

Cambridge **TECHNICALS LEVEL 3**

ENGINEERING

Cambridge TECHNICALS

Combined feedback on the January 2017 exam paper (including selected exemplar candidate answers and commentary)

Unit 2 – Science for engineering Version 1

CONTENTS

Introduction	3
General examiner comments on the paper	4
Question 1 (a)	5
Question 1 (b)	5
Question 1 (c)	5
Question 2 (a)	7
Question 2 (b)	8
Question 3 (a)	10
Question 3 (b)	11
Question 4 (a)	12
Question 4 (b)	13
Question 4 Exemplar candidate work with commentary	15 15
Question 5 (a)	23
Question 5 (b)	23
Question 5 (c)	23
Question 5	26
Exemplar candidate work with commentary	26
Question 6	35

INTRODUCTION

This resource brings together the questions from the January 2017 examined unit (Unit 2), the marking guidance, the examiners comments and the exemplar answers into one place for easy reference.

We've also included candidate exemplar answers with commentaries for Questions 4 and 5.

The marking guidance and the examiner's comments are taken straight from the Report to Centre for this question paper.

The Question Paper, Mark Scheme and the Report to Centre are available from: <u>https://interchange.ocr.org.uk/</u>

OCCR Daford Cambridge and ISA	OCTOR Cambridge and ISA	OCTOR Oxford Cambridge and RSA
Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825/05873 Unit 2: Science for engineering Wednesday 11 January 2017 – Morning Time allowed: 1 hour 30 minutes	Cambridge Technicals Engineering Unit 2: Science for engineering Level 3 Cambridge Technical Certificate/Diploma in Engineering 05822 - 05825 Mark Scheme for January 2017	Cambridge Technicals Engineering Level 3 Cambridge Technicals Certificates in Engineering 05822, 05823 Level 3 Cambridge Technicals Diplomas in Engineering 05824, 05825 OCR Report to Centres January 2017

GENERAL EXAMINER COMMENTS ON THE PAPER

This is a mandatory unit across all qualifications in the Cambridge Technicals in Engineering suite.

Candidates should be reminded that where appropriate calculation questions should be supported with workings. Marks may be awarded for a correct method even if the answer is incorrect. There was evidence this series that because workings were not shown some candidates could not be awarded marks when previous errors were carried through to subsequent calculations.

There were a number of missing or incorrect units being used for numerical answers and candidates need to ensure that they convert values to consistent powers of ten before carrying out any calculation.

Candidates seemed to show greater understanding of learning outcomes 1 to 4 as they performed better in questions 1 to 4, compared to questions 5 and 6.

		μ (micro)		10-6						
		M (mega)		106						
		k (kilo)		10 ³						
		m (milli)		10-3						
	Ļ				-	4				[4
(b) Def	fine the t	erm relative error i	n the conte	ext of engineer	ing r	me	asure	men	ts.	
		Relative error: Ratio c percentages), OR abs					ren in			
							en in			[]
 (c) You			solute error				ren in			[]
	u are giv	percentages), OR abs	solute error 52.				ren in			[]
Fin	u are giv d the rela	percentages), OR abs en that $X = 0.00236$	solute error 52.				ren in			[1
Fin	u are giv d the rela 3 signit	percentages), OR abs en that $X = 0.00236$ ative error if X is we ficant figures,	solute error 52.				ren in			[1
Fin	u are giv d the rela 3 signit	percentages), OR abs en that $X = 0.00236$ ative error if X is we	52. nitten to	divided by true	value	IC.		52		[]
Fin	u are giv d the rela 3 signit	percentages), OR abs en that $X = 0.00236$ ative error if X is wation ficant figures, X =)0.00236;	Solute error 52. The second	divided by true	value	IC.		52		[1
Fin (i)	u are giv d the rela 3 signit	percentages), OR abs en that $X = 0.00236$ ative error if X is we ficant figures, X =)0.00236; elative error $= \Delta X$ elative error $= 0.0$	Solute error 52. The second	divided by true	value	IC.		52		
Fin	u are giv d the rela 3 signit	percentages), OR abs en that $X = 0.00236$ ative error if X is we ficant figures, X = 0.00236; elative error = ΔX	Solute error 52. The second	divided by true	value	IC.		52		
Fin (i)	u are giv d the rela 3 signit (2 R R 3 decim	percentages), OR abs en that $X = 0.00236$ ative error if X is we ficant figures, X =)0.00236; elative error $= \Delta X$ elative error $= 0.0$	Solute error 52. The second	divided by true	value	IC.		52		

1 (a)

One mark for each correct line of the table.

Accept powers alone i.e. -6, 6,3, -3.

1 (b)

Accept absolute error over true value.

1 (c) (i)

Evidence of correct calculation Ignore sign (subtraction can be done either way round)

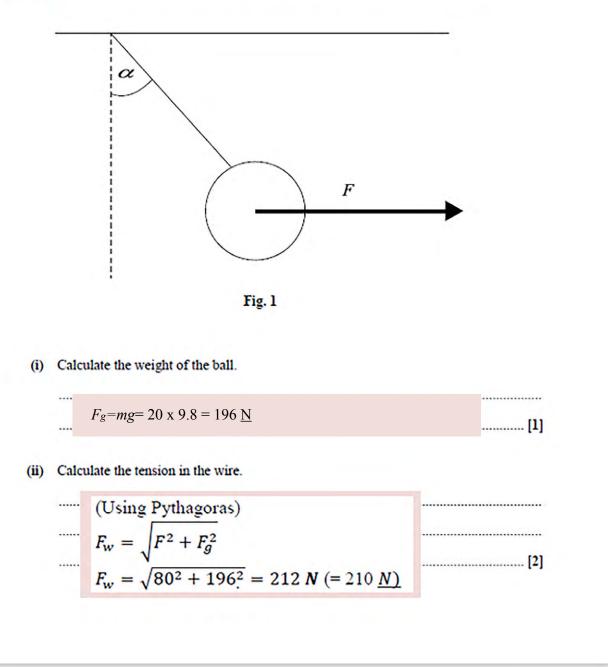
1 (c) (ii)

Ignore sign as above (2nd mark of (i) could be awarded here if not awarded in (i)

Examiner comments

1 (a)

Candidates generally either knew all these prefixes or very few.

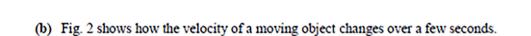

1 (b)

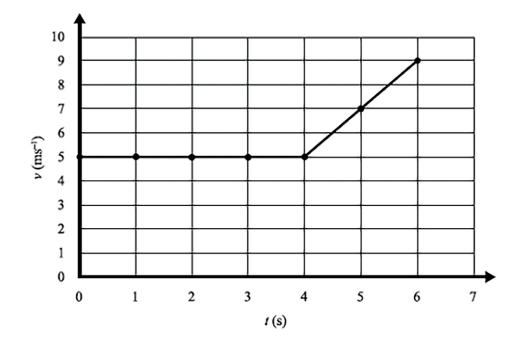
Many candidates were able to define relative error, but a few gave an imprecise definition.

1 (c)

Some candidates did not comprehend the difference between significant figures and decimal places. A fairly common error was to calculate measured value divided by true value rather than error divided by true value.

- 2 Use $g = 9.8 \text{ ms}^{-2}$ in this question.
- (a) A 20kg ball shown in Fig. 1 is suspended in equilibrium from the ceiling on a wire and has a force F = 80N acting on it in horizontal direction. The wire makes an angle of α with the vertical.

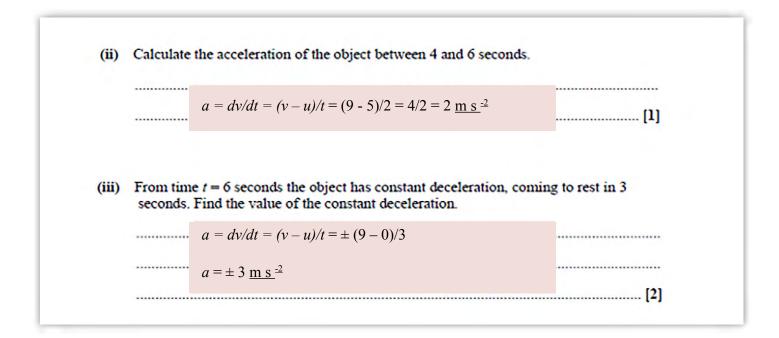



.....

.....[3]

(iii) Calculate the angle, α , between the vertical and the wire. EITHER: Resolving horizontally: $F_w \sin \alpha = 80$

 $F_{W} \sin \alpha - 30$ $\sin \alpha = 80/212 = 0.377$ $\alpha = 22(.2)^{\circ}$ CR:Resolving vertically: $F_{W} \cos \alpha = 196$ = 196/212 = 0.925 $\alpha = 22(.3)^{\circ}$ OR $\tan \alpha = 80/196$ $\tan \alpha = 0.408$ $\alpha = 22(.2)^{\circ}$



(i) Calculate the distance covered by the object in the first 4 seconds.

s = v t = 5 x 4 = 20 (m) [1]

2 (a) (i) Unit is required. ACCEPT 200 N for 2 sf.

2 (a) (ii)

Allow ecf of incorrect weight from part (i). Need to see unit but only one unit penalty in part (a).

2 (a) (iii)

Allow ecf of incorrect forces from part i) and ii).

Use of $F_w = 210$ N gives $\alpha = 21^\circ$ and use of $F_a = 200$ N as well gives $\alpha = 17^\circ$. All acceptable if working shown.

2 (b) (i)

Ignore unit. Accept answer to answer to 1 sf.

2 (b) (ii) Unit is required. Accept answer given to 1 sf.

2 (b) (iii) Appropriate substitution into equation. Unit required but only one unit penalty in (b).

Examiners comments

2 (a)

Some candidates did not understand the difference between mass and weight, and there were also a number of candidates who correctly calculated the weight but omitted or used the incorrect units.

In part (ii) some candidates realised that they needed to use Pythagoras Theorem to find the tension, but used the incorrect values.

In part (iii), instead of using the relatively simple equations for the trigonometric functions for right angled triangles, some candidates attempted to use the cosine rule, and then got confused about which values or force to use. A few candidates attempted to measure the angle from the diagram using a protractor rather than calculate it from the value for the forces.

2 (b)

Many candidates omitted units for the distance in part (i) although this was not penalised in the mark scheme, and some used the unit for velocity instead of acceleration in parts (ii) and (iii). Some candidates were able to calculate the acceleration from the graphical data in part (ii) than the data given in text form in part (iii) and vice versa.

(a) The current flowing through the circuit shown in Fig. 3 is I = 2A. 3 The potential differences across R1, R2 and R3 are 5V, 2V and 10V respectively. I=2A R₂ R, Fig. 3 Calculate (i) the total voltage supplied to the circuit, Total Voltage drop is the sum of voltage drops across all resistors [1] $V_0 = 5 + 2 + 10 = 17 \text{ V}$ (ii) the total resistance in the circuit, Use of R = V/I = 17/2 $R_T = 8.5 \ \Omega$.. [2] (iii) the resistance of the individual resistors R1, R2 and R3, $R_1 = 5/2 = 2.5 \underline{\Omega}$ $R_2 = 2/2 = 1 \underline{\Omega}$ $R_3 = 10/2 = 5 \underline{\Omega}$ (iv) the power lost across resistor R1. Use of P = IV or $P = I^2R$ or $P = V^2/R$ $P_1 = 2 \ge 5 = 10 \underline{W}$ $P_1 = (2)^2 \ge 2.5 = 10 \underline{W}$ $P_1 = 5^2/2.5 = 10 \underline{W}$. [2]

(b) (i)	State the SI unit for i	nductance.			
		Henry (or	H)		[1]
(ii)	Which of the follow inductance? Put a ring round the	1000		uivalent to the SI ur	uit for
	kgm ⁻² s ⁻² A ⁻¹	kgm ² s ⁻¹ A ⁻²	kgm ² s ⁻² A ⁻²	kgm s ⁻² A ⁻¹	[1]
		kg m ² s ⁻² A	-2		

3 (a) (i)

Ignore unit.

3 (a) (ii)

Substitution of any voltage and 2A into equation. Allow ecf from (i). Unit required.

3 (a) (iii)

Units required at least once in part (ii) and part (iii). If already penalised unit in part ii ignore unit. Max 2/3 if not clear which R is which.

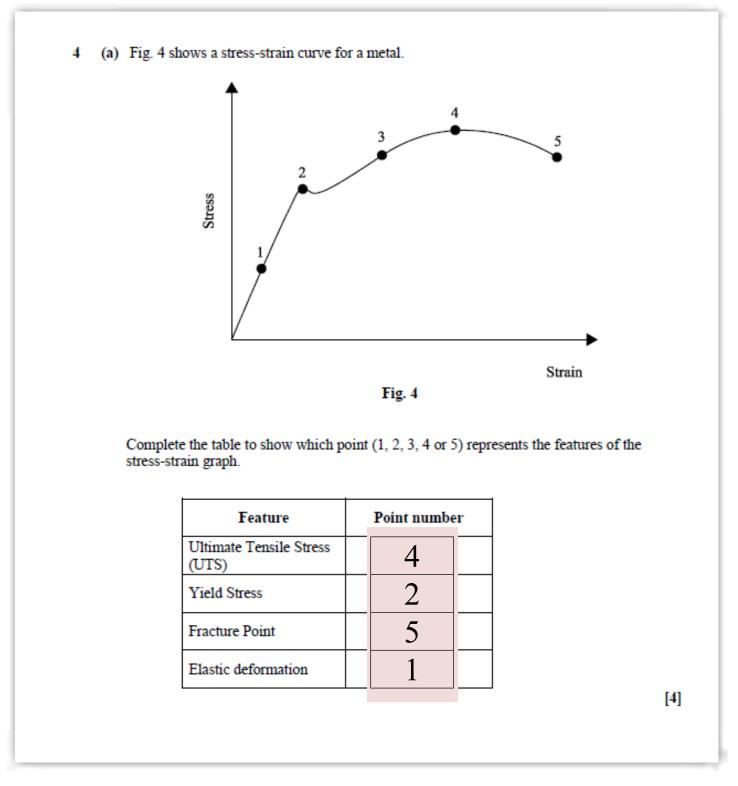
These marks can be awarded from working shown in part (ii). This is acceptable for both sections.

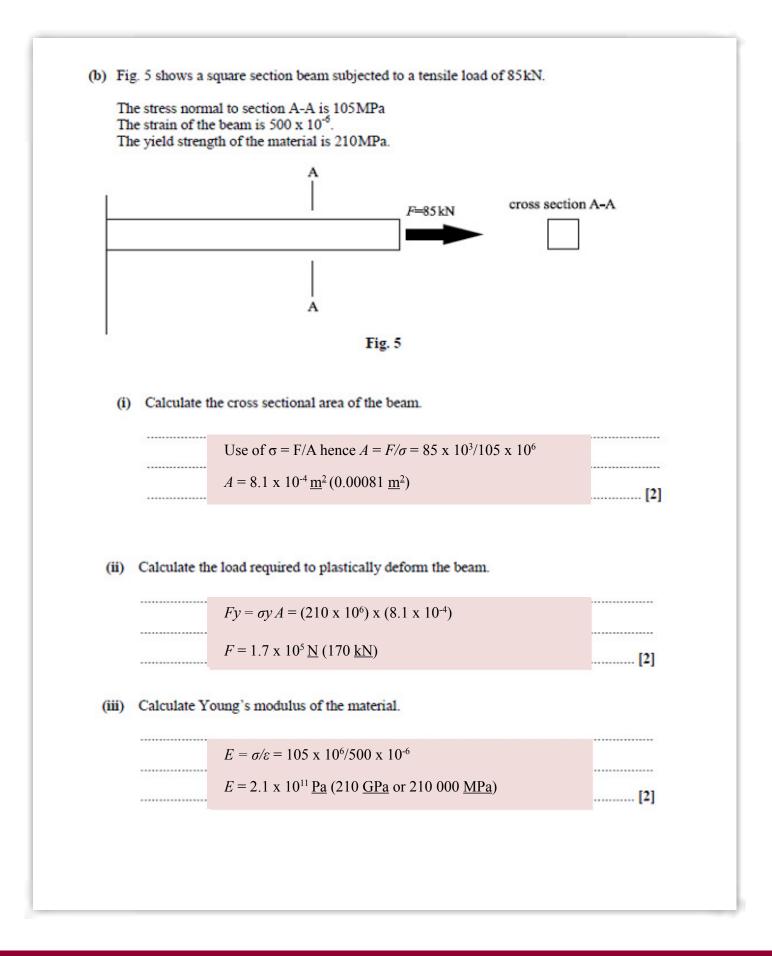
3 (a) (iv)

Substituting appropriate values into one of the power equations. Unit required.

3 (b) (i)

Not h.


3 (b) (ii)


Third answer should be ringed. Accept alternative clear indication of correct response.

Examiners comments

3 (a): Many candidates were able to calculate voltage and resistance in this series circuit, but there were many cases of omitting the unit. Some candidates showed the working for all three resistors in part (iii) but omitted to show which resistor was which. In part (iv) some candidates chose a correct equation to calculate power, but then substituted values for the quantities either for the whole circuit or the incorrect resistor. Some candidates found the total power provided by the supply and then subtracted the power loss from the resistor.

3 (b): Many candidates were able to identify the SI unit for Inductance, but did not know the equivalent in SI base units.

4 (a)

One mark for each correct line of the table.

4 (b) (i)

Allow values (ignoring POT) substituted into $\sigma = F/A$ for first mark. Lose second mark for POT errors. Unit necessary.

4 (b) (ii)

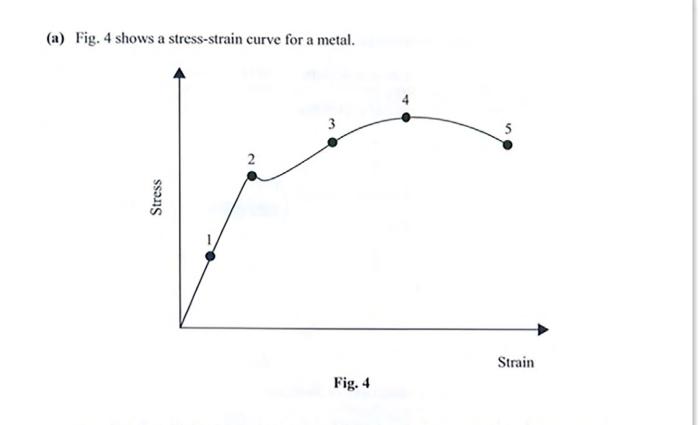
Correct substitution (ignoring POT). Allow ecf from part i). Lose one mark for POT errors. Use of $\sigma_v = 105$ MPa scores zero.

4 (b) (iii)

Correct substitution (ignoring POT). Lose one mark for POT errors. Unit required.

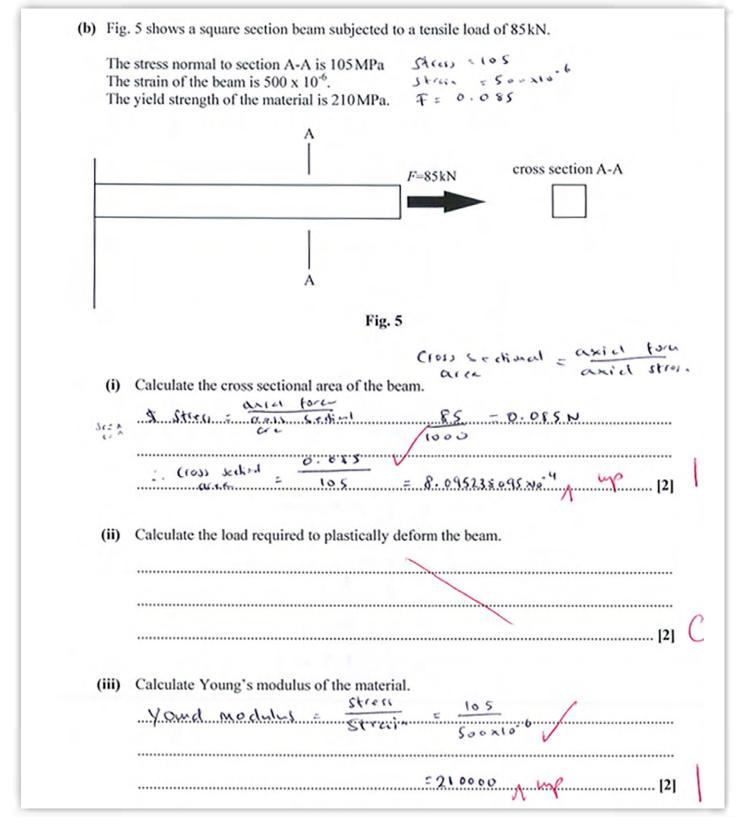
Examiners comments

4 (a)


Some candidates were able to correctly identify the features of a stress strain graph, but there was some confusion between yield stress and elastic deformation.

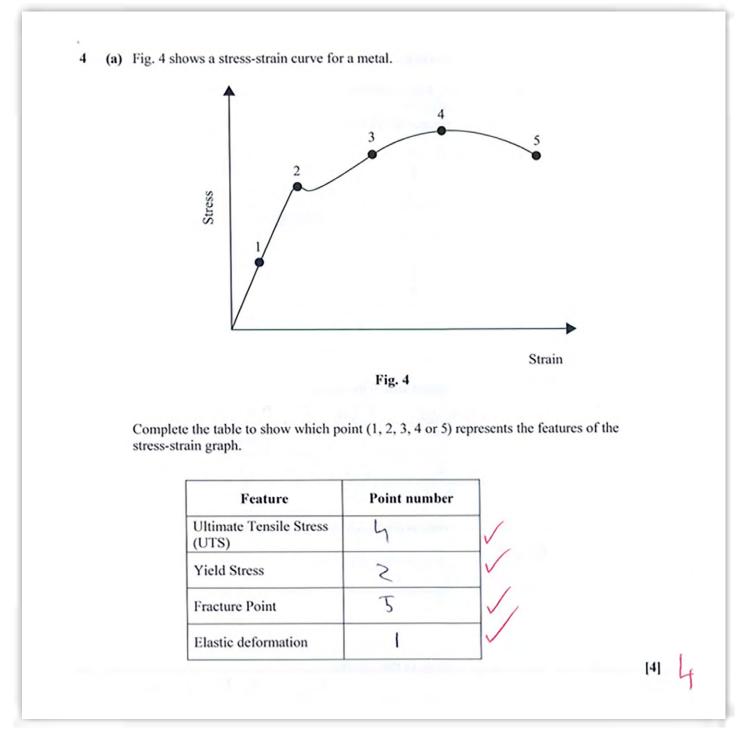
4 (b)

There were several responses given without units or with the incorrect powers of ten. More candidates were able to calculate the Young Modulus in part (iii) and part (ii) seemed to cause the most problems.


Exemplar candidate work

Question 4 - Low level answer

Complete the table to show which point (1, 2, 3, 4 or 5) represents the features of the stress-strain graph.

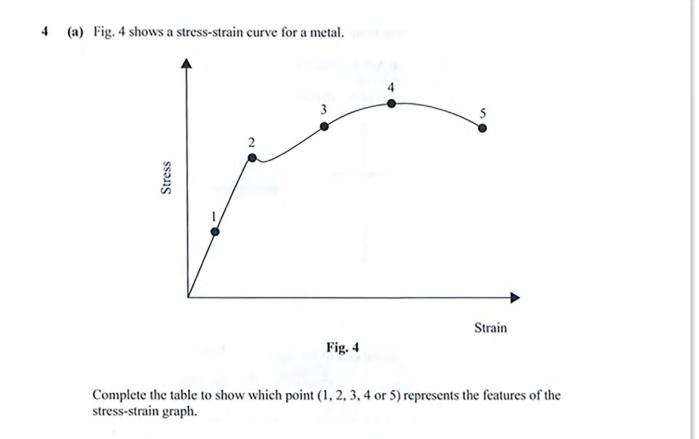

Feature	Point number	1
Ultimate Tensile Stress (UTS)	4	
Yield Stress	43	X
Fracture Point	\$ 5	\checkmark
Elastic deformation	652	λ
(B)		

In part (a) there are only two correct responses.

In part (b) only 2 out of the 3 calculations have been attempted and although these two calculations are correct and all values are to a consistent power of ten, there are no units on either of the final values. Most physical quantities require a unit. Cross sectional area is measured in m² and Young Modulus can be measured in N m⁻² or Pa. Including these units would improve the answer.

Question 4 - Medium level answer

	strain of the beam is 500 x 10 ⁻⁶ . yield strength of the material is 210MPa.
-	F=85 kN cross section A-A
1	Fig. 5
	$\frac{Shess = Sorce}{(Sa} = \frac{(Sa}{235 \cdot 3n^2} \times \frac{(Sa}{210})$ $\frac{(Sa = 50rce}{(Sa = 1235 \cdot 3n^2)} \times \frac{(210)}{(210)}$
(ii)	Calculate the load required to plastically deform the beam. 260 K M 51253 = 1860 X 61-66 [2]
(iii)	
	Sm=Stress Sm= 2.1×10"NAm=2,


In part (a) all four responses are correct so all four marks are gained.

In part (b)(i) the candidate has selected and rearranged the correct equation: $area = \frac{force}{stress}$, and has used values for force and stress to the correct powers of ten but has then substituted them the wrong way round. This calculation gives an unrealistically high value for the cross-sectional area of a beam which could be spotted by the candidate to realise that a mistake has been made.

In part (b)(ii) the candidate has selected the correct equation to use, but has not completed the calculation. The equation needs to be rearranged to calculate the load using the area value calculated in part (ii) and the yield strength 210 x 10⁶ Pa.

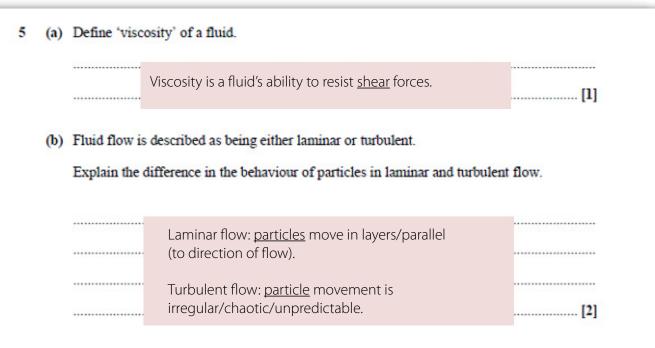
Part (b)(iii) is all correct and gains both marks.

Question 4 - High level answer

Feature	Point number	111
Ultimate Tensile Stress (UTS)	4	
Yield Stress	まん・	
Fracture Point	5	
Elastic deformation	31	

[4]

Inc	e strain of the beam is 500 x 10 ⁻⁶ . e yield strength of the material is 210 MPa.
	A
	F=85kN cross section A-A
	A
	Fig. 5
(ii)	Calculate the load required to plastically deform the beam.
(ii)	Calculate the load required to plastically deform the beam. 2.10 mPa , \leq Stress = $\frac{6000}{60000000000000000000000000000000$
(ii)	Calculate the load required to plastically deform the beam. $210 \text{ MP}_{ll} \leq \text{Sfres} = \frac{6 \cos 41 \text{ m}}{6 \cos 41 \text{ m}}$ $210 \times 10^6 = \frac{4 \cos 41 \text{ m}}{6 \cos 51 \text{ m}} = 210 \times 10^6 \times 9 \cdot \cos 41 \text{ m} = 10 \text{ m}$
(ii)	Calculate the load required to plastically deform the beam. 2.10 mPa , \leq Stress = $\frac{6000}{60000000000000000000000000000000$
(ii) (iii)	Calculate the load required to plastically deform the beam. $210 \text{ MP}_{ll} \leq \text{Sfres} = \frac{6 \cos 41 \text{ m}}{6 \cos 41 \text{ m}}$ $210 \times 10^6 = \frac{4 \cos 41 \text{ m}}{6 \cos 51 \text{ m}} = 210 \times 10^6 \times 9 \cdot \cos 41 \text{ m} = 10 \text{ m}$
(ii)	Calculate the load required to plastically deform the beam. 2.10 mPa , \leq Stress = $\frac{6000}{60000000000000000000000000000000$


In part (a) all four responses are correct so all 4 marks are gained.

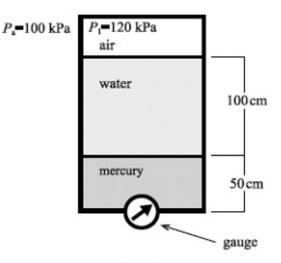
In part (b)(i) the candidate has carried out the calculation correctly with all values to the correct power of ten. However, the unit given is incorrect. Area is measured in m².

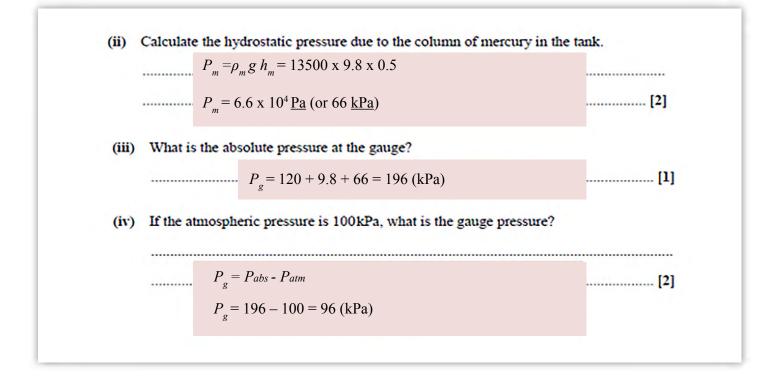
In part (b)(ii) the candidate has carried out the correct calculation and assigned an appropriate unit to the final value so both marks are gained.

Part (b)(iii) the candidate has carried out the calculation correctly with all values to the correct power of ten. However, the unit given is incorrect. Young Modulus is measured in Pa or N m⁻².

Including the correct units in all calculations would make this a 'full mark answer'.

(c) Fig. 6 shows a cross section of a tank filled with water, mercury and air.




Fig. 6

Density of water $\rho_w = 1000 \text{ kgm}^{-3}$ Density of mercury $\rho_m = 13500 \text{ kgm}^{-3}$ Air pressure in the tank = 120 kPa

(i) Calculate the hydrostatic pressure due to the column of water in the tank.

.....
$$P_w = \rho_w g h_w = 1000 \text{ x } 9.8 \text{ x h}$$

..... $P_w = 1000 \text{ x } 9.8 \text{ x } 1 = 9800 \text{ Pa or } 9.8 \text{ kPa}$

.....[2]

5 (a)

Ignore 'flow'.

5 (b)

IGNORE 'smooth'.

ACCEPT 'random'.

Reference to particles needed at least once for both marks. Two opposite statements – max one mark awarded.

5 (c) (i)

Substitution of correct values of pw and g and a value of height for first mark. Unit required. Lose one mark for POT errors.

5 (c) (ii)

Correct substitution required.

Unit required but penalise only once in part (c). Lose one mark for POT errors, but allow same POT error ecf from part (i).

5 (c) (iii)

Accept 200 kPa (to 2 sf). Unit not required but consistent values must be added together. Allow ecf from part (i) and (ii).

5 (c) (iv)

First mark for quoting equation or correct substitution. Unit not required but consistent values must be subtracted. Allow ecf from part (iii).

Examiners comments

5 (a)

Many candidates had difficulties defining 'viscosity'. Many attempted to describe a viscous liquid rather than viscosity, and many explanations were vague.

5 (b)

Candidates performed slightly better here, but there was often a lack of scientific terminology used.

5 (c)

These were again calculations where there were several errors of units or powers of ten. Some candidates added the height of water to the height of mercury in the calculations. There was also some confusion about the terms absolute pressure and gauge pressure.

Exemplar candidate work

Question 5 - Low level answer

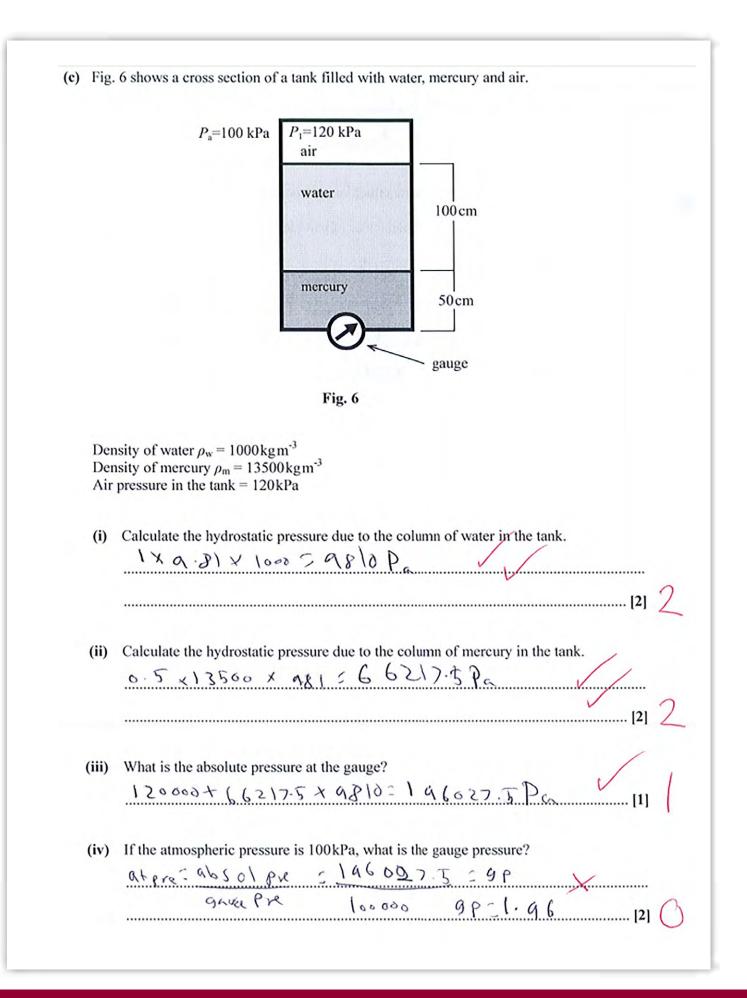
5 ((a) Define 'viscosity' of a fluid. <u>Viscosity</u> of a fluid is how dence' the liquid is the a off the fluid, how trightly compact the malecules are. X [1
(b)	Fluid flow is described as being either laminar or turbulent. Explain the difference in the behaviour of particles in laminar and turbulent flow. Lamier is a constant flow, for example worth out of a jug.
	turbulet flow is seen with a thicker Fluid which drops in chunes rather than a solid flow [2]

	$P_a = 100 \text{ kPa}$ $P_1 = 120 \text{ kPa}$ air
	water 100 cm
	mercury 50 cm
	gauge
	Fig. 6
Air	nsity of mercury $\rho_m = 13500 \text{ kgm}^{-3}$ pressure in the tank = 120kPa
Air	pressure in the tank = 120kPa Calculate the hydrostatic pressure due to the column of water in the tank. <u>pressure due to a column of liquid = H x G x d of liquid</u> <u>120kpa</u> <u>120cocce kpa</u> <u>120cocce kp</u>
Air (i)	pressure in the tank = 120kPa Calculate the hydrostatic pressure due to the column of water in the tank. <u>pressure due to a column of liquid = H × 6 × d of liquid</u> <u>120kpa</u> <u>120kpa</u> <u>120coxec</u> <u>4</u> <u>120kpa</u> <u>120coxec</u> <u>4</u> <u>120kpa</u> <u>120coxec</u> <u>4</u> <u>120coxec</u> <u>121</u> Calculate the hydrostatic pressure due to the column of mercury in the tank. <u>50 × 1200000 + 120 × 13500 = 601620000 kpa</u>
Air (i)	pressure in the tank = 120kPa Calculate the hydrostatic pressure due to the column of water in the tank. <u>pressure due to a column of liquid = H x G x d of liquid</u> <u>120kpa</u> <u>120cocce kpa</u> <u>120cocce kp</u>
Air (i)	pressure in the tank = 120kPa Calculate the hydrostatic pressure due to the column of water in the tank. <u>pressure due to a column of liquid = H × 6 × d of liquid</u> <u>120kpa</u> <u>120kpa</u> <u>120coxec</u> <u>4</u> <u>120kpa</u> <u>120coxec</u> <u>4</u> <u>120kpa</u> <u>120coxec</u> <u>4</u> <u>120coxec</u> <u>121</u> Calculate the hydrostatic pressure due to the column of mercury in the tank. <u>50 × 1200000 + 120 × 13500 = 601620000 kpa</u>
Air (i) (ii)	pressure in the tank = 120 kPa Calculate the hydrostatic pressure due to the column of water in the tank. <u>pressure due to a column of liquid = H × G × d of liquid</u> = 100 cm × $\frac{1}{18} \times 1000$ kgm ⁻³ = 12000000 kpa ² Calculate the hydrostatic pressure due to the column of mercury in the tank. = $\frac{50 \times 1200000 + 120 \times 13500 = 601620000 kpa^{2}}{601620000 kpa^{2}}$ [2] 2
Air (i) (ii)	pressure in the tank = 120 kPa Calculate the hydrostatic pressure due to the column of water in the tank. pressure due to a column of liquid = H × G × d of liquid 1204pa $= 160 \text{ cm} \times \frac{1.8}{1.8} \times 1000 \text{ sgm}^{-3} = 1200000 \text{ kpa}$ Calculate the hydrostatic pressure due to the column of mercury in the tank. $= 50 \times 1200000 \pm 120 \times 13500 - 601620000 \text{ kpa}$ $= 6101622 \times 10^{-4} \text{ k pa}$ [2] 2 What is the absolute pressure at the gauge?

The definition in part (a) requires the use of the correct scientific terminology. The only part of this response which is related to viscosity is the word "thickness", but this is too vague a word to use in a definition of viscosity.

In part (b) the question refers to the movement of particles in fluids and this response does not describe how the particles move in either laminar or turbulent flow.

In part (c) the candidate needs to convert all the heights from cm to m in order to carry out the calculations correctly. In part (i) the correct equation has been selected and values for the height and density of the water column substituted, so the first mark is awarded. The value for height remains in cm and also the value for air pressure has been used instead of the gravitational acceleration so the calculation is then incorrect so the second mark cannot be awarded.

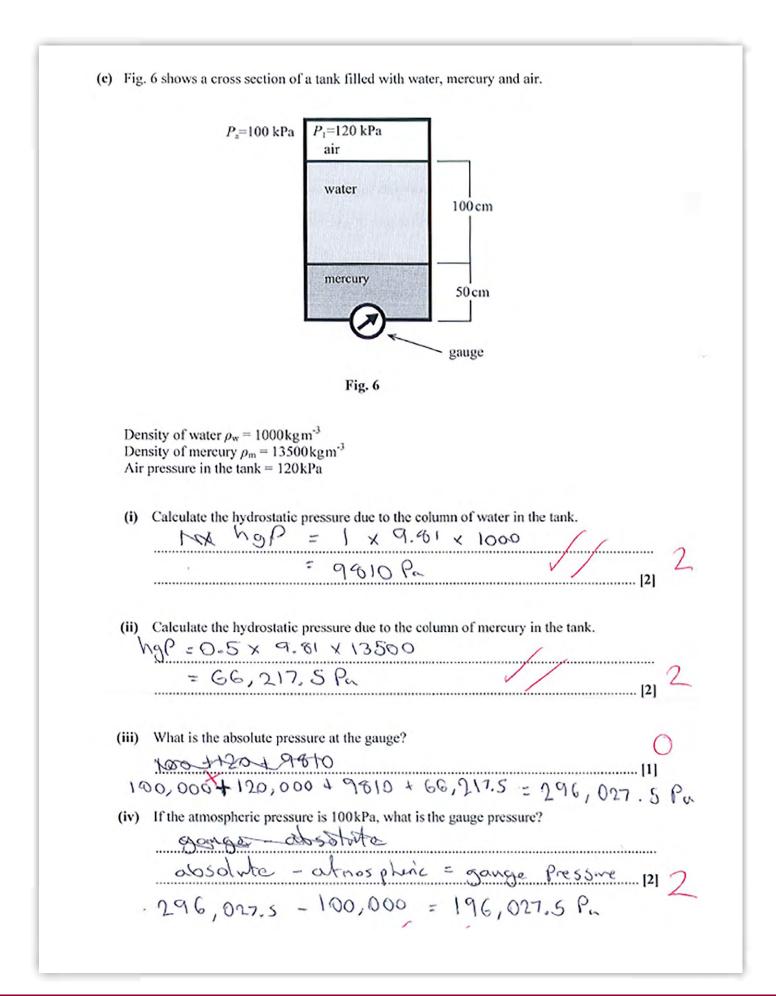

In part (ii) the candidate has made the same errors again, so is not penalised twice. Correct values for height and density of mercury are used so both marks are awarded.

In part (iii) the calculation should be the sum of the values calculated in parts (i) and (ii) and the air pressure 120 x 103 Pa.

In part (iv) the calculation is incorrect as the atmospheric pressure should be subtracted from the answer given in part (iii).

Question 5 - Medium level answer

(a) Define 'viscosity' of a fluid. 5 Viscourty is the internal resistance as a slud this maker the fluid Stick, and handto get through × 111 0 (b) Fluid flow is described as being either laminar or turbulent. Explain the difference in the behaviour of particles in laminar and turbulent flow. In Know, the particles mare in Syns, they mare to setue and the sine was trubulents tow moves Sucely this makes the stud more charsonised and it makes 14 more VISCON X [2]

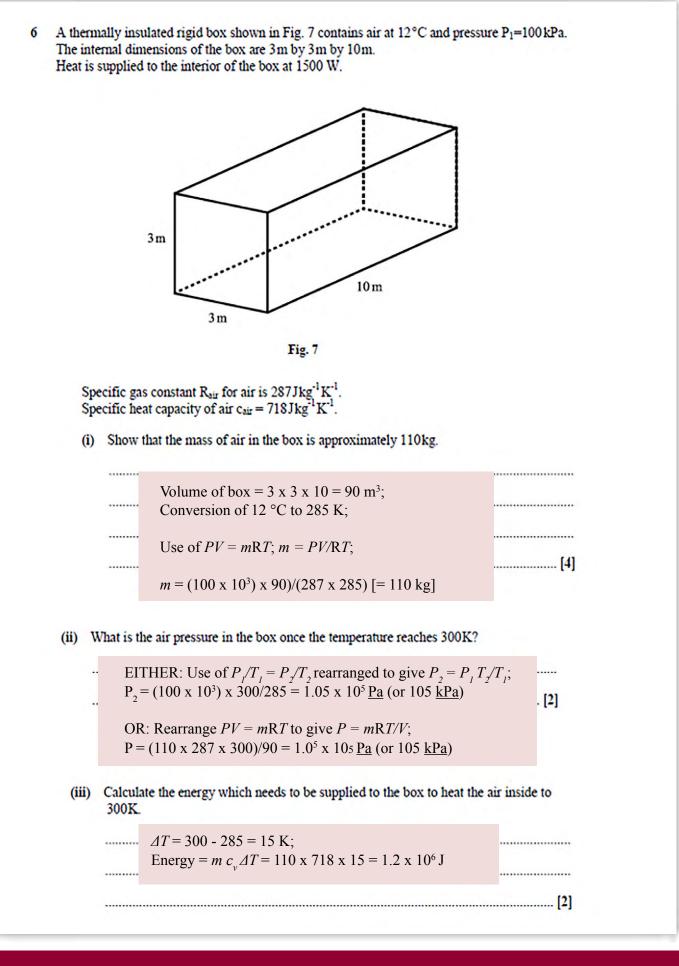

In part (a) this response does refer to the resistance, but as there is no mention of shear forces the mark cannot be gained.

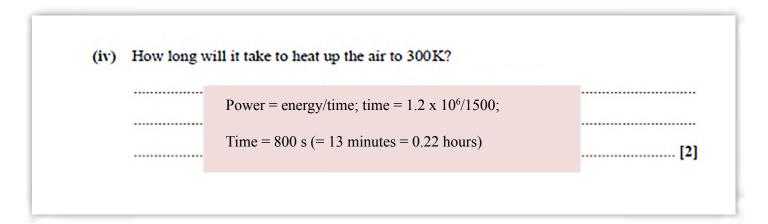
In part (b) the description of laminar flow does refer to particles, but it is too imprecise. "...the same way" is not a good enough explanation for "parallel". The description of turbulent flow does not state that particles move in an unorganised way and the mention of increasing viscosity is not relevant so the marks cannot be awarded.

In part (c) the calculations for the first three sections are all correct. The candidate has correctly converted the heights from cm to m, and used the correct values for density and all the final values have units. The first five marks here are all gained. In part (iv) the candidate has carried out an incorrect calculation so does not gain either mark.

Question 5 - High level answer

	A tropriet Finids ability to resist sheer Forces (e.g. Friction) [1]
(b)	Fluid flow is described as being either laminar or turbulent.
	Explain the difference in the behaviour of particles in laminar and turbulent flow.
	Thibulant Flow is where the particles nove in
	irregular patterns whereas in Jaminor they all
	trave more in miform straight movements
	1 Nge


In part (a) the candidate has defined viscosity correctly so gains the mark.


In part (b) the candidate's description of turbulent flow is correct with reference to particles moving in an irregular way. However, the description of laminar flow is not good enough; the terms "...uniform straight movement" does not necessarily mean the particles move parallel to one another.

The first two calculations are correct, and the candidate has converted the heights from cm to m, and used correct values for density so the first four marks are all gained.

The calculation in part (iii) is incorrect. The candidate has added an extra term – the atmospheric pressure so does not gain the mark.

In part (iv) the candidate has correctly subtracted the atmospheric pressure from the (incorrect) value for absolute pressure calculated in part (iii) to give a value for gauge pressure and gained both marks.

6 (i)

Calculation of volume.

Conversion of temperature to K. If T remains in °C max 2 marks can be awarded. Correct rearrangement of equation must be shown, but can be after values have been substituted. Correct substitution and calculation. No mark for final value as this is a 'show that' question.

6 (ii)

ACCEPT 1.1 x 10⁵ Pa (to 2 sf) Do not accept ecf of other values for m. Unit required. Lose one mark for POT errors. Use of temperatures in °C can score max 1 mark for correct rearrangement. [P = 2500 Pa]

6 (iii)

Correct change in temperature. Correct substitution and calculation. Ignore unit. Only allow ecf of an incorrect temperature <u>change</u>. [if T1 = 12, then Δ T = 288 and E = 2.3 x 10⁷ J; award 1 mark]

6 (iv)

Substitution of values into equation. Allow ecf of energy from part iii). Unit required. Accept 8×10^2 s (1sf).

Examiners comments

6 (i): In a 'show that' question candidates are expected to show all their working to gain full credit and some candidates did not do this clearly. Most candidates were able to calculate the volume of the box but then got stuck and they did not use the correct equation. Some candidates were unable to rearrange the equation and some candidates did not convert the temperature into Kelvin, although this was better than in the previous series.

6 (ii): Some candidates did not show working in this question so may not have gained any credit for an attempt to use the correct equation. Again there were some candidates who did not use temperatures in Kelvin.

We'd like to know your view on the resources we produce. By clicking on the 'Like' or 'Dislike' button you can help us to ensure that our resources work for you. When the email template pops up please add additional comments if you wish and then just click 'Send'. Thank you.

Whether you already offer OCR qualifications, are new to OCR, or are considering switching from your current provider/awarding organisation, you can request more information by completing the Expression of Interest form which can be found here: <u>www.ocr.org.uk/expression-of-interest</u>

OCR Resources: the small print

OCR's resources are provided to support the delivery of OCR qualifications, but in no way constitute an endorsed teaching method that is required by OCR. Whilst every effort is made to ensure the accuracy of the content, OCR cannot be held responsible for any errors or omissions within these resources. We update our resources on a regular basis, so please check the OCR website to ensure you have the most up to date version.

This resource may be freely copied and distributed, as long as the OCR logo and this small print remain intact and OCR is acknowledged as the originator of this work.

OCR acknowledges the use of the following content: Square down and Square up: alexwhite/Shutterstock.com

Please get in touch if you want to discuss the accessibility of resources we offer to support delivery of our qualifications: resources.feedback@ocr.org.uk

Looking for a resource?

There is now a quick and easy search tool to help find **free** resources for your qualification:

www.ocr.org.uk/i-want-to/find-resources/

ocr.org.uk/engineering OCR customer contact centre

Vocational qualifications

Telephone 02476 851509 Facsimile 02476 851633 Email <u>vocational.qualifications@ocr.org.uk</u>

OCR is part of Cambridge Assessment, a department of the University of Cambridge. For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored.

© OCR 2017 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office 1 Hills Road, Cambridge CB1 2EU. Registered company number 3484466. OCR is an exempt charity.

