1 Stearic acid, oleic acid and linoleic acid are examples of naturally occurring fatty acids.

<table>
<thead>
<tr>
<th>Traditional name</th>
<th>Structure</th>
<th>Systematic name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stearic acid</td>
<td>$\text{C}{17}\text{H}{35}\text{COOH}$</td>
<td>Octadecanoic acid</td>
</tr>
<tr>
<td>Oleic acid</td>
<td>$\text{C}{17}\text{H}{33}\text{COOH}$</td>
<td>Octadec-9-enoic acid</td>
</tr>
<tr>
<td>Linoleic acid</td>
<td>$\text{C}{17}\text{H}{31}\text{COOH}$</td>
<td>Octadeca-9,12-dienoic acid</td>
</tr>
</tbody>
</table>

(a) Suggest which fatty acid in the table is most likely to be linked with concerns about heart disease and obesity.

Explain your choice.

...

... [1]

(b) Sodium stearate is the salt formed when stearic acid reacts with sodium hydroxide solution.

Write an equation for the formation of sodium stearate.

... [1]

(c) A triglyceride formed from stearic acid can be found in some types of food.

Draw the structure of this triglyceride with any functional groups fully displayed.

[2]
(d) Partial hydrogenation of linoleic acid may result in the formation of *trans*-octadec-12-enoic acid.

(i) Draw the **skeletal** formula of *trans*-octadec-12-enoic acid.

(ii) Some fatty acids show *cis-trans* isomerism because there is restricted rotation about a C=C double bond.

State **one** other feature of these molecules that enables them to show *cis-trans* isomerism.

..[1]

[Total: 7]
Some organic compounds contain nitrogen atoms. Examples include condensation polymers and azo dyes.

(a) A section of a condensation polymer is shown below.

\[-\text{CO(} \text{CH}_2\text{)}_4\text{CONH(} \text{CH}_2\text{)}_6\text{NHCO(} \text{CH}_2\text{)}_4\text{CONH(} \text{CH}_2\text{)}_6\text{NH}\-\]

(i) In the boxes below, draw the structures of the two monomers that form this condensation polymer.

(ii) Name the type of condensation polymer and give a use for this polymer.

Type ..

Use ... [1]
(b) A student plans a two-step synthesis starting with phenylamine.

The steps of the synthesis are shown below.

\[\text{phenylamine} \xrightarrow{\text{step 1}} \text{compound A} \xrightarrow{\text{step 2}} \text{compound B} \]

(i) In step 1, phenylamine reacts with ethanoic anhydride to make compound A and one other organic product.

Draw the structure of ethanoic anhydride, with the functional group displayed, and suggest the structure of the other organic product formed in step 1.

(ii) Calculate the mass of compound A that can be synthesised from 3.00 g of phenylamine in step 1. The percentage yield of this reaction is 61.0%.

\[M_r (\text{phenylamine}) = 93.0 \]

Give your answer to three significant figures.

\[
\text{mass of compound A} = \text{.. g} [3]
\]
The steps of the synthesis are shown again below.

(iii) In step 2, compound A is converted into compound B using a mixture of concentrated nitric acid and concentrated sulfuric acid.

Outline, with the aid of curly arrows, the mechanism for the conversion of compound A into compound B.

Use equations to explain how sulfuric acid acts as a catalyst in this reaction.
(c) An azo dye is synthesised in two steps. In step 2 the diazonium ion is reacted with compound C to form the azo dye.

Complete the flowchart for this synthesis.

Write your answers in the boxes.

step 1

\[\text{Reagents} \]

\[\text{Conditions} \]

step 2

\[\text{Conditions} \]

\[\text{Structure of compound C} \]

[Total: 17]
The building blocks of peptides and proteins are α-amino acids.

A tripeptide is hydrolysed to form a mixture of three different α-amino acids.

(a) The first step of an incomplete mechanism for the alkaline hydrolysis of the tripeptide is shown below.

Add curly arrows and relevant dipoles to the diagram to suggest how the hydroxide ion takes part in the first step of this mechanism.

(b) The tripeptide is hydrolysed and the resulting mixture containing the three amino acids is neutralised.

A student tries to separate and identify the three amino acids in the mixture using thin-layer chromatography (TLC). The diagram below shows the apparatus for the experiment and the chromatogram produced.

Explain how the chromatogram can be used to identify amino acids.

The student thinks that there should be three spots on the chromatogram.

Suggest why there are only two spots.

.. [3]
(c) The three \(\alpha \)-amino acids in the tripeptide are aspartic acid, glycine and isoleucine.

The general formula for an \(\alpha \)-amino acid is \(\text{RCH(NH}_2\text{)COOH} \).

<table>
<thead>
<tr>
<th>(\alpha)-amino acid</th>
<th>R-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>aspartic acid</td>
<td>(-\text{CH}_2\text{COOH})</td>
</tr>
<tr>
<td>glycine</td>
<td>(-\text{H})</td>
</tr>
<tr>
<td>isoleucine</td>
<td>(-\text{CH(CH}_3\text{)CH}_2\text{CH}_3)</td>
</tr>
</tbody>
</table>

(i) Aspartic acid has an isoelectric point of 2.77.

What is meant by the term \textit{isoelectric point}?

\textit{In your answer you should use the appropriate technical terms spelled correctly.}

...
...
... [1]

(ii) Draw the structure of aspartic acid when it is dissolved in a solution with a high pH.

(iii) Suggest a structure for the tripeptide.

On your structure, mark each chiral centre with an asterisk (*)..

[1]

[2]

[Total: 9]
This question is about the preparation, properties and uses of lactic acid.

\[
\begin{align*}
\text{H} & \quad \text{C} & \quad \text{C} & \quad \text{C} & \quad \text{O} \\
\text{H} & \quad \text{C} & \quad \text{C} & \quad \text{C} & \quad \text{OH} \\
\text{H} & \quad \text{OH} & \quad \text{OH}
\end{align*}
\]

lactic acid

(a) What is the systematic name of lactic acid?

.. [1]

(b) Lactic acid can be produced by chemical synthesis or by the fermentation of sugars using bacteria.

Describe one important difference between lactic acid manufactured by chemical synthesis and lactic acid manufactured by the fermentation of sugars.

..

..

..

.. [1]

(c) When heated strongly, lactic acid forms a cyclic ‘diester’.

The diester has the molecular formula, \(\text{C}_6\text{H}_8\text{O}_4 \).

Draw the structure of the cyclic diester.
(d) Poly(lactic acid), PLA, is used to make ‘dissolvable’ stitches (for holding wounds together). PLA breaks down into smaller molecules after one or two weeks.

(i) Draw the structure of one repeat unit in PLA.

(ii) Explain how PLA breaks down and why the stitches ‘dissolve’.

In your answer you should use the appropriate technical terms spelled correctly.

...
...
...
...
...
...
... [3]

[Total: 7]
A chemistry teacher carries out an experiment to synthesise 2-aminopropan-1-ol, CH₃CH(NH₂)CH₂OH.

(a) The teacher asks a university chemistry department to test the 2-aminopropan-1-ol using proton NMR spectroscopy and mass spectrometry.

(i) For the ¹H NMR analysis, the sample was dissolved in D₂O.

Complete the table to predict the ¹H NMR spectrum of CH₃CH(NH₂)CH₂OH after dissolving in D₂O.

<table>
<thead>
<tr>
<th>Chemical shift, δ/ppm</th>
<th>Relative peak area</th>
<th>Splitting pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(ii) The mass spectrum for CH₃CH(NH₂)CH₂OH is shown below.

![Mass spectrum](image)
Give the formulae for the species responsible for peak 1 and peak 2 in the mass spectrum.

peak 1

peak 2

(b) The teacher synthesises 2-aminopropan-1-ol, CH₃CH(NH₂)CH₂OH, from 2-chloropropan-1-ol, CH₃CHClCH₂OH.

(i) State the reagents and conditions required for this synthesis.
...
...
...
...
... [1]

(ii) The sample prepared by the teacher from 2-chloropropan-1-ol is not pure. It also contains compound D.

Compound D has a molecular formula of C₆H₁₅NO₂⁻.

Suggest the structure of compound D.

Compound D
(c) In a separate experiment, the chemistry teacher prepares compound E from 2-aminopropan-1-ol.

\[\text{compound } E \]

(i) One of the functional groups in compound E is a phenol.

Name the other functional groups in compound E.

..
..[1]

(ii) Draw the structures of the two organic products formed when compound E is heated under reflux with dilute hydrochloric acid.

[2]

[Total: 10]
There are several isomeric alcohols with the formula $C_5H_{11}OH$.

(a) Pentan-1-ol, $CH_3(CH_2)_3CH_2OH$, can be prepared in the laboratory by the reduction of an aldehyde.

State a suitable reducing agent for this reaction and write an equation to show the preparation of pentan-1-ol. Use $[H]$ to represent the reducing agent in the equation.

Reducing agent ...

Equation ...

[2]

(b) Compound F is a structural isomer of $C_5H_{11}OH$.

Compound F is converted to compound G when heated under reflux with acidified potassium dichromate(VI) solution.

Compound G reacts with 2,4-dinitrophenylhydrazine to form an orange solid but compound G does not react with Tollens' reagent.

The 13C NMR spectrum of compound G is shown below.

- Compound H is a carboxylic acid. In a titration, 0.211 g of carboxylic acid H requires 22.8 cm3 of 0.125 mol dm$^{-3}$ NaOH for neutralisation.

- Compound F reacts with compound H in the presence of concentrated sulfuric acid to form organic compound I.
Identify compounds F, G, H and I and draw their structures in the boxes below.

Show your working **only** for the identification of compound H.
(c) Compound J is another structural isomer of C₅H₁₁OH.

The 1H NMR spectrum of J is shown below.

The numbers next to each peak are the relative peak areas.

Identify compound J and draw its structure in the box below.

J

[Total: 10]
Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2016