our free <u>teacher network events</u> that are run online every term. These are hosted at the end of the school day in a school or college near you, with teachers sharing best practice and subject advisors on hand to lead discussion and answer questions.
- 7. Follow us on Twitter (<u>@ocr_science</u>) where you can have discussions with other teachers and OCR Subject Advisors, and where new resources are developed and posted first.