AS and A LEVEL

Practical Skills Handbook

GEOLOGY

H014/H414
For first teaching in 2017

OCR Advanced Subsidiary and Advanced GCE in Geology

Version 1.1
Version 1.1 – May 2018

Version 1.1

One change of note made between Version 1.0 and Version 1.1

1. Guidance on Appendix 4: Measurements - Uncertainties

Version 1.0

First issue of Practical Skills Handbook for H014/H414

1. Based on Chemistry PSH v1.4 and Geology H087/H487 PSH v1.4.
New GCE A/AS Level specifications in Geology have been introduced for teaching from September 2017. Guidance notes are provided within specifications to assist teachers in understanding the requirements of each unit.

This Handbook plays a secondary role to the specification itself. The specification is the document on which assessment is based and this Handbook is intended to elaborate on the content of the specification to clarify how skills are assessed and what practical experience is necessary to support an assessment. The Practical Skills Handbook should therefore be read in conjunction with the specification.

During their study of Geology, students are expected to acquire experience of planning, implementation, use of apparatus and techniques, analysis and evaluation. These skills will be indirectly assessed in the written examinations at both AS and A Level. In addition, certain planning and implementation skills will be directly assessed at A Level only, through the Practical Endorsement.

This Handbook offers guidance on the skills required for both assessments, clarifies the arrangements for the Practical Endorsement, and gives suggestions towards planning a practical scheme of work that will cover all requirements.

How to use this handbook

Sections 2–5 of this handbook describe the assessment of practical skills in the AS and A Level qualifications. These sections elaborate on the information provided in the specification. Section 3 provides guidance on skills applicable to all sciences and Section 5 provides guidance on fieldwork skills. Teachers are particularly advised to carefully read Section 4, which sets out the requirements for the Practical Endorsement – the direct assessment of practical skills in the A Level qualifications.

Section 6 provides guidance on planning the practical scheme of work, bringing together the various aspects that should be taken into account. The guidance in this section is intended to be supportive rather than prescriptive.

The Appendices provide reference information on various topics.

- Appendices 1 and 2 provide information on health and safety and apparatus requirements, and may be useful to share with technicians.
- Appendix 3 gives some further guidance on the practical skills set out in specification Section 1.2.1, which are covered in the Practical Endorsement. This section is intended to support centres in planning how they will develop these skills.
- Appendices 4–7 give additional information on skills related to recording and presenting experimental data, covering measurements, units, graphs and referencing respectively. This content could be shared with students to help them develop an appropriate level of skill.
- Appendix 8 lists a number of useful resources, including additional resources and support provided by OCR.
- Appendix 9 is a guide to finding additional documentation on Interchange.
2 Overview of practical skills requirements

Summary of the assessment model

The practical skills assessment model is similar to the assessment model for the UK driving test, consisting of a theoretical and a practical component.

The driving theory test assesses whether you know how to drive a car, what the rules of the road are, and whether you can spot hazards. The theory test is centrally administered by the UK government, and all students sit a test of a similar format.

The practical driving test assesses whether you can put your knowledge into practice and actually drive a car. It is directly assessed by an examiner, who determines whether you have achieved the minimum standard. While certain skills must always be demonstrated, the experience of the assessment will be quite different from one student to the next, depending on the route taken, traffic conditions, hazards encountered, and so on.

Similarly, the assessment of practical skills in the GCE Geology qualifications consists of two components.

- The ‘theoretical’ component is an indirect assessment of practical skills through a written examination. This assessment is integrated into the written assessments of chemical knowledge and understanding, administered by OCR and taken at the end of the course.

- The ‘practical’ component is a direct assessment of practical skills displayed by students as they are performing practical work. This is assessed by the teacher across the whole of the course.

The indirect, written assessment is a component of both AS and A Level Geology. The direct assessment, known as the Practical Endorsement, is a component of A Level Geology only.

The skills required for the practical skills assessments are set out in Module 1 of each specification: Development of practical skills in Geology. Module 1 is divided into three sections:

- **Section 1.1** of the specification covers skills that are assessed indirectly in a written examination. These skills may be assessed in any of the written papers that constitute the written assessment, at both AS and A Level. Assessment of practical skills forms a minimum of 15% of the written assessment at both AS and A Level.

- **Section 1.2** of the specification covers skills that are assessed directly through the Practical Endorsement. Student performance is teacher-assessed against the Common Practical Assessment Criteria. If the student has demonstrated achievement in the competencies described, the teacher awards a Pass. The Practical Endorsement is ungraded. The Practical Endorsement is a component of the assessment at A Level only. There is no direct assessment of practical skills at AS Level. Performance in the Practical Endorsement is reported separately to the performance in the A Level as measured through the externally assessed components.

- **Section 1.3** of the specification covers practical skills developed through fieldwork that are assessed indirectly in a written examination and allows students to develop proficiency in fieldwork apparatus and techniques. These skills are directly indirectly assessed in the written assessment as part of the minimum of 15% of the marks at both AS and A Level. In addition competence in the use of field work apparatus and techniques (listed in Section 1.2.2) is assessed directly through the Practical Endorsement.
Summary of the practical skills required

Skills assessed in the written examinations
The skills assessed in the written examination cover the following areas:

- Planning
- Implementing
- Analysis
- Evaluation
- Measurement and description of the diagnostic properties of rocks in the field
- Collection of valid data in the field relating to the processes that formed the rocks
- Measurement and description of rock deformation in the field
- Use of geochronological principles in the field to place events in relative time sequences

Questions assessing these practical skills will be embedded in contexts relating to the content of the specification. The specification learning outcomes beginning ‘techniques and procedures …’ indicate types of practical activity that may form the context for the assessment of practical skills. Students should be able to apply any of the above skills within any of these practical contexts.

Skills assessed through the Practical Endorsement
The skills assessed through the Practical Endorsement cover the areas of Planning and Implementing, specifically the following:

- Independent thinking
- Use and application of scientific methods and practices
- Research and referencing
- Instruments and equipment

Students must exemplify their skill in these areas through use of the apparatus and techniques listed in the specification, Section 1.2.2.

Within Appendix 5 of the specification, a structure comprising 12 Practical Activity Groups (PAGs) is presented that demonstrate how the required skills and techniques for the Practical Endorsement may be covered in the minimum 12 activities. Centres are permitted to assess a wider range of practical activities for the Practical Endorsement, which may include splitting the requirements of individual PAGs across multiple activities.

AS Level students and the Practical Endorsement

There is no direct assessment of practical skills within the AS Level qualification. However, AS Level students will benefit from completing the type of practical activities recommended within the Practical Endorsement, as well as others, for the following reasons:

- completing practical activities will help to develop the practical skills that are assessed in the written examination
- completing practical activities will support understanding of the content of the specification
- students who decide to continue to take the A Level qualification after completing AS Level will be able to use their performance on Practical Endorsement activities completed in their first year towards the Practical Endorsement, as long as appropriate records have been kept.
Planning

Specification Section 1.1.1.

Learners should be able to demonstrate and apply their knowledge and understanding of:

- experimental and investigative fieldwork design, including to solve problems set in a practical context
- identification of variables that must be controlled, where appropriate
- evaluation that an experimental or investigative method is appropriate to meet the expected outcomes.

Experimental and investigative fieldwork design should include selection of suitable apparatus, equipment and techniques for the proposed experiment.

Students will benefit from having been given the opportunity to design simple experiments and fieldwork investigations, and receiving feedback on their plans. Additionally, they should routinely be asked to consider why experiments or investigations are performed in the way they are, and how the experimental set-up or investigative procedures contributes to being able to achieve the expected outcome. Students could be asked what might be the effect of changing aspects of the method.

Example questions

A geology student is collecting data on the rock types and geological structures present on a small Scottish island.

There are various types of metamorphic rocks and some small silicic igneous intrusions on the island. The metamorphic rocks cover most of the island. There is evidence that there has been more than one phase of metamorphism.

The geology student designed an investigation to test the hypothesis that there is more than one phase of metamorphism on the island. They carried out stratified sampling and field measurements of each rock type in proportion to its cover on the island (psammitic 45%, pelitic 25%, carbonate 20% and igneous 10%). The student mapped the isograds from chlorite to biotite, and biotite to garnet zones using the Photo Guide to Minerals to confirm their mineral identification. Where possible the student measured dip and strike of the country rock and finally they carried out a detailed transect across the exposed contact between the country rock and the largest intrusion, in the bed of a stream.

Evaluate the method that the geology student has used.

Suggest modifications to this method that would enable you to gain more accurate data. Assume that you have access to the standard equipment available to a student in a school or field study centre.

A Level Geology, Sample Question Paper 3 question 5(b)
Implementing

Specification Section 1.1.2.

Learners should be able to demonstrate and apply their knowledge and understanding of:

- how to use a wide range of practical apparatus and techniques correctly
- appropriate units for measurements
- presenting observations and data in an appropriate format.

The practical apparatus and techniques that may be assessed are those outlined in the specification statements related to practical techniques and procedures (including 1.3.1 Practical skills developed through fieldwork) and, for A Level only, those covered in the Practical Endorsement.

Students will be expected to understand the units used for measurements taken using common fieldwork and laboratory apparatus. See Appendix 5 for units commonly used in practical work in Geology.

Appropriate presentation of data includes use of correct units and correct number of decimal places for quantitative data. This skill also includes appropriate use of tables and graphs for presentation of data.

Further information on recording measurements and the use of graphs is given in Appendices 4 and 6, respectively.

Example questions

The student wants to investigate whether the two different aquifers at the source of the two springs are contaminated by sea water.

The student allows five drops of water from the samples from springs A and B to fall the 4 cm through the sunflower oil and records the drop times.

The mean drop time for sample A was 7.4 seconds.

The mean drop time for sample B was 2.9 seconds.

Suggest two modifications to the practical procedure that would enable a more accurate estimate of the molarity of the samples. Give reasons for your answers.

A Level Geology, Sample Question Paper 3 question 1(c)

Finer sediments such as silts are difficult to analyse using sieves. However Stokes’ Law shows a relationship between the radius and the terminal velocity of a particle falling through a fluid.

Design an experiment a student could carry out to measure the mean grain size in a well sorted sample of silt-sized sediment. Include details of the steps they would carry out and how they would process their results.

A Level Geology, Sample Question Paper1 question 31(b)

Describe how you could take an orientation on a dyke using a compass clinometer.

A Level Geology, Sample Question Paper3 question 3(c)
Analysis

Specification Section 1.1.3.

Learners should be able to demonstrate and apply their knowledge and understanding of:

- processing, analysing and interpreting qualitative and quantitative experimental results
- use of appropriate mathematical skills for analysis of quantitative data
- appropriate use of significant figures
- plotting and interpreting suitable graphs from experimental results, including:
  
  (i) selection and labelling of axes with appropriate scales, quantities and units
  
  (ii) measurement of gradients and intercepts.

Students will benefit from having practised these skills in a range of practical contexts. Many of the skills and techniques that form part of the Practical Endorsement will also be suitable for practising these skills.

Appendix 4 gives further information about the use of significant figures. Appendix 5 gives further information about the plotting of graphs. See also the Mathematical Skills Handbook for further guidance on the mathematical skills required in analysing experimental results, and in other areas of quantitative Geology such as fieldwork investigations.

Example questions

Coarse sediments, such as sands, can be assessed by passing the sample through a stack of sieves and weighing the fraction trapped in each. Grain size is expressed in logarithmic (base 2) phi units.

Explain why a logarithmic scale is used to measure sediment grain size.

* A Level Geology, Sample Question Paper 1 question 31(a)(i) *

A geologist investigates the mud size fraction of a sediment sample using a settling tube as shown in Fig. 1.3. This is known as the pipette or hydrometer method.

* [Diagram of experiment setup shown.] *

The geologist agitates the sample to produce a fully dispersed homogeneous suspension. After 1 hour, 6 minutes and 40 seconds all the sediment has settled out of the suspension.

Calculate the diameter of the smallest grains present in the sediment sample. Include units in your answer.

Stokes' law: \[ v = \frac{d^2g(\rho_p - \rho_w)}{18\eta} \]

Density of water = 1000 kg m\(^{-3}\)
Density of sediment = 2500 kg m\(^{-3}\)
Viscosity of suspension = 0.001 kg m\(^{-1}\) s\(^{-1}\)

* A Level Geology, Sample Question Paper 1 question 1(e) *
Evaluation

Specification Section 1.1.4.

*Learners should be able to demonstrate and apply their knowledge and understanding of:*

- how to evaluate results and draw conclusions
- the identification of anomalies in experimental measurements
- the limitations in experimental procedures
- precision and accuracy of measurements and data, including margins of error, percentage errors and uncertainties in apparatus
- refining experimental and investigative fieldwork design by suggestion of improvements to the procedures and apparatus.

Students will benefit from having practised these skills in a range of practical and fieldwork contexts. As a matter of course, students should be encouraged to think carefully about the procedure they are performing and how it relates to the content of the specification; this will better place them to draw appropriate conclusions, identify anomalous and unexpected results, and identify limitations in procedures. Many activities included in the Practical Endorsement, as well as others, can be extended to allow students to consider errors and uncertainties, and suggest improvements to procedures.

Appendix 4 provides further information on precision, accuracy and errors, as well as identifying anomalous results.

**Example questions**

Fig. 2.1 shows part of a volcanic island in the Mediterranean where a geologist is collecting data.

[Sketch map, table and photographs of samples shown.]

Based on the data collected the geologist has to produce a report on the risks from volcanic hazards to residents and visitors.

Evaluate the data set collected by the geologist and communicate the likely risks from volcanic hazards, for use by tour operators and tourists visiting the island.

*A Level Geology, Sample Question Paper 2 question 2(c)(ii)*

Common objects can be used in the place of minerals for a quick hardness test. The table below shows some of the common objects used to test the hardness of Specimen C.

[Table shown.]

The table below shows the appearance and hardness of a number of minerals

[Table shown.]

The student concluded that Specimen C was anhydrite.

Evaluate the student's judgement.

*AS Level Geology, Sample Question Paper 1 question 27(d)*
Introduction to the OCR Practical Endorsement

In order to pass the Practical Endorsement, students must demonstrate by the end of the two-year A Level course that they consistently and routinely exhibit the competencies described in the Common Practical Assessment Criteria (CPAC), listed in Section 5 of the specification. These competencies must be developed through a practical programme that encompasses the skills, apparatus and techniques listed in section 1.2 of the specification, and must comprise a minimum of 12 practical activities.

In the OCR specifications, 12 Practical Activity Groups (PAGs) are presented, which provide opportunities for demonstrating competency in all required apparatus and techniques. Additionally, all of the required skills can be developed through the PAGs. Some of the required skills are explicitly included in the requirements for individual PAGs, while others can be developed as a matter of course across the full range of activities.

The PAGs have been designed so that activities can be chosen that directly support the specification content. PAG1–6 support concepts that are likely to be taught in the first year of A Level, while PAG7–10 support concepts from the second year of A Level. PAG9–11 are less scaffolded activities, designed for development of the investigative skills covered in Module 1.2.1, and can be used to bring together knowledge from across the course. Finally, PAG12 allows students to demonstrate research skills and apply investigative approaches, and may link in with any content from the course or beyond.

Planning activities to cover the Endorsement requirements

The Practical Activity Groups

Table 1 on the next page lists the 12 Practical Activity Groups (PAGs) with the minimum of skills and use of apparatus and techniques to be covered in each. The groups have been designed to include the types of activities that will support the requirements of the Practical Endorsement, as well as the assessment of practical skills within the written examinations.

Table 1 can be used to construct a practical scheme of work that covers all requirements. Centres are not required to stick rigidly to this table, as long as overall all the requirements are covered. For example, the skills included in PAG11 or PAG12 could be covered as part of an activity described for another PAG, rather than as a separate activity. That is fine, as long as at least 12 activities are completed overall.

Centres are not required to cover the skills and techniques for each PAG in a single activity. Some PAGs cover a range of skills, and centres may prefer to split these out. For example, PAG1 could be covered through a series of stand-alone activities, focusing on mineral testing, photomicrographs, descriptions of hand samples in the classroom and field descriptions of rocks at outcrop as stand-alone practicals. Risk assessments could be completed for any or all of these.

The Common Practical Assessment Criteria (CPAC) can be applied to student performance across all practical work performed throughout the A Level course. It is not the intention that assessment of the Practical Endorsement should only be based on performance in 12 activities, one from each PAG. For example, if you run multiple fieldwork activities, students’ performance across all these activities could be taken into account, not just their performance in an activity selected explicitly to cover PAG6.
<table>
<thead>
<tr>
<th>Practical activity group (PAG)</th>
<th>Techniques/skills covered (minimum)</th>
</tr>
</thead>
</table>
| 1 Investigating minerals and rocks | • produce full rock descriptions of macro and micro features from conserved hand samples and unfamiliar field exposures, 1.2.2(h)
• use of photomicrographs to identify minerals and rock textures, 1.2.2(i)
• use of physical and chemical testing to identify minerals to include: (i) density test (ii) Mohs hardness test, 1.2.2(k) |
| 2 Investigating seismology | • use appropriate software and tools to process data, 1.2.1(g)
• use of ICT to: (i) compile and analyse geological data sets to enable visualisation using geographic information system (GIS), 1.2.2(m) |
| 3 Investigating crystalline processes | • use appropriate apparatus to record a range of quantitative measurements (temperature and length), 1.2.2(j) |
| 4 Investigating sedimentary processes | • use appropriate apparatus to record a range of quantitative measurements (mass, length), 1.2.2(j) |
| 5 Investigating fossils | • apply classification systems using distinguishing characteristics to identify unknown fossils, 1.2.2(f)
• produce annotated scientific drawings of fossils, from hand samples using a light microscope, or hand lens observation, 1.2.2(g) |
| 6 Investigating geological sequences | • location of geological features in the field using traditional navigation and basic field survey skills without the use of GPS, 1.2.2(a)
• identification of geological structures in the field recording observations as field sketches, 1.2.2(b)
• use of a compass clinometer to measure two and three-dimensional geological data across a range of scales such as the dip and strike of planar surfaces, or the apparent dip of fold limbs exposed on a hillside or cliff section, 1.2.2(c)
• construct graphic logs using appropriate scale and symbol sets for unfamiliar geological sequences and exposures, 1.2.2(d)
• use sampling techniques in fieldwork, 1.2.2(e)
• produce full rock descriptions of macro and micro features from unfamiliar field exposures, 1.2.2(h)
• identification of potential hazards (risk assessment), CPAC3 |
| 7 Investigating orogenic processes | • make and record qualitative observations, 1.2.1(d)
• use of ICT to collect, process and model geological data, 1.2.2(m) |
| 8 Investigating fluid movement | • 1.2.2(l) use methods to increase accuracy of measurements, such as timing over multiple observations |
| 9 Site investigations | • identification of geological structures in the field recording observations as field sketches, 1.2.2(b) |
| 10 Investigating geological resources | • use appropriate software and tools to carry out research and report findings, 1.2.1(g) |
| 11 Investigation | • apply investigative approaches and methods to practical work, 1.2.1(a) |
| 12 Research skills | • use online and offline research skills, including websites, textbooks and other printed scientific sources of information, 1.2.1(h)
• correctly cite sources of information, 1.2.1(i) |

1,2,3 These techniques/skills may be covered in either of the groups indicated.

Table 1 refers mainly to learning outcomes in Section 1.2 of the specification. In a few instances, references are included to the Common Practical Assessment Criteria (CPAC), to ensure coverage of criteria that are not explicitly stated in the learning outcomes.
Some of the learning outcomes in Section 1.2 are generic, i.e. they could be covered in many different activities. These have not been explicitly included in Table 1.

It is expected that there will be ample opportunities to develop and demonstrate the following skills across the whole practical course, regardless of the exact selection of activities:

- safely and correctly use a range of practical equipment and materials, 1.2.1(b) (though note identifying hazards has been explicitly included in PAG6)
- follow written instructions, 1.2.1(c)
- make and record observations/measurements, 1.2.1(d) (though note *qualitative* observations are explicitly included in PAG8)
- keep appropriate records of experimental activities, 1.2.1(e)
- present information and data in a scientific way, 1.2.1(f)
- use appropriate tools to process data, carry out research and report findings, 1.2.1(g)
- use a wide range of experimental and practical instruments, equipment and techniques, 1.2.1(j).

**Practical Activity Support Service**

OCR does not require specific activities to be completed for each PAG. Centres may select activities of their own, or provided by third parties, and map these against the requirements.

Centres may contact OCR’s Practical Activity Support Service (PASS) with queries regarding selection of activities for the Practical Endorsement: pass@ocr.org.uk

Centres may contact the service regarding individual activities that they wish to carry out. Centres may request advice on whether

- they have correctly mapped learning outcomes / CPAC against an activity
- they have correctly selected an activity that will cover the requirements for a particular PAG.

Centres should not submit full schemes of work to the service for advice on whether the full Practical Endorsement requirements have been covered. However, queries requiring clarification of the requirements and advice on the general approach to planning are welcome.

**Activities provided by OCR**

OCR has produced three example activities for each PAG, comprising student sheets and teacher/technician guidance. Centres may use these directly in their centres, adapt them to their requirements, or merely use them as reference for the types of activity that would satisfy the criteria for each PAG and the Endorsement as a whole.

The example activities are available on Interchange. See Appendix 9 for details on how to access them.

Table 2 lists the activity titles of the OCR example activities for A Level Geology.
### Table 2 PAG activities provided by OCR

<table>
<thead>
<tr>
<th>PAG1</th>
<th>PAG7</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Investigating minerals and rocks</strong></td>
<td><strong>Investigating orogenic processes</strong></td>
</tr>
<tr>
<td>1.1 Mineral testing</td>
<td>7.1 Modelling rock deformation</td>
</tr>
<tr>
<td>1.2 Describing rocks</td>
<td>7.2 Modelling geological structures</td>
</tr>
<tr>
<td>1.3 Geology on the streets</td>
<td>7.3 Mineralisation and metamorphism</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAG2</th>
<th>PAG8</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Investigating seismology</strong></td>
<td><strong>Investigating fluid movement</strong></td>
</tr>
<tr>
<td>2.1 USGC seismology database</td>
<td>8.1 Fluid movement Darcy’s law</td>
</tr>
<tr>
<td>2.2 Designing a seismograph</td>
<td>8.2 Surface tension and pore pressure</td>
</tr>
<tr>
<td>2.3 Seismology on Mars</td>
<td>8.3 Porosity and permeability</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAG3</th>
<th>PAG9</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Investigating crystalline processes</strong></td>
<td><strong>Site investigations</strong></td>
</tr>
<tr>
<td>3.1 Crystallisation of salol</td>
<td>9.1 Geotechnical desk study</td>
</tr>
<tr>
<td>3.2 Virtual microscope</td>
<td>9.2 Properties of rock/soil</td>
</tr>
<tr>
<td>3.3 Contact zone</td>
<td>9.3 Geotechnical site investigation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAG4</th>
<th>PAG10</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Investigating sedimentary processes</strong></td>
<td><strong>Investigating geological resources</strong></td>
</tr>
<tr>
<td>4.1 Sieving sediment</td>
<td>10.1 Geochemical testing of ores</td>
</tr>
<tr>
<td>4.2 Sediment table</td>
<td>10.2 BGS GeoIndex</td>
</tr>
<tr>
<td>4.3 Sedimentary structures</td>
<td>10.3 Mineral prospecting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAG5</th>
<th>PAG11</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Investigating fossils</strong></td>
<td><strong>Independent investigation</strong></td>
</tr>
<tr>
<td>5.1 Identifying fossils</td>
<td>11.1 Laboratory based investigation</td>
</tr>
<tr>
<td>5.2 Microfossils</td>
<td>11.2 Investigating sediments</td>
</tr>
<tr>
<td>5.3 Fossils in the field</td>
<td>11.3 Investigating crystalline rocks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAG6</th>
<th>PAG12</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Investigating geological sequences</strong></td>
<td><strong>Independent research skills</strong></td>
</tr>
<tr>
<td>6.1 Geochronology of a field site</td>
<td>12.1 Integrating fieldwork</td>
</tr>
<tr>
<td>6.2 Basic structural geology</td>
<td>12.2 Critical mineral resources</td>
</tr>
<tr>
<td>6.3 Logging a sequence</td>
<td>12.3 Exploring beyond the specification</td>
</tr>
</tbody>
</table>
Requirements for record keeping

Centres will be required by OCR to provide the following information to a Monitor on any potential monitoring visit (see following section for monitoring arrangements):

1. Plans to cover all practical requirements, such as a scheme of work to show how sufficient practical activities will be carried out to meet the requirements of CPAC, incorporating all the skills and techniques required over the course of the A Level.

2. Plans to cover the required minimum of four days of fieldwork, incorporating all the practical skills developed through fieldwork.

3. A record of each practical activity that is carried out and the date it was done.

4. A record of the criteria assessed in each practical activity.

5. A record of student attendance.

6. A record of which students met which criteria and which did not.

7. Evidence of students’ work associated with particular activities.

8. Any associated materials provided e.g. written instructions.

Centres are free to choose the format in which students record evidence of their work that best suits them, taking into consideration any constraints in a particular centre, e.g. large cohort, budget.

Possible suitable methods include the use of a field notebook, a lab book, a folder of relevant sheets or a collection of digital files.

PAG activities provided by OCR will provide instructions as to the types of evidence required depending on the nature of the particular activity.

The PAG tracker

OCR has developed an Excel spreadsheet that can be used to track the progress of a class through the Practical Endorsement. This tool has a number of functions and is designed to be used alongside the PAG activities provided by OCR. These activities and the tracker can be found on Interchange.

Teachers can use the PAG tracker by firstly entering their class data into the spreadsheet. The OCR PAG activities have all been mapped to the skills, techniques and Common Practical Assessment Criteria (CPAC) that need to be covered or considered when tracking the progress of students through their practical activities. This then means that it is only necessary to enter the date that a particular activity is completed for

- all students to be recorded as present, and
- the skills, techniques and criteria covered by that activity to be recorded as achieved by all students.

If any student is absent, or fails to demonstrate competency in an element of the activity, it is very easy to change that cell to absent or not achieved as appropriate.

Other functions include being able to check which skills, techniques and criteria a particular activity covers, being able to find an activity that covers particular skills, techniques and criteria and the ability to look at a whole class in terms of how many times they have achieved particular skills, techniques and criteria.
It is possible to enter and map practical activities that centres have developed themselves so the tracker is very flexible in terms of the activities carried out. If a centre would like any advice about the mapping of practical activities, then they will be able to get in touch with the Science Subject Advisors at OCR by emailing the Practical Activity Support Service at pass@ocr.org.uk.

It is suggested that Centres use the tracker as evidence for items 3–6 of the list of record keeping requirements above. Therefore by using this tool, along with a scheme of work, any student sheets used and the student’s evidence, the internal monitoring of the Practical Endorsement should be very easy to administer.

Monitoring arrangements

Monitoring visits
All centres will receive one geology monitoring visit in addition to a monitoring visit for one of the other sciences (biology, chemistry or physics) offered by that centre in the first two years of teaching (from September 2017). Large centres (with more than 140 entries in any one science) will be visited for all four sciences.

The purpose of the monitoring process is to ensure that centres are planning and delivering appropriate practical opportunities and fieldwork, and making and recording judgements on student competences to meet the required standards.

On the day of the visit the monitor will:

- observe practical activity
- review the records kept by the centre and by students (see Tracking achievement above)
- talk with staff and students.

Following the visit, the monitor will complete a record of the visit, which will be copied to the centre. The record will state whether the monitor is satisfied that the centre is meeting the requirements for the Practical Endorsement. The report may additionally offer guidance on improvements that could be made by the centre.

Should a centre dispute the outcome of a monitoring visit, a repeat visit by an alternative monitor may be requested.

Arrangement of visits
From September 2019 centres will no longer be required to make any advance registration for the Practical Endorsement, as the Awarding Organisations (AOs) will use information from centre entries for the reformed A levels in biology, chemistry, geology and physics in the previous summer examination series to jointly plan monitoring visits for the September 2019 to May 2020 and subsequent cycles.

The first contact with a centre will be from the Awarding Organisation with which geology was previously entered. This first contact will be with the exams officer (or other nominated school contact) before making arrangements with the geology lead teacher, including the requirement for the centre to supply the monitor with timetable information for the agreed date to allow the identification of a practical lesson to observe.

Monitoring visits will follow the same procedures as for biology/chemistry/physics in 2015 to 2017 and large centres will continue to be monitored for biology, chemistry, geology and physics.

Standardisation

Lead teachers are required to have undertaken the free on-line training provided (available and accessible to all teachers at: https://practicalendorsement.ocr.org.uk) on the implementation of the Practical Endorsement. They should also ensure that all other teachers of geology within the centre are familiar with the requirements so that:

- all students are given an adequate opportunity to fulfil the requirements of the Practical Endorsement
- standards are applied appropriately across the range of students within the centre.

Assessing the Practical Endorsement

The Practical Endorsement is directly assessed by teachers. The assessment is certificated as Pass or Not-classified.

In order to achieve a Pass, students will need to have met the expectations set out in the Common Practical Assessment Criteria (CPAC) (see Table 2 in the specification, Appendix 5) including demonstrating competence in all the skills, apparatus and techniques in sections 1.2.1 and 1.2.2 of each specification. Students can demonstrate these competencies in any practical activity undertaken throughout the course of study. The 12 OCR Practical Activity Groups (PAGs) described in the specification provide opportunities for demonstrating competence in all required skills, together with the use of apparatus and practical techniques for each subject.

Students may work in groups, but must be able to demonstrate and record independent evidence of their competency; in practice teachers have found that pairs of students work effectively, however with larger groups it becomes very demanding to assess individual competence. This must include evidence of independent application of investigative approaches and methods to practical work.

Teachers who award a Pass need to be confident that the student consistently and routinely exhibits the required competencies before completion of the A Level course.

Access arrangements

There are no formal access arrangements for the Practical Endorsement.

Centres may make reasonable adjustments to their planned practical activities to allow students with an impairment to participate in practical work. Where such adjustments allow these students to independently demonstrate the competencies and technical skills required, without giving these students an unfair assessment advantage, centres may award a Pass for the Practical Endorsement.

For example, a student who is impaired by a colour vision deficiency can use a colour chart to help them identify colour changes. Alternatively, practical activities can be selected that involve activities that such students are able to access without additional assistance.

A student whose impairment restricts their ability to perform some or all of the required practical work independently cannot achieve a Pass in the Practical Endorsement. However, they will be able to access all the marks within the written examinations, and will benefit from having been given the opportunity to experience all practical work, perhaps with the help of a practical assistant. Such a student may apply to OCR for an access arrangement which if approved will exempt them from the Practical Endorsement; an application should be made in the standard way. Details of the application process can be found here https://www.jcq.org.uk/exams-office/access-arrangements-and-special-consideration.
5 Practical skills developed through fieldwork & assessed in written examination

As part of the A Level Geology course, learners are required to undertake fieldwork in different contexts: virtual fieldwork, local fieldwork outside the classroom and fieldwork on unfamiliar outcrop geology. Students are required to undertake a minimum of two days fieldwork at AS and four days fieldwork at A Level which should be a on a mixture of local and unfamiliar outcrop geology.

Traditional navigation and basic field survey skills

Specification Section 1.1.2 and 1.3.1

Learners should be able to demonstrate and apply their knowledge and understanding of:

- how to use a wide range of practical apparatus and techniques correctly: as outlined in the skills required for the practical endorsement:
  - location of geological features in the field using traditional navigation and basic field survey skills without the use of GPS
- presenting observations and data in an appropriate format
- the collection of valid data in the field relating to the igneous, metamorphic or sedimentary processes that formed the rocks

Students should be familiar with using OS and BGS maps, 6 figure grid references, following a route on paths/tracks, use of handrails and collecting features, setting the map to the ground and orientating the map using a compass. Basic survey skills could be developed by recording a traverse along a stream section or mapping of a small area of good exposure using contact mapping; field surveys should record sufficient orientations and dimensions to allow a to scale fair copy to be drawn.

Students will benefit from having been given the opportunity to carry out simulated classroom or school ground navigation and survey exercises. Additionally, they should routinely be given opportunity to use geological maps. Digital copies of all current BGS 1:50,000 solid and drift maps can be accessed online http://www.bgs.ac.uk/data/maps/home.html or using the iGeology app http://www.bgs.ac.uk/iGeology/.

Example question

The geological map provided should be used to answer the questions that follow.

[Extract of BGS (Scotland) Sheet 32 Solid provided as colour insert]

Draw and label in the box below, a simple sketch-map to show the unconformity between the Upper Old Red Sandstone beds c³ and the Lower Old Red Sandstone volcanics. Clearly label the age relationships of the volcanics, faults and c³ beds but do not put in the detail of the volcanics.

[Box with grid lines representing an 12 km² area shown.]

Draw and label on your sketch map a volcanic vent.

A Level Geology, June 2001, Question Paper 5668/1 question 1(d)(i)&(ii)
Recording geological observations as field sketches

Specification Section 1.1.2 & 1.3.1.

Learners should be able to demonstrate and apply their knowledge and understanding of:

- how to use a wide range of practical apparatus and techniques correctly: as outlined in the skills required for the practical endorsement:
  - identification of geological structures in the field, recording observations as field sketches
  - production of annotated scientific drawings of fossils, or small scale features
- presenting observations and data in an appropriate format
- the measurement and description of the diagnostic properties of rocks in the field
- the measurement and description of rock deformation in the field

It is important to develop field and technical sketching skills with students and to model the skill to students both in the classroom and in the field; a mini whiteboard is an invaluable teaching prop. Students cannot draw what they see until they have learned how to get their eye in for the geology. Many activities included in the Practical Endorsement can be extended to allow students to develop these skills.

Because students are unfamiliar with field sketch they show a pattern of drawing development similar to Piaget’s four stage model: fortuitous realism scribbled drawing may contain some geology by accident; failed realism drawings of blobs (rock outcrops) or artistic interpretations, but no understanding of the underlying geology; intellectual realism drawings show idealised textbook examples of features or fossils; visual realism drawings begin to reflect some understanding of the real geologic features. Further information is provided in the Drawing Skills Handbook.

Example questions

This question is about geological structures.

The photograph below shows a geological feature exposed in a roadside cutting in Cumbria.

[Photograph of folded rock in a road cutting shown.]

In the space below draw a labelled sketch to show the main features of the geological structure.

[Box of the same size as the photograph shown.]

AS Geology, Sample Question Paper 1 question 21(a)

[Phase diagram shown.]

Anorthite is an end-member of the plagioclase solid-solution series. Diopside is pyroxene with a very different silicate structure.

Draw an annotated sketch showing the texture of the rock that would result from the slow cooling of this mixture. The composition is 30% diopside.

[Blank circle 68 mm in diameter with 1 mm scale bar shown.]

A Level Geology, Sample Question Paper1 question 28(c)(i)
Use of a compass clinometer

Specification Section 1.3.1 and 3.3.1.

Learners should be able to demonstrate and apply their knowledge and understanding of:

- the measurement and description of rock deformation in the field
- use of a compass-clinometer

Students will benefit from having been given the opportunity to carry out simulated classroom or school ground exercises. Students are not required to make adjustment for the magnetic declination. Many activities included in the Practical Endorsement, as well as others, can be extended to allow students to develop these skills, consider errors and uncertainties, and suggest improvements to procedures.

The use of mnemonics (e.g. putting Fred in the shed, right hand rule forefinger–strike, thumb–dip) can help as can chalking the dip and strike symbol onto a bedding plane and then explicitly making the connection with the same symbol on a geological map. Learning to use a compass clinometer is a complex kinaesthetic operation like touch typing or manual gear shifting, students will need practice.

A common error is for a previous student to have adjusted the red north arrow using the screw on the bezel of the compass. A quick test is to ask the students to take a bearing on a distant object and then check that they all agree within a few degrees; this is much quicker than checking every compass. Separate clinometers such as the GeoMaxiclin are available and can be used in conjunction with a basic baseplate compass.

Example questions

Describe how a geologist measures both the strike and dip of a rock surface.

_A Level Geology, January 2013, F791 question 4(a)(ii)_
Graphic logs

Specification Section 1.1.2, 1.3.1 and 4.1.2.

Learners should be able to demonstrate and apply their knowledge and understanding of:

- how to use a wide range of practical apparatus and techniques correctly: as outlined in the skills required for the practical endorsement:
  - construction of graphic logs using appropriate scale and symbol sets
- presenting observations and data in an appropriate format
- the measurement and description of the diagnostic properties of rocks in the field
- the construction and interpretation of graphic logs of modern sediment sequences and ancient sedimentary rock

Students will benefit from having been given the opportunity to carry out simulated classroom or school ground exercises. Where buildings or other manmade structures have courses of different building stones these can be used to develop students skills. Many activities included in the Practical Endorsement can be extended to allow students to develop these skills.

Further information and examples are provided in the Online Delivery Guide

Example questions

A clastic sedimentary sequence is exposed along a cliff face. An A Level student makes field observations and records measurements in a field note book. The student identifies six beds. Bed 6 is the oldest and bed 1 is the youngest.

Table 2.1 shows the field data collected from the sedimentary sequence.

[Table listing the thickness, lithology and visible features of six beds shown.]

Using the data in Table 2.1, plot a graphic log to show the information in the table. Choose an appropriate scale for your plot.

Provide a key next to your graphic log to help you with your answer.

[Outline grid with three columns and a 4 m vertical scale shown.]

Give the name for the technique outlined above for determining the origin of the rocks.

A Level Geology, Sample Question Paper3 question 2(b)(i)&(iii)
Sampling techniques in fieldwork

Specification Section 1.1.2, 1.3.1, 2.2.1 and HSW6.

Learners should be able to demonstrate and apply their knowledge and understanding of:

- how to use a wide range of practical apparatus and techniques correctly: as outlined in the skills required for the practical endorsement:
  - use of sampling techniques in fieldwork
- the collection of valid data in the field relating to the igneous, metamorphic or sedimentary processes that formed the rocks; To include: random, stratified and systematic sampling techniques and sampling validity
- the measurement and description of rock deformation in the field; to include sampling validity
- the nature and the reliability of the fossil record
- evaluate methodology, evidence and partial data sets, and resolve conflicting evidence.

Students will benefit from having been given the opportunity to carry out simulated classroom or school ground exercises. Many activities included in the Practical Endorsement can be extended to allow students to develop these skills.

By its very nature geological evidence is often partial and fragmentary, and sampling by opportunity may be the only method possible. Sampling strategies have to suit the accessibility of the geology or other strategies adopted to minimise sampling bias. Students should be provided with opportunities to consider errors and uncertainties, and suggest improvements to procedures.

**Example question**

Some students collected 15 clasts from two points in a river by systematically sampling across the river bed. They measured the length and width (to the sharpest point) of each clast to investigate how sediment changes as it is transported downstream.

The table on the next page shows the data they collected.

*Table of data including a running mean length of clast shown.*

Comment on the validity of the samples the students collected.

*AS Geology, Sample Question Paper question 24(b)(iii)*
Rock descriptions of macro and micro features

Specification Section 1.1.2 and 1.3.1.

Learners should be able to demonstrate and apply their knowledge and understanding of:

- how to use a wide range of practical apparatus and techniques correctly: as outlined in the skills required for the practical endorsement:
  - production of full rock descriptions of macro and micro features from conserved hand samples and unfamiliar field exposures
- the measurement and description of the diagnostic properties of rocks in the field

Students will benefit from having been given the opportunity to carry out simulated classroom or school ground exercises. Providing students with regular opportunities to handle and describe rocks is invaluable in helping them to develop these skills. New and unfamiliar rock samples should be introduced through the course and opportunities exist in every module to use real rocks.

The use of rocks as starter exercises and in plenaries overcomes the reluctance of students to engage with rocks and helps to embed knowledge and understanding of geological concepts. The unfamiliarity of the large technical vocabulary required in geology can challenge some students, however regular hands on experience with rocks helps students to internalise the vocabulary and establish concrete connections to abstract concepts; granite is richer in SiO₂ and less dense than gabbro > in the primitive Earth the mantle segregated into a granitic crust and a mafic mantle.

Many activities included in the Practical Endorsement can be extended to allow students to develop these skills. Students should be provided with opportunities to consider errors and uncertainties, and suggest improvements to procedures.

Example questions

The photograph below is of a granite.

[Close up photograph of granite with a field of view 30 mm × 40 mm shown. Crystals M, N, P and Q are labelled.]

Identify two minerals in the photograph from their descriptions below.

Black, with perfect cleavage that forms flakes:     Letter ___ Name ___

Pink phenocrysts of hardness 6:     Letter ___ Name ___

AS Geology, Sample Question Paper question 25(b)

The thin section diagram below shows two minerals which can be identified from the properties given in the table.

[Photomicrograph with minerals A and B labelled shown.]

[Table listing properties of mineral A and B shown.]

Identify the rock in the diagram.

A Level Geology, Sample Question Paper1 question 4
Methods to increase accuracy of measurements

Specification Section 1.1.2 and 1.3.1.

Learners should be able to demonstrate and apply their knowledge and understanding of:

- how to use a wide range of practical apparatus and techniques correctly: as outlined in the skills required for the practical endorsement:
  - use of methods to increase accuracy of measurements, such as timing over multiple observations, or use of a fiducial scale (in photograph/field sketch)
- the measurement and description of the diagnostic properties of rocks in the field
- the collection of valid data in the field relating to the igneous, metamorphic or sedimentary processes that formed the rocks
- the use of geochronological principles in the field to place geological events in relative time sequences.

Students will benefit from having practised these skills in a range of practical and fieldwork contexts. As a matter of course, students should be encouraged to think carefully about the procedure they are performing and identify limitations in procedures.

A fiducial scale is a reference such as an object, person or photoscale. The Mars Curiosity Rover has a calibration target https://mars.nasa.gov/msl/mission/instruments/cameras/mahli/ The Apollo mission photographs use a grid and the fiducial.

Many activities included in the Practical Endorsement can be extended to allow students to develop these skills. Students should be provided with opportunities to consider errors and uncertainties, and suggest improvements to procedures.

Example questions

Finer sediments such as silts are difficult to analyse using sieves. However Stokes’ Law shows a relationship between the radius and the terminal velocity of a particle falling through a fluid.

Design an experiment a student could carry out to measure the mean grain size in a well-sorted sample of silt-sized sediment. Include details of the steps they would carry out and how they would process their results.

A Level Geology, Sample Question Paper 1 question 31(b)

Sediments allow water to pass through them at different rates and this controls how well cemented the rock will become after diagenesis. The permeability of rocks varies greatly and one of the variables is grain size.

A student is provided with three sand samples and measures the permeability of the three different samples of sand using the apparatus shown below.

[Diagram of a funnel lined with filter paper, measuring cylinder and a stop watch shown.]  

For each sample she measure the time for 10 cm³ of water to pass through the wet sediment and collect in the measuring cylinder.

Describe two problems that reduce the accuracy of this experiment.

AS Level Geology, F793 Practice Question Paper, question 1(c)
6 Planning your practical scheme of work

In planning the practical scheme of work, centres need to ensure sufficient opportunities are provided to support students’ development of understanding and skill in the following areas:

- practical skills assessed in the written examinations (identified in specification Section 1.1)
- practical skills developed through fieldwork and assessed in the written examinations (identified in specification Section 1.3)
- practical techniques and procedures assessed in the written examinations (identified throughout the content modules of the specifications)
- practical skills assessed through the Practical Endorsement (identified in specification Section 1.2, for A Level only)
- conceptual understanding which can be supported through practical work.

This section presents an approach to planning a practical scheme of work that takes into account all of the above. The information in this section is presented for guidance only; there is no prescribed approach.

An approach to planning

On the following pages, sample tables are presented for the Geology AS and A Level specifications, which could be used as a starting point for planning the practical scheme of work within centres. The structure of the tables is informed by one possible approach to planning:

1. Identify the learning outcomes within the specification that relate to knowledge and understanding of practical techniques and procedures.

2. Identify which of these learning outcomes relate to Practical Activity Groups, so that carrying out practical work in support of these learning outcomes will also meet certain requirements within the Practical Endorsement. For the GCE Geology specification, PAGs 1–10 relate to activity types that will also directly support learning outcomes assessed in the written examinations.

3. Select practical activities that will adequately cover the requirements identified so far.

4. Consider how to incorporate coverage of PAGs 11–12. The research, citation and investigative skills covered in PAGs 11–12 may be developed in the context of any topic in the specification (or beyond). You may elect to:
   a. develop these skills in an area not already included in the PAGs (e.g. planetary geology, pterosaurs, novel hydrocarbon extraction)
   b. use this type of activity to give additional support in an area of practical activity already covered
   c. run this type of activity as a ‘mini-investigation’, giving students some freedom of choice of topic.

5. Identify how the chosen practical activities can be used to support development of the practical skills assessed in the written examinations. Modify the choice of activities, or add activities, if more support is required.

6. Identify how the chosen practical activities can be used to support other learning outcomes within the specification. Again, if insufficient opportunities have been identified, consider modifying the choice of activities or adding additional activities.
Note that a much wider range of practical work can be carried out than is suggested by the learning outcomes specifically related to practical techniques and procedures.

The learning outcomes related to techniques and procedures form just one potential starting point for planning the practical scheme of work. It is equally possible to begin by considering the work you wish to carry out to support conceptual understanding, and then checking that other requirements have been covered. Alternatively, you could begin by planning sufficient work to cover the requirements of the Practical Endorsement.

Sample planning tables

The following sample tables are also available as editable Word files on Interchange.

The **Activities** column is left blank for centres to complete. This reflects the fact that OCR does not specify particular practical activities that need to be carried out.

The **Examinable skills** column suggests which practical skills assessed in the written examinations could be developed in the context of particular types of activities. This is a non-prescriptive and non-exhaustive list; centres should adjust this information according to their selected activities and their overall scheme of work.

Certain skills may be expected to form part of any practical activity. These are not explicitly referenced in the table, and include:

- presenting observations and data
- processing and interpreting results.

Certain other skills could be developed in almost any practical activity. These include:

- experimental and investigative fieldwork design
- evaluation of method
- evaluating results
- identifying limitations in procedures.

However, there are certain types of procedure that particularly lend themselves to developing problem solving and evaluation skills, and these have been identified in the tables.

Finally, certain skills will be limited to certain types of activity. This primarily concerns skills related to recording, processing and evaluating quantitative measurements, and the controlling of variables. Opportunities for developing these skills are identified in the tables.

The **Other LOs supported** column can be used to identify other learning outcomes within the specification that can be taught through the practical activities. Again, the opportunities identified in the sample tables are non-prescriptive and non-exhaustive.
Geology sample planning table

<table>
<thead>
<tr>
<th>Learning outcome</th>
<th>PAG</th>
<th>Example Activity</th>
<th>Examinable skills</th>
<th>Other LOs supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1(c)(i) the diagnostic physical properties of rock-forming minerals in hand specimens (ii) the classification of samples, photographs and thin section diagrams of minerals using their diagnostic physical properties (iii) practical investigations to determine the density and hardness of mineral samples (iv) the techniques and procedures used to measure mass, length and volume.</td>
<td>1.1</td>
<td>Mineral testing</td>
<td>1.1.4(a),(b),(e) 1.3.1(a),(b)</td>
<td>5.5.1 Exploration for metals 6.2.2 Applied engineering geology</td>
</tr>
<tr>
<td>2.1.2(a)(i) the classification of igneous rocks on the basis of their composition (silicic, intermediate, mafic and ultramafic) and crystal grain size (coarse-crystals &gt;5 mm diameter; medium-crystals 1–5 mm diameter; fine-crystals &lt;1 mm diameter) (ii) the diagnostic properties of rocks to identify igneous rocks in samples, photographs and thin section diagrams</td>
<td>1.2</td>
<td>Describing rocks 1.3 Geology on the streets</td>
<td>1.1.2(b) 1.1.4(b),(c),(e) 1.3.1(a),(b)</td>
<td>5.3.1 Igneous petrology</td>
</tr>
<tr>
<td>2.1.2(b)(iii) the representation using drawings and annotated diagrams of igneous textures and crystal shape in samples (iv) the techniques and procedures used to measure temperature</td>
<td>3.1</td>
<td>Crystallisation of salol 3.2 Virtual microscope</td>
<td>1.1.2(b) 1.1.3(c) 1.1.4(b),(c),(d),(e)</td>
<td>5.3.1 Igneous petrology</td>
</tr>
<tr>
<td>2.1.3(b)(ii) sieve analysis of sediments</td>
<td>4.1</td>
<td>Sieving sediment</td>
<td>1.1.1(b),(c) 1.1.2(b) 1.1.3(b),(c),(d) 1.1.4(a),(b),(c),(d),(e) 1.3.1(b)</td>
<td>4.1.2 Surface processes and products 5.1.1 Sedimentary processes and resources</td>
</tr>
<tr>
<td>2.1.3(c) the diagnostic properties of rocks to recognise and measure grain sizes in samples, photographs and thin section diagrams</td>
<td>1.2</td>
<td>Describing rocks 3.2 Virtual microscope</td>
<td>1.1.1(a),(c) 1.1.2(b) 1.1.3(c),(d)</td>
<td>4.1.2 Surface processes and products 5.1.1 Sedimentary processes</td>
</tr>
<tr>
<td>Learning outcome</td>
<td>PAG</td>
<td>Example Activity</td>
<td>Examinable skills</td>
<td>Other LOs supported</td>
</tr>
<tr>
<td>---------------------------------------------------------------------------------</td>
<td>-----</td>
<td>-----------------------------------</td>
<td>----------------------------------------------------------------------------------</td>
<td>-----------------------------------------------------</td>
</tr>
<tr>
<td>2.1.3(d)(i) the classification of siliciclastic rocks on the basis of their</td>
<td>1.2</td>
<td>Describing rocks</td>
<td>1.1.2(b)</td>
<td>4.1.2 Surface processes and products</td>
</tr>
<tr>
<td>diagnostic properties (colour, composition, grain size and grain shape, sorting)</td>
<td></td>
<td>Geology on the streets</td>
<td>1.1.4(a),(c),(e)</td>
<td></td>
</tr>
<tr>
<td>(ii) the classification of carbonate rocks on the basis of their diagnostic</td>
<td>1.3</td>
<td></td>
<td>1.3.1(a),(b)</td>
<td></td>
</tr>
<tr>
<td>properties (grain size, cement, mineral composition and fossil content, and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sorting)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iii) the diagnostic properties of rocks to identify siliciclastic and carbonate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rocks in samples, photographs and thin section diagrams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.2(a)(ii) the plotting and interpretation of half-life curves</td>
<td>11.1</td>
<td>Laboratory based investigation</td>
<td>1.1.1(a),(b),(c)</td>
<td>5.3.2 Mid-ocean ridges</td>
</tr>
<tr>
<td>2.2.2(b)(iii) the geochronological division of the geological column for the</td>
<td>5.1</td>
<td>Identifying fossils</td>
<td>1.1.1(a),(b),(c)</td>
<td></td>
</tr>
<tr>
<td>Phanerozoic into eras and periods using a biostratigraphic relative time</td>
<td>5.2</td>
<td>Microfossils</td>
<td>1.1.2(b)</td>
<td></td>
</tr>
<tr>
<td>sequence; to include basic identification of main invertebrate groups</td>
<td>5.3</td>
<td>Fossils in the field</td>
<td>1.1.3(b),(c),(d)</td>
<td></td>
</tr>
<tr>
<td>(trilobites, corals, brachiopods, bivalves, cephalopods)</td>
<td></td>
<td></td>
<td>1.1.4(a),(b),(c),(d),(e)</td>
<td></td>
</tr>
<tr>
<td>3.1.2(a) the bulk composition of the Earth and how it is inferred from the</td>
<td>12.3</td>
<td>Exploring beyond the specification</td>
<td>1.1.3(d)</td>
<td>5.5.1 Exploring for metals</td>
</tr>
<tr>
<td>composition of meteorites (chondrites) and the Sun; to include the use of</td>
<td></td>
<td></td>
<td>1.1.4(a),(b)</td>
<td></td>
</tr>
<tr>
<td>normalised diagrams displaying element concentrations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.1(b)(iii) the interpretation and analysis of seismograms</td>
<td>2.2</td>
<td>Designing a seismograph</td>
<td>1.1.1(a),(b),(c)</td>
<td>6.1.1 Earthquake geology</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>Seismology on Mars</td>
<td>1.1.3(b),(c),(d)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1.4(a),(b),(c),(d),(e)</td>
<td></td>
</tr>
<tr>
<td>3.2.2(i) the nature of volcanic hazards and their relation to the composition</td>
<td>11.1</td>
<td>Laboratory based investigation</td>
<td>1.1.1(a),(b),(c)</td>
<td>6.1.2 Geohazard risk analysis</td>
</tr>
<tr>
<td>and properties of the source magma; to include the plotting and interpretation</td>
<td></td>
<td></td>
<td>1.1.3(b),(c),(d)</td>
<td></td>
</tr>
<tr>
<td>of isopachyte maps</td>
<td></td>
<td></td>
<td>1.1.4(a),(b),(c),(d),(e)</td>
<td></td>
</tr>
<tr>
<td>Learning outcome</td>
<td>PAG</td>
<td>Example Activity</td>
<td>Examinable skills</td>
<td>Other LOs supported</td>
</tr>
<tr>
<td>---------------------------------------------------------------------------------</td>
<td>-----</td>
<td>----------------------------------------</td>
<td>-----------------------------------------------------------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>3.3.1(a)(ii) the identification, measurement and description of these geological structures on photographs, maps, cross-sections and in the field, including production of labelled field sketches</td>
<td>6.2</td>
<td>Basic structural geology</td>
<td>1.1.1(a)(c)</td>
<td>3.3.2 Structural geology and plate boundaries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modelling geological structures</td>
<td>1.1.3(b),(d)</td>
<td>6.2.1 Geotechnics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1.4(a),(b),(c),(d)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.3.1(c)</td>
<td></td>
</tr>
<tr>
<td>(iii) the construction of geological cross-sections from geological maps</td>
<td>7.2</td>
<td>Modelling rock deformation</td>
<td>1.1.1(b)</td>
<td>6.2.1 Geotechnics</td>
</tr>
<tr>
<td>(iv) use of a compass-clinometer</td>
<td></td>
<td></td>
<td>1.1.2(b)</td>
<td>6.2.2 Applied engineering geology</td>
</tr>
<tr>
<td>3.3.1(b)(ii) the use of stress and strain diagrams</td>
<td>7.1</td>
<td>Modelling rock deformation</td>
<td>1.1.3(b),(d)</td>
<td></td>
</tr>
<tr>
<td>4.1.1(a) the use of evidence in the field, photographs, diagrams and maps to recognise the rock cycle</td>
<td>6.1</td>
<td>Geochronology of a field site</td>
<td>1.1.1(a)</td>
<td>2.2.1 Minerals</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1.4(a),(c),(e)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.3.1(b),(c),(d)</td>
<td></td>
</tr>
<tr>
<td>4.1.2(a)(iii) the recognition, application and sketching of the diagnostic properties of sedimentary structures to interpret way-up and sedimentary environments, in the field and on photographs</td>
<td>4.3</td>
<td>Sedimentary structures</td>
<td>1.1.1(a)</td>
<td>3.3.1 Rock mechanics</td>
</tr>
<tr>
<td></td>
<td>6.1</td>
<td>Geochronology of a field site</td>
<td>1.1.4(a),(c),(e)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.3.1(b),(d)</td>
<td></td>
</tr>
<tr>
<td>4.1.2(b) the construction and interpretation of graphic logs of modern sediment sequences and ancient sedimentary rock; to include fossil assemblages, sedimentary structures and directional data</td>
<td>6.3</td>
<td>Logging a sequence</td>
<td>1.1.1(a),(c)</td>
<td>5.1.1 Sedimentary processes and resources</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1.2(b)</td>
<td>7.2.3 Oil and gas basins</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1.3(d)</td>
<td>7.2.3 Whole basin facies analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1.4(a),(c),(e)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.3.1(a),(b),(d)</td>
<td></td>
</tr>
<tr>
<td>4.2.1(a) the geochronological principles used to place geological events in relative time sequences in outcrops, photographs, maps and cross-sections to interpret geological histories</td>
<td>6.1</td>
<td>Geochronology of a field site</td>
<td>1.1.1(a),(c)</td>
<td>7.2.3 Oil and gas basins</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1.3(d)</td>
<td>7.2.3 Whole basin facies analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1.4(a),(c),(e)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.3.1(a),(b),(c),(d)</td>
<td></td>
</tr>
<tr>
<td>4.2.1(b) the critical application of lithostratigraphic correlation (lateral variation, diachronous beds)</td>
<td>11.2</td>
<td>Investigating sediments</td>
<td>1.1.3(d)</td>
<td>7.2.3 Oil and gas basins</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.2.3 Whole basin facies</td>
</tr>
</tbody>
</table>

© OCR 2018 Version 1.1
AS and A Level Geology

31
<table>
<thead>
<tr>
<th>Learning outcome</th>
<th>PAG</th>
<th>Example Activity</th>
<th>Examinable skills</th>
<th>Other LOs supported</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>4.2.1(d)</strong> biostratigraphic correlation using first appearance of macro fossils, stratigraphic range, extinction and fossil assemblages; to include zone fossils</td>
<td>5.1</td>
<td>Identifying fossils</td>
<td>1.1.1(a),(c), 1.1.4(a),(c),(e) 1.3.1(a),(b),(d)</td>
<td>analysis</td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td>Fossils in the field</td>
<td></td>
<td>7.2.3 Oil and gas basins 7.2.3 Whole basin facies analysis</td>
</tr>
<tr>
<td></td>
<td>6.1</td>
<td>Geochronology of a field site</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>5.1.1(a)(ii)</strong> practical investigations to model the processes of sedimentation; to include formation of graded bedding, ripples and delta mouth switching</td>
<td>4.2</td>
<td>Sediment table</td>
<td>1.1.1(a),(b),(c) 1.1.2(b) 1.1.3(b),(c),(d) 1.1.4(a),(b),(c),(d),(e)</td>
<td>4.1.2 Surface processes and products 7.2.3 Oil and gas basins 7.2.3 Whole basin facies analysis</td>
</tr>
<tr>
<td></td>
<td>11.2</td>
<td>Investigating sediments</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>5.2.1(b)</strong> the application of Darcy’s Law to model the flow of fluids in rocks</td>
<td>8.1</td>
<td>Fluid movement Darcy’s law</td>
<td>1.1.1(a),(b),(c) 1.1.2(b) 1.1.3(b),(c),(d) 1.1.4(a),(b),(c),(d),(e)</td>
<td>5.3.2 Mid-ocean ridges 5.5.1 Exploration for metals 6.2.1 Geotechnics 6.2.2 Applied engineering geology 7.2.3 Oil and gas basins</td>
</tr>
<tr>
<td></td>
<td>8.2</td>
<td>Surface tension and pore pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>5.3.1(a)(ii)</strong> the interpretation of continuous and discontinuous binary phase diagrams; to include: anorthite–albite, forsterite–fayalite and diopside–anorthite systems</td>
<td>3.2</td>
<td>Virtual microscope</td>
<td>1.1.2(b) 1.1.3(c),(d)</td>
<td>2.1.2 Igneous rocks 3.2.2 Plate boundaries and igneous processes</td>
</tr>
<tr>
<td></td>
<td>11.3</td>
<td>Investigating crystalline rocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>5.3.2(a)(ii)</strong> the relationship between spreading rate and seabed morphology (water depth, fast and slow spreading mid-ocean ridges); in include the calculation of seafloor spreading rates from different data sources (ii) the calculation of numerical age using radioactive decay rates</td>
<td>12.3</td>
<td>Exploring beyond the specification</td>
<td>1.1.2(b) 1.1.3(b),(c),(d) 1.1.4(a),(b),(c),(d)</td>
<td>3.2.1 The plate tectonic paradigm 3.2.2 Plate boundaries and igneous processes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>5.4.1(a)(ii)</strong> the plotting and interpretation of isograds to reconstruct conditions of metamorphism</td>
<td>3.2</td>
<td>Virtual microscope</td>
<td>1.1.3(d) 1.1.4(a),(b),(c)</td>
<td>2.1.4 Metamorphic rocks 3.2.2(d) contact metamorphism</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>Contact zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning outcome</td>
<td>PAG</td>
<td>Example Activity</td>
<td>Examinable skills</td>
<td>Other LOs supported</td>
</tr>
<tr>
<td>--------------------------------------------------------------------------------</td>
<td>-----------</td>
<td>-------------------------------------------------------</td>
<td>----------------------------------------------------------------------------------</td>
<td>------------------------------------------</td>
</tr>
<tr>
<td>5.4.1(b)(ii) the diagnostic properties of metamorphic fabrics in samples, photographs and thin section diagrams</td>
<td>1.3 3.2 7.3</td>
<td>Geology on the streets Virtual microscope Mineralisation and metamorphism</td>
<td>1.1.2(b) 1.1.4(b),(c),(e) 1.3.1(a),(b)</td>
<td>2.1.4 Metamorphic rocks 3.3.1 Rock mechanics</td>
</tr>
<tr>
<td>5.5.1(f) how existing data sets and follow-up surveys are integrated in geological prospecting, resource exploration and in defining the reserves</td>
<td>10.1 10.2 10.3 12.2</td>
<td>Chemical testing of ores BGS GeolIndex Mineral prospecting Critical mineral resources</td>
<td>1.1.1(a),(b),(c) 1.1.3(b) 1.1.4(a),(b),(c),(e) 1.3.1(b)</td>
<td>2.1.1 Minerals 3.1.2 The origin of the Earth’s structure</td>
</tr>
<tr>
<td>6.1.1(d) the limitations and utility of seismic hazard risk analysis which synthesise and summarise geological data sets to communicate this information for the use of non-specialists; to include the role of geologists in the framing of building construction codes, disaster planning, public education and communication on earthquake impacts</td>
<td>2.1 12.3</td>
<td>USGS seismology database Exploring beyond the specification</td>
<td>1.1.3(b) 1.1.4(a),(b),(c),(e) HSW5,8,12</td>
<td>3.3.2 Structural geology and plate boundaries</td>
</tr>
<tr>
<td>6.1.2(a)(ii) the calculation of probability and return periods from an annual maximum time series (of geological events) (iii) the appropriate communication of probability and return periods for the use of non-specialists</td>
<td>2.1</td>
<td>USGS seismology database</td>
<td>1.1.3(b) 1.1.4(a),(b),(c) HSW5,8,12</td>
<td>6.1.1 Earthquake geology 6.1.3 Geohazards in the British Isles</td>
</tr>
<tr>
<td>6.1.2(c) the use of geographical information systems (GIS) to synthesise and summarise geological and geographic data to improve disaster planning and communication of information for the use of non-specialists</td>
<td>2.1 10.2</td>
<td>USGS seismology database BGS GeolIndex</td>
<td>1.1.3(b),(d) 1.1.4(a),(b),(c) HSW5,8,12</td>
<td>3.2.2 Plate boundaries and igneous processes 6.1.1 Earthquake geology 6.1.3 Geohazards in the British Isles</td>
</tr>
<tr>
<td>6.2.1(a)(ii) the measurement of rock strength under compression and under shear (iii) the density of rocks</td>
<td>1.1 7.1 9.2</td>
<td>Mineral testing Modelling rock deformation Properties of soil/rock</td>
<td>1.1.1(a),(b),(c) 1.1.2(b) 1.1.3(b),(c),(d) 1.1.4(a),(b),(c),(d),(e)</td>
<td>2.1.1 Minerals 6.1.3 Geohazards in the British Isles 6.2.2 Applied engineering geology</td>
</tr>
<tr>
<td>6.2.1(d) how existing data sets and ground investigations are integrated in geological prospecting, resource exploration and in defining the reserves</td>
<td>9.1</td>
<td>Geotechnical desk study</td>
<td>1.1.1(a),(b),(c)</td>
<td>6.1.3 Geohazards in the British Isles</td>
</tr>
<tr>
<td>Learning outcome</td>
<td>PAG</td>
<td>Example Activity</td>
<td>Examinable skills</td>
<td>Other LOs supported</td>
</tr>
<tr>
<td>---------------------------------------------------------------------------------</td>
<td>------</td>
<td>--------------------------------------------</td>
<td>-----------------------------------------------------------------------------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>integrated in a geotechnical site assessment; to include</td>
<td></td>
<td></td>
<td>All practical activities support 1.1.2(a), 1.1.2(c), 1.1.3(a)</td>
<td>British Isles</td>
</tr>
<tr>
<td>• existing BGS mapping</td>
<td></td>
<td></td>
<td></td>
<td>6.2.2 Applied engineering geology</td>
</tr>
<tr>
<td>• geological site mapping, drilling for core samples,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>laboratory testing of samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• use of slope mapping to contribute to slope stability risk analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.3 Geotechnical site investigation</td>
<td>5.1</td>
<td>Identifying fossils</td>
<td>1.1.2(b),(d)</td>
<td>2.2.2 Geological time</td>
</tr>
<tr>
<td>9.3 Geotechnical site investigation</td>
<td>5.1</td>
<td>Fossils in the field</td>
<td>1.1.4(a),(b),(c),(e)</td>
<td>4.2.1 Relative dating and biostratigraphy</td>
</tr>
<tr>
<td>9.3 Geotechnical site investigation</td>
<td>5.1</td>
<td></td>
<td>1.3.1(b),(c)</td>
<td>7.1.2 Evolution and applied palaeontology</td>
</tr>
<tr>
<td>9.3 Geotechnical site investigation</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.3 Geotechnical site investigation</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.3 Geotechnical site investigation</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.3(a)(iii) the zonation of the Welsh Basin using zone fossils; to include</td>
<td>5.1</td>
<td>Identifying fossils</td>
<td>1.1.2(a),(c)</td>
<td>2.2.2 Geological time</td>
</tr>
<tr>
<td>• trilobites, corals and graptolites as zone fossils</td>
<td>5.1</td>
<td>Fossils in the field</td>
<td>1.1.4(a),(b),(c),(e)</td>
<td>4.2.1 Relative dating and biostratigraphy</td>
</tr>
<tr>
<td>(iii) the zonation and correlation of the Jurassic Period using</td>
<td>5.1</td>
<td></td>
<td>1.3.1(b),(c)</td>
<td>7.1.2 Evolution and applied palaeontology</td>
</tr>
<tr>
<td>7.2.3(b) the principles of basin analysis in relation to the Jurassic rocks</td>
<td>5.1</td>
<td>Identifying fossils</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• which crop out across the United Kingdom (in a local context):</td>
<td>5.1</td>
<td>Fossils in the field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iii) the zonation and correlation of the Jurassic Period using</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.3(c) practical investigation integrating field geology and secondary data</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e.g. geological maps, seismic data, well logs, fossils) to understand the</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.3(c) practical investigation integrating field geology and secondary data</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e.g. geological maps, seismic data, well logs, fossils) to understand the</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>palaeoenvironments and geological</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.3(c) practical investigation integrating field geology and secondary data</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e.g. geological maps, seismic data, well logs, fossils) to understand the</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>palaeoenvironments and geological</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.3(c) practical investigation integrating field geology and secondary data</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e.g. geological maps, seismic data, well logs, fossils) to understand the</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>palaeoenvironments and geological</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.3(c) practical investigation integrating field geology and secondary data</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e.g. geological maps, seismic data, well logs, fossils) to understand the</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>palaeoenvironments and geological</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.3(c) practical investigation integrating field geology and secondary data</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e.g. geological maps, seismic data, well logs, fossils) to understand the</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>palaeoenvironments and geological</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.3(c) practical investigation integrating field geology and secondary data</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e.g. geological maps, seismic data, well logs, fossils) to understand the</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>palaeoenvironments and geological</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.3(c) practical investigation integrating field geology and secondary data</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e.g. geological maps, seismic data, well logs, fossils) to understand the</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>palaeoenvironments and geological</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.3(c) practical investigation integrating field geology and secondary data</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e.g. geological maps, seismic data, well logs, fossils) to understand the</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>palaeoenvironments and geological</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.3(c) practical investigation integrating field geology and secondary data</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e.g. geological maps, seismic data, well logs, fossils) to understand the</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>palaeoenvironments and geological</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.3(c) practical investigation integrating field geology and secondary data</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e.g. geological maps, seismic data, well logs, fossils) to understand the</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>palaeoenvironments and geological</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.3(c) practical investigation integrating field geology and secondary data</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e.g. geological maps, seismic data, well logs, fossils) to understand the</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>palaeoenvironments and geological</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.3(c) practical investigation integrating field geology and secondary data</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e.g. geological maps, seismic data, well logs, fossils) to understand the</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>palaeoenvironments and geological</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© OCR 2018 Version 1.1
AS and A Level Geology
This appendix provides information on handling Health and safety issues while carrying out practical experiments and fieldwork.

Before carrying out any experiment or demonstration based on this guidance, it is the responsibility of teachers to ensure that they have undertaken a risk assessment in accordance with their employer’s requirements, making use of up-to-date information and taking account of their own particular circumstances. Any local rules or restrictions issued by the employer must always be followed.

Useful information can be found at [www.cleapss.org.uk](http://www.cleapss.org.uk) (available to CLEAPSS® members only).

**Hazard labelling systems**

The CLP regulations were launched in 2010, and fully implemented across the EU in 2015. The ‘CHIP’ system is no longer in active use, but some older containers may still carry the CHIP symbols, and students may come across them in older reference works. It is important that students are taught to use both systems, particularly if centres are still using chemicals carrying CHIP hazard symbols.

OCR recognises the CLP system as the default system in current use. OCR resources indicate hazards using the CLP system.

<table>
<thead>
<tr>
<th>CLP Pictograms</th>
<th>CHIP Pictograms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidising</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highly Flammable</td>
<td></td>
<td>Indicates that the chemical could cause serious long term health effects.</td>
</tr>
<tr>
<td>Corrosive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indicates less serious health hazards (e.g. skin irritants).</td>
</tr>
</tbody>
</table>

CLP pictograms are also accompanied by a ‘signal word’ to indicate the severity of the hazard. ‘DANGER’ for more severe; ‘WARNING’ for less severe.

‘CHIP’ system (being phased out)
Risk assessments

In UK law, health and safety is the responsibility of the employer. Employees, i.e. teachers, lecturers and technicians, have a duty to cooperate with their employer on health and safety matters. Various regulations, but especially the COSHH Regulations 2002 and the Management of Health and Safety at Work Regulations 1999, require that before any activity involving a hazardous procedure or harmful micro-organisms is carried out, or hazardous chemicals are used or made, the employer must provide a risk assessment. A useful summary of the requirements for risk assessment in school or college science can be found at

http://www.ase.org.uk/resources/health-and-safety-resources

For members, the CLEAPSS® guide, *Managing Risk Assessment in Science* offers detailed advice. Most education employers have adopted a range of nationally available publications as the basis for their Model Risk Assessments. Those commonly used include:

  Now out of print but sections are available at
  http://www.ase.org.uk/resources/health-and-safety-resources;
- CLEAPSS® Hazcards.*
  CLEAPSS® are in the process of updating the Hazcards, the latest edition being the CLP Edition, 2014. At present, CLP Hazcards have only been published for some chemicals. For other chemicals, the CHIP Hazcard is referenced and should be consulted.
- CLEAPSS® Laboratory Handbook*;

Where an employer has adopted these or other publications as the basis of their model risk assessments, the teacher or lecturer responsible for overseeing the activity in the school or college then has to review them, to see if there is a need to modify or adapt them in some way to suit the particular conditions of the establishment.

Such adaptations might include a reduced scale of working, deciding that the fume cupboard provision is inadequate or the skills of the students are insufficient to attempt particular activities safely. The significant findings of such risk assessment should then be recorded, for example on schemes of work, published teachers’ guides, work sheets, etc. There is no specific legal requirement that detailed risk assessment forms should be completed, although a few employers require this.

Where project work or individual investigations, sometimes linked to work-related activities, are included in specifications this may well lead to the use of novel procedures, chemicals or microorganisms, which are not covered by the employer’s model risk assessments. The employer should have given guidance on how to proceed in such cases. Often, for members, it will involve contacting CLEAPSS® (or, in Scotland, SSERC).

*These, and other CLEAPSS® publications, are on the CLEAPSS website. Note that CLEAPSS® publications are only available to members. For more information about CLEAPSS - go to www.cleapss.org.uk. In Scotland, SSERC (www.sserc.org.uk) has a similar role to CLEAPSS®.
A code for geological fieldwork

This code is based on the Geologists Association’s Geological Fieldwork Code first published in 1975. Geologists must be seen to be using the countryside responsibly and observing the following rules:

General

1. Obey the Country Code and local bylaws.
2. Leave gates and property as you find them and take your litter home.
3. Don’t litter fields or roads with rock fragments that could cause injury to livestock or be a hazard to vehicles or pedestrians.
4. Always seek permission before entering private land.
5. Do not disturb wildlife or plant life.
6. On coastal sections, check tides or local hazards such as unstable cliffs.
7. Make yourself familiar with any conservation rules that may be in force before visiting geological localities in statutory and local conservation sites.
8. Avoid using a hammer.

Collecting

1. Only collect when it is permissible to do so.
2. Do not leave exposures untidy or dangerous.
3. Students should be encouraged to observe and record and not to hammer indiscriminately. Keep collecting to a minimum.
4. Avoid removing in-situ fossils, rocks or minerals unless they are genuinely needed for serious study. The collecting of actual specimens should be restricted to those localities where there is a plentiful supply, or scree, fallen blocks and waste tips.
5. Never collect from walls or buildings.

Safety

1. Always wear a hard hat when working under any cliff face or in any quarry etc.
2. Always wear goggles when hammering.
3. Boots or other suitable footwear should be worn when the Leader requires them.
4. Keep clear of plant or machinery.
5. Beware of rock falls.
6. Beware of sludge lagoons or settling ponds in quarries etc.
7. Do not dislodge rocks or throw things over cliffs etc - someone may be below.
8. Keep a look out for dangers not only to yourself but for all members of your party.
9. If you go onto the fells, moors or mountains, let someone know your route and return time.
10. Always carry a first aid kit.
11. Never go onto the fells, moors or mountains without suitable clothing and equipment.
12. DO NOT ENTER a working quarry etc without permission.
13. Do not take risks on cliffs or rock faces.

The Health and Safety at Work Act requires that safety measures are strictly enforced, especially in quarries or other excavations. Protective clothing, particularly safety helmets, must be worn at all times by employees, and visitors are also expected to observe the same precautions, generally as a condition of entry to the site. In quarries, helmets must be worn at all times.

Suitable helmets are readily available and cheap to buy, and they should be part of the standard equipment of every geologist and worn wherever there is a danger of rock falls.

Leaders of a field party should ensure that the spirit of this code is followed, and remind students of the need for care and consideration at all times.
This appendix lists the apparatus likely to be required in order to complete a practical scheme of work that covers all requirements of the qualification. Teachers and technicians should bear in mind that activities that would support the qualification may require additional apparatus not on this list. Resources provided by OCR detail the apparatus needed for individual activities.

**Apparatus likely to be required**

The following apparatus is likely to be required to complete activities covering all techniques required by the Practical Endorsement in GCE Geology (Section 1.2.2 of the specification).

**Fieldwork Equipment**

- Compass clinometer (can be replaced by a baseplate compass and Maxicline®)
- Grain size card
- Dropper bottle with HCl (2 mol dm⁻³)
- Hand lens
- Map (e.g. OS 1:25,000 or BGS 1:50,000 extracts)
- Survey tape (e.g. 3 m pocket steel or 10 m fibreglass)
- Safety helmet and high visibility tabard – *may be a requirement for access to some sites*

**Laboratory Equipment**

- Balance reading to at least two decimal places
- Beakers (400 cm³, 250 cm³, 100 cm³)
- Calipers or vernier measurement system
- Displacement vessels/eureka can large enough to hold mineral or rock sample
- Dropping pipettes
- Heating apparatus: water bath or electric heater or sand bath – *a water bath could consist of a beaker of water on a tripod and gauze over a Bunsen flame*
- Mass holder and slotted masses (e.g. 500 g – 9×50 g and hanger)
- Measuring cylinders (500 cm³, 250 cm³, 50 cm³, 25 cm³)
- Microscope with at least two objective lenses
- Microscope slides and coverslips
- Mohs hardness set (pencils or minerals) – *one set per class in addition to everyday substitutes (finger nail 2.5, copper 3.5, wire nail 4.5, masonry nail 5.5)*
- Retort stands and clamps
- Samples of fossils, a range of replicas, prepared and partial fossils – the ESTA fossil kit for example contact@esta-uk.net
- Samples of common rock forming minerals (to include quartz, plagioclase or K-feldspar, calcite and a range of others as available – amphibole, aragonite, biotite, dolomite, kaolinite/clay, muscovite, olivine, orthoclase/ K-feldspar, plagioclase, pyroxene) –such as the GeoSupplies Silicate Mineral set for example
• Samples of rocks, a range of igneous (with different densities), metamorphic and sedimentary (siliciclastic and calcareous) – the ESTA rock kit for example contact@esta-uk.net
• Samples of sand, a range with different characteristics (e.g. beach, river and dune or sharp sand, silver sand and play sand)
• Sieve stack (2 mm, 1 mm, 0.5 mm, 250 μm, 125 μm, 63 μm)
• Stop clocks/watches reading to 1 s or better.
• Streak plate or unglazed porcelain tile
• Test tubes and boiling tubes
• Test-tube holders
• Thermometers (−10 to 110 °C or equivalent, accurate to 0.5 °C)

**Apparatus potentially required**
The following laboratory equipment may additionally be required to support further practical work towards the Endorsement as well as to support teaching of the specification and preparation for the written examinations.

• Bunsen burners
• Conical flasks (250 cm³, 100 cm³)
• Data loggers such as the app Physics Toolbox
• Digital field mapping app, such as Fieldmove Clino or eGeoCompass
• Filter funnels, or apparatus to carry out filtration under reduced pressure: Buchner flask and Buchner funnel or boiling tube with side-arm and Hirsch funnel
• Filter paper
• Heat proof mats
• LEGO® Seismometer parts kit
• Pipeclay triangles
• Pipettes and micropipettes
• Pipette fillers
• Tripods and gauze
• Volumetric flasks (250 cm³ or 100 cm³)
• Wash bottles with distilled water

**Additional requirements**
In order to fulfil the requirements of the skills set out in Section 1.2.1 of the specification, students must require access to the following.

• Chemical data or hazard sheets
• Graph plotting and data analysis software (e.g. Microsoft Excel or GeoGebra)
• BGS GeoIndex
• GoogleMaps or ArcGIS
• Textbooks, websites and other sources of scientific information
• A means of recording practical activity undertaken towards the Practical Endorsement, for example a logbook, binder to collect loose sheets, or means to create and store digital files.
Field Notebooks and Lab Books

Students can keep their records in any appropriate form including the use of a ring binder or other folder. Should your centre wish to purchase field notebooks or lab books there are educational suppliers who stock a wide variety of these. Examples of such suppliers are:

Field Notebooks – weather resistant to fully waterproof
Geosupplies Ltd, Sheffield – 50% rag paper (160 pages) and waterproof (84 pages) hardback field notebooks
http://www.geosupplies.co.uk/acatalog/Notebooks.html

Field Notebooks – less weather resistant and budget
Seawhite of Brighton, – 130gms cartridge paper, A5 hardback travel journals (128 pages) and A5 starter sketchbooks (40 pages)
https://www.seawhite.co.uk/online/index.php?route=product/category&path=20

Lab books – range of colours
Frank Berry Otter, Chesterfield – A4 laboratory ruled and graph alternate pages (64 pages)
http://www.frankberry.co.uk/storefront/evolution_ProductResults.html?strSearch=Laboratory

Lab books – range of graph paper styles
Grosvenor House Paper, Kendal – A4 laboratory ruled and graph alternate pages (64 pages)
http://www.ghpkendal.co.uk/Exercise-Books/Graph-and-Science-Books
Section 1.2.1 of the specification covers the general practical skills which students should develop and practice during their course. This appendix includes suggestions about how this process of skills development can be managed.

This section provides guidance which teachers can use to assist how they teach the required skills, as well as things to look out for in assessing whether students are performing the skills competently. This section is not intended as a ‘mark scheme’, or statement of the minimum standard required for a pass in individual activities.

Practical skills (specification Section 1.2.1)

1.2.1(a) apply investigative approaches and methods to practical work

Students are expected to be able to think independently about solving problems in a practical context. This means that students should develop their own ideas about how to approach a task, before perhaps discussing them with other students and joining together as a group to put an agreed plan into effect.

Demonstrating investigative approaches could include:

- choosing the materials, or amounts of materials, to use
- choosing which variables to measure and which to control
- deciding what measurements or observations to make and when to make them
- choosing apparatus and devising a procedure that is safe and appropriate.

Applying investigative approaches should include completing tasks that do not include complete step by step instructions. However, activities may still be structured in some form. For example:

- providing a basic method, with students asked to modify this to measure the effect of changing a certain variable
- providing a limited range of equipment, with students asked to think about how they can use what they have been given to solve a practical problem
- providing a certain amount of information, allowing students to consider how to use familiar techniques or procedures to investigate and solve a problem.

1.2.1(b) safely and correctly use a range of practical equipment and materials

Students should be shown how to use practical equipment when it is first met, through a demonstration by the teacher or technician. Good quality videos of many techniques are available online which could be used to complement such a demonstration (see e.g. links in Appendix 8: Resources www.esta-uk.net/fieldworksskills/video%20clips.htm). Teacher demonstration should also include the safe disposal of materials at the end of the laboratory session.

Hazards, and the ways in which risks should be minimised, should be explicitly explained to students whenever equipment is used for the first time, and on subsequent occasions as required. Students should also be shown how to handle materials safely so they adopt a standard routine whenever they need to use any materials. Some materials are associated with particular hazards and students should be clearly shown how they need to be handled to minimise the risk involved. In some cases, the hazards may be such that it is good practice for students to use the materials under the direct supervision of the teacher.
Increasingly, students should be able to use common fieldwork equipment, laboratory equipment and chemicals safely with minimal prompting. They should be doing this routinely and consistently by the end of the course.

Students will be expected to be able to identify hazards and understand how to minimise risk. This skill can be developed by asking them to devise their own risk assessments. The risk assessment should identify the hazards associated with materials and techniques that students will be using, and describe the steps that they will take to minimise the risks involved. In some cases it may also be appropriate for them to describe how they will safely dispose of materials at the end of the practical session. Teachers should always check risk assessments and make sure students are aware of any errors or omissions before they begin the practical activity.

Risk assessments have been included in the OCR Practical Endorsement structure as part of PAG11, as organic preparations frequently offer a number of different types of hazard to consider. However, students could demonstrate this skill in the context of any type of activity. Performing a risk assessment also gives the opportunity to demonstrate research and citation skills.

More detail about the safe use of equipment and materials is given in Appendix 1: Health and safety.

1.2.1(c) follow written instructions

In many activities students will be asked to follow written instructions. It is helpful if they are first given the aims of the activity so they are clear what is expected of them and what they should expect to learn from the activity. An introduction is also a good idea so that students can fit what they are doing into a bigger picture.

It is quite common for students to be given too much information and be asked to do too many things at the same time. Research suggests that when many students follow complex instructions they are not able to think about the theoretical implications and explanations of their task at the same time. It is probably better to focus on these issues before and after the practical task itself. Providing students with instructions to look through before the practical session allows them to think about what is needed and to visualise what they will do in advance of the practical session.

1.2.1(d) make and record observations and measurements

Students need to be able to make measurements using a range of equipment. Since some of these types of measurement are used frequently, teachers might assume a competence in using familiar devices when the appropriate skill has not yet been sufficiently developed. Taking measurements is a skill that should be clearly demonstrated to students.

See Appendix 4: Measurements and Appendix 5: Units for more detail about how to record measurements appropriately.

Observations should be recorded using appropriate scientific vocabulary and should be precise. Students can have a tendency to use vague and ambiguous language. Asking students to comment on good and less good practice in recording observations is a good way of raising awareness of these issues. Examples of ambiguous or incorrect language include:

- mentioning colours, but not associating this with a substance or state (e.g. ‘it went brown’ rather than ‘the solution went brown’ or ‘a brown precipitate formed’)
- giving an accurate observation of the state of a solution or mixture, but not indicating that nothing has changed (e.g. ‘blue solution’ rather than ‘solution remains blue’ or ‘no change’)
- using ‘clear’ instead of ‘colourless’.
- giving an example of an improvement without sufficient detail (e.g. ‘the accuracy can be improved by making a video’ rather than ‘by making a video of the plastic strip and analysing frame-by-frame, the error in determining the strain can be greatly reduced over trying to determine strain while the plastic strip is deforming under strain from the load.’)

Students need opportunities to develop their observational skills in activities where they play an important role. Qualitative tests are important opportunities for developing the skill of recording
observations accurately, but observations are important in any practical activity. For example, observing the colour of minerals in thin section/micrographs, or observing when salol crystals start to form.

1.2.1(e) keep appropriate records of experimental activities

Students should routinely record their observations and measurements so that they have a permanent record. These records should be made during the fieldwork investigation or laboratory session and are the primary evidence of the outcomes of experiments. It should be clear to what practical activity the observations or measurements refer.

Where experimental procedures have been provided they do not need to be written out again, but they should be kept as part of the record. If an activity has involved a more investigative approach where students have developed any part of the procedure, they should keep a record of what they actually did.

The record may also show how the student has processed raw data, perhaps by using graphs or calculations, and the conclusions they have drawn. In some cases students may also evaluate their practical activity by calculating errors and/or commenting on the limitations of experimental procedures. These skills are not assessed in the Practical Endorsement, but are valuable in understanding the purpose of a practical activity, and will be assessed in the written examinations.

Records may be kept in a field notebook, laboratory book, loose-leaf file or electronically. Students should record measurements and observations during fieldwork and laboratory sessions immediately: if there is no means of entering data into an electronic record in the field these could be transferred to the permanent record later but the original field notes should be retained.

1.2.1(f) present information and data in a scientific way

Students should present information and data in ways that are appropriate for that information or data. In many cases this will involve the use of tables. These should include an explanatory title, clear headings for columns and relevant units for measurements (see Appendix 4: Measurement and Appendix 5: Units for further details).

Graphs should be of an appropriate type for the information or data involved. Further detail about using graphs is given in Appendix 6: Graphical skills.

Some information is best presented by using clear, well labelled field sketches, technical illustrations or potentially using annotated photographs. Further detail about drawing, technical illustrations and field sketches is given in the Drawing Skills Handbook.

1.2.1(g) use appropriate software and tools to process data, carry out research and report findings

The most obvious tools and software used for processing data are calculators and spreadsheets. Spreadsheets provide a very effective way of processing data, particularly when the amount of data is large. They can be used to sort data, carry out calculations and generate graphs. Graphs drawn using spreadsheets should not be too small, should have a clear title and the axes should be clearly labelled. Where more than one graph is drawn using the same axes it should be clear what each graph refers to.

If records are kept electronically, students will routinely make use of a word processing package to report their findings. Short video clips can be used to show changes over time. Digital images, podcasts and PowerPoint© presentations also provide creative ways in which students can personalise their individual record of practical activities.

Experiments with very short or very long timescales of data collection lend themselves to the use of a data logger. Examples are structural geology field data collection and qualitative and quantitative modelling of processes in the laboratory. Candidates need training in how to use both the hardware and associated software to collect data, particularly if choices need to be made about measurement scales. In a report or in a lab book it is usually better to present collected data graphically rather than recording a large amount of raw data on paper.
1.2.1(h) use online and offline research skills including websites, textbooks and other printed scientific sources of information

Students should be given opportunities to use both online and offline research skills in the context of practical activities. A useful starting point might be finding reliable information to devise a risk assessment for an experiment. Safety data sheets, such as the CLEAPSS® Student Safety Sheets (accessible without a login) are a good place to start. More detail about sources of information is given in Appendix 1: Health and safety.

In other situations students might consult websites, textbooks or scientific journals to clarify or suggest experimental techniques and/or to provide supporting background theory to practical activities.

1.2.1(i) correctly cite sources of information

Where a student records information that they have looked up they should provide an accurate reference so that readers can find the information. Details of how to do this are given in Appendix 7: Referencing.

1.2.1(j) use a wide range of experimental and practical instruments, equipment and techniques appropriate to the knowledge and understanding included in the specification

It is expected that students will carry out practical work throughout their course and will therefore use a wide range of experimental and practical instruments, equipment and techniques appropriate to the knowledge and understanding included in the specification. The minimum of apparatus and techniques that each student must use is listed in specification Section 1.2.2. Suggested apparatus for use during the course is also provided in Appendix 2: Apparatus list.
This appendix provides background information on terms used in measurement, and conventions for recording and processing experimental measurements. This information relates to skills assessed both in the written examinations and in the Practical Endorsement, notably 1.1.2(c), 1.1.3(c), 1.1.4(b), 1.1.4(d), 1.2.1(d), 1.2.1(f).

Useful terms

**Accuracy** is a measure of the closeness of agreement between an individual test result and the **true** value. If a test result is **accurate**, it is in close agreement with the true value. An accepted reference value may be used as the true value, though in practice the true value is usually not known.

**Anomaly (outlier)** is a value in a set of results that is judged not to be part of the inherent variation.

**Confidence** is a qualitative judgement expressing the extent to which a conclusion is justified by the quality of the evidence.

**Error** (of measurement) is the difference between an individual measurement and the **true** value (or accepted reference value) of the quantity being measured.

**Precision** is the closeness of agreement between independent measurements obtained under the same conditions. It depends only on the distribution of random errors (*i.e.* the spread of measurements) and does not relate to the true value.

**Repeatability** is the precision obtained when measurement results are produced over a short timescale by one person (or the same group) using the same equipment in the same place.

**Reproducibility** is the precision obtained when measurement results are produced over a wider timescale by different people using equivalent equipment in different (but equivalent) places.

**Resolution** is the smallest change in the quantity being measured that can be detected by an instrument.

**Uncertainty** is an estimate attached to a measurement which characterises the range of values within which the true value is asserted to lie. This is normally expressed as a range of values such as 44.0 ± 0.4.

**Validity** can apply to an individual measurement or a whole investigation. A measurement is valid if it measures what it is supposed to be measuring. An investigative procedure is valid if it is suitable to answer the question being asked. Validity will be reduced, for example, if no negative control is included in an investigation into the efficacy of a therapeutic drug.

The ASE booklet *The Language of Measurement* (Campbell 2010) provides information on these and other terms along with examples of their use. In particular please note that **Reliability** will no longer be used. As the authors of the booklet said:

“The word ‘reliability’ has posed particular difficulties because it has an everyday usage and had been used in school science to describe raw data, data patterns and conclusions, as well as information sources. On the strong advice of the UK metrology institutes, we avoid using the word ‘reliability’ because of its ambiguity. For data the terms ‘repeatable’ and ‘reproducible’ are clear and therefore better. For conclusions from an experiment, evaluative statements can mention ‘confidence’ in the quality of the evidence.”
Uncertainties

Whenever a measurement is made, there will always be some doubt about the result that has been obtained. An uncertainty in a measurement is an interval that indicates a range within which we are reasonably confident that the true value lies.

Uncertainties technically depend on a range of factors related to measurements, including both systematic and random errors. Determining uncertainties based on the spread of data obtained is not required within the context of AS and A Level Geology. Rather, an estimation of uncertainty is made based on the characteristics of the equipment used.

Uncertainties in apparatus and equipment

When using any apparatus, learners should check whether the apparatus itself is marked with the uncertainty. This is, for example, generally the case in for volumetric glassware used to measure specific volumes of liquid, such as volumetric flasks and pipettes frequently used in A Level Chemistry. The degree of uncertainty in these cases depends on the class of apparatus.

For example, a 100 cm³ measuring cylinder is graduated in divisions every 1 cm³.

- A Class A measuring cylinder has an uncertainty of half a division or 0.5 cm³ in each measurement
- A Class B measuring cylinder has an uncertainty of a whole division or 1 cm³ in each measurement.

In the absence of information provided on the equipment, the following assumptions are made regarding the uncertainty in each measurement:

- When using apparatus with an analogue graduated scale, the uncertainty is assumed to be ± half the smallest graduation.
  
  For example a 30 cm rule has divisions of 1 mm and an uncertainty of half a division, or 0.5 mm. When measuring a distance the uncertainty has to be taken into account twice and it is overall 1 mm.
  
  An analogue meter with scale markings each 0.2 V has an uncertainty of 0.1 V.
  
- When using digital apparatus, the uncertainty is presumed to be ± the resolution of the apparatus in each measurement.

  For example, a two-decimal place balance has an uncertainty of ±0.01 g in each measurement and a voltmeter with three significant figures which has an uncertainty of ±0.1 V in the 0-20 V range will have an uncertainty of ±1 V in the 0-100 V range.

The basis of the assumption for electronic apparatus is that the electronic circuit is designed to avoid “hunting” which is the rapid cycling from one figure to another in the final digit. This is achieved by programming the equipment to go up to the next value at a level greater than 0.5, and to go to the lower value at a level below 0.5; this could be going up at 0.7 and down at 0.3. As we are not aware of that value we can only assume ±1 digit in the final digit.

Learners should be able to calculate a percentage uncertainty for a measurement from the absolute uncertainty for the apparatus used. See worked examples on the next page.

Because of the variability in uncertainties associated with equipment, assessments will frequently state the absolute uncertainty in any measurement given to allow candidates to calculate the percentage uncertainty. If no information is given, the uncertainty in each reading is derived from the resolution of the apparatus used as explained above.
Measurement of time

Whilst a stopwatch measures time with a resolution of say 0.001 s, the operator reaction time is significantly longer, increasing the total uncertainty in the measurement, in which case a reasonable estimate for the uncertainty would be the reaction time of the operator.

A light gate measures time with the same resolution of 0.001 s, but has a significantly lower total uncertainty as it eliminates the reaction time of the operator.

Examples of uncertainties

Some examples are shown below. Note that the actual uncertainty on a particular item of equipment may differ from the values given below.

- Brunton Transit compass has an uncertainty of ±0.5° in azimuth or 0.14%.
- Suunto M-3G compass has an uncertainty of ±1° in azimuth or 0.28%.

Worked examples

The significance of the uncertainty in a measurement depends upon how large a quantity is being measured. It is useful to quantify this uncertainty as a percentage uncertainty.

\[
\text{percentage uncertainty} = \frac{\text{uncertainty}}{\text{quantity measured}} \times 100\%
\]

For example, a measurement of 2.56 g is taken using a two-decimal place balance with an uncertainty of ±0.01 g.

- percentage uncertainty = \(\frac{0.01}{2.56} \times 100\% = 0.39\%\)

For a mass measurement of 0.12 g, the percentage uncertainty is much greater:

- percentage uncertainty = \(\frac{0.01}{0.12} \times 100\% = 8.3\%\)

For individual mass measurements, it is assumed there is no uncertainty in the tare of the balance.

Multiple measurements

Where quantities are measured by difference, there will be an uncertainty in each measurement, which must be combined to give the uncertainty in the final value. The principle of the following example for a mass measurement can be applied to other quantities measured by difference, such as temperature difference and titre.

For two mass measurements that give a resultant mass by difference, there are two uncertainties. These uncertainties are combined to give the uncertainty in the resultant mass. The formula for the percentage uncertainty is then:

\[
\text{percentage uncertainty} = \frac{2 \times \text{uncertainty in each measurement}}{\text{quantity measured}} \times 100\%
\]

For example, using the same two-decimal place balance as above:

- Mass of dry rock sample = 23.45 g uncertainty = 0.01 g
- Mass of sample after 24 hour soak = 24.21 g uncertainty = 0.01 g
- Mass gain = 0.76 g overall uncertainty = 2 \times 0.01 g

There is a negligible percentage uncertainty in each mass measurement, but the overall percentage uncertainty in the mass loss is much greater.
percentage uncertainty in mass loss = \( \frac{2 \times 0.01}{0.76} \times 100\% = 2.6\% \)

**Notes**

We are aware that some textbooks available do not give a consistent message regarding the treatment of uncertainties. In OCR Geology we will therefore allow both half the smallest division as the absolute uncertainty for a measuring instrument and the smallest division itself as the absolute uncertainty. This will ensure that we do not penalise candidates in any examination - since this ambiguity is not their fault.

The guidance on electronic instruments differs from guidance previously provided by OCR and other sources which state that the uncertainty for digital apparatus is half the resolution, e.g. ±0.005 g for a two-decimal place balance. The guidance here has been updated for consistency across the OCR suite of A level sciences. For assessment purposes, approaches correctly using either the resolution or half the resolution as the uncertainty will be considered acceptable.

**Recording measurements**

When using a digital measuring device (such as a modern top pan balance or GPS receiver),
- record all the digits shown. (Note, when using a digital timer such as a stopwatch, do not record to more than two decimal places.)

When using a non-digital device (such as a ruler or a compass),
- record all the figures that are known for certain plus one that is estimated.

**Presentation of results**

**Table headings**

It is expected that all table column (or row) headings will consist of a quantity and a unit.

The quantity may be represented by a symbol or written in words. There must be some kind of distinguishing notation between the quantity and the unit. Students should be encouraged to use solidus notation, but a variety of other notations are accepted. For example:

\[ T / ^\circ C \quad T (^\circ C) \quad T \text{ in } ^\circ C \quad \frac{T}{^\circ C} \]

are all acceptable as column headings.

Students should avoid notations that do not distinguish between the quantity and the unit, such as

\[ T \text{ cm} \quad T_{cm} \quad \text{just ‘cm’} \]

The logarithm of a quantity has no units. Therefore, the heading for e.g. Mohs hardness measurements can be written simply as ‘Hardness’.

**Consistency of presentation of raw data**

All raw readings of a particular quantity should be recorded to the same number of decimal places. These should be consistent with the apparatus used to make the measurement (see above).
Significant figures

How many significant figures should be used?
The result of a calculation that involves measured quantities cannot be more certain than the least certain of the information that is used. So the result should contain the same number of significant figures as the measurement that has the smallest number of significant figures.

A common mistake by students is to simply copy down the final answer from the display of a calculator. This often has far more significant figures than the measurements justify.

Rounding off
When rounding off a number that has more significant figures than are justified (as in the example above), if the last figure is between 5 and 9 inclusive round up; if it is between 0 and 4 inclusive round down.

For example, the number 3.5099 rounded to:
- 4 sig figs is 3.510
- 3 sig figs is 3.51
- 2 sig figs is 3.5
- 1 sig fig is 4

Notice that when rounding you only look at the one figure beyond the number of figures to which you are rounding, i.e. to round to three sig fig you only look at the fourth figure.

How do we know the number of significant figures?
If the number 450.13 is rounded to 2 sig figs, the result is 450.

However, if seen in isolation, it would be impossible to know whether the final zero in 450 is significant (and the value to 3 sig figs) or insignificant (and the value to 2 sig figs).

In such cases, standard form should be used and is unambiguous:
- $4.5 \times 10^2$ is to 2 sig figs
- $4.50 \times 10^2$ is to 3 sig figs.

When to round off
It is important to be careful when rounding off in a calculation with two or more steps.

- Rounding off should be left until the very end of the calculation.
- Rounding off after each step, and using this rounded figure as the starting figure for the next step, is likely to make a difference to the final answer. This introduces a rounding error.
Errors in procedure

The accuracy of a final result also depends on the procedure used. For example, in an enthalpy experiment, the measurement of a temperature change may be precise but there may be large heat losses to the surroundings which affect the accuracy of overall result.

Anomalous readings

Anomalies (outliers) are values in a set of results that are judged not to be part of the inherent variation. If a piece of data was produced due to a failure in the experimental procedure, or by human error, it would be justifiable to remove it before analysing the data. For example, if a dip angle is clearly different to the other readings taken for that particular outcrop, it might be judged as being an outlier and could be ignored when the mean is calculated. However, data must never be discarded simply because it does not correspond with expectation.

References

The ASE booklet *The Language of Measurement (ISBN 9780863574245)* is the source for this section and provides additional guidance on many of the matters discussed in this above.

The Royal Society of Chemistry has also produced several very helpful documents on measurements and errors, see:

http://www.rsc.org/Education/Teachers/Resources/Practical-Chemistry/Experimental.asp
Appendix 5: Units

Students are expected to use the following units for measurements made and in associated calculations during the course of the practical work carried out to support the GCE Geology qualifications. Records of measurements should always include the relevant units.

**Angle**

Angle in geology is frequently measured as the angle below the horizontal plane, recorded to two significant figures e.g. 09°

**Azimuth**

Azimuth is measured as a bearing clockwise from north (000°), recorded to three significant figures e.g. 009°

**Area**

km², m², cm², mm²

**Concentration**

ppb, gram per tonne, g dm⁻³ or mol dm⁻³

Mineral concentrations are by mass, solutions by volume. OCR specifications do not support the use of M (molar)

**Distance**

km, m, cm, mm, µm

**Mass**

t, kg, g

**Temperature**

°C or K

Standard thermometers measure temperature in °C. Some practical contexts may require students to convert units.

**Time**

Ga, Ma, a, d, h, min, s

Gigaannum (10⁹ years) and Megaannum (10⁶ years), where annum is age in years before present, are the informal SI notation supported in OCR Geology specifications

**Volume**

km³, m³, cm³, dm³ or mm³

Measurements using laboratory apparatus will commonly be in cm³, while concentrations are expressed in terms of dm³. ml and l are not official SI units and their use is not supported in OCR specifications
Appendix 6: Tables and graphs

Tables

The following guidelines should be followed when presenting results in tables.

- All raw data in a single table with ruled lines and border.
- Independent variable (IV) in the first column; dependent variable (DV) in columns to the right (for quantitative observations) OR descriptive comments in columns to the right (for qualitative observations).
- Processed data (e.g. means, rates) in columns to the far right.
- No calculations in the table, only calculated values.
- Each column headed with informative description (for qualitative data) or physical quantity and correct units (for qualitative data); units separated from physical quantity using either brackets or a solidus (slash).
- No units in the body of the table, only in the column headings.
- Raw data recorded to a number of decimal places appropriate to the resolution of the measuring equipment.
- All raw data of the same type recorded to the same number of decimal places.
- Processed data recorded to up to one significant figure more than the raw data.

Graphs

This appendix provides background information on the following graphical skills:

- choice of scale
- plotting of points
- line of best fit
- calculation of gradient
- determination of the y-intercept.

This information relates to skills assessed both in the written examinations and in the Practical Endorsement, notably 1.1.3(d) and 1.2.1(f).
Choice of scales

Scales should be chosen so that the plotted points occupy at least half the graph grid in both the $x$ and $y$ directions.

![Graph example](image)

Not acceptable - scale in the $y$-direction is compressed

Acceptable - points fill more than half the graph grid in both the $x$ and $y$ directions

It is expected that each axis will be labelled with the quantity (including unit) which is being plotted. The quantity may be represented by a symbol or written in words. There must be some kind of distinguishing notation between the quantity and the unit. Students should be encouraged to use solidus notation, but a variety of other notations are accepted. For example:

- $T/°C$
- $T(°C)$
- $T$ in °C
- $T_°C$

are all acceptable as axis labels.

The logarithm of a quantity has no units. Therefore, the axis label for e.g. pH measurements can be written simply as 'pH'.
The scale direction must be conventional (i.e. increasing from left to right).

This problem often occurs when scales are used with negative numbers.

Students should be encouraged to choose scales that are easy to work with.

Students who choose awkward scales in examinations often lose marks for plotting points (as they cannot read the scales correctly) and calculation of gradient (\( \Delta x \) and \( \Delta y \) often misread – again because of poor choice of scale).
Scales should be labelled reasonably frequently (i.e. there should not be more than three large squares between each scale label on either axis).

Not acceptable - too many large squares with no label

Acceptable - scales have regular labels

There should be no 'holes' in the scale.

Not acceptable - non-linear scale on the x-axis

Acceptable - scale labelling is regular
Plotting of points

Plots in the margin area are not allowed, and will be ignored in examinations. Sometimes weaker students (realising they have made a poor choice of scale) will attempt to draw a series of lines in the margin area so that they can plot the 'extra' point in the margin area. This is considered to be bad practice and would not be credited.

It is expected that all observations will be plotted (e.g. if six observations have been made then it is expected that there will be six plots).

Plotted points must be accurate to half a small square.

Plots must be clear (and not obscured by the line of best fit or other working).

Thick plots are not acceptable. If it cannot be judged whether a plot is accurate to half a small square (because the plot is too thick) then the plotting mark will not be awarded.
There must be a reasonable balance of points about the line. It is often felt that students would do better if they were able to use a clear plastic rule so that points can be seen which are on both sides of the line as it is being drawn.

Not acceptable - too many points above the line

Acceptable balance of points about the line

Not acceptable - forced line through the origin (not appropriate in this instance)
The line must be thin and clear. Thick, hairy, kinked or point-to-point lines are not credited.

Not acceptable - thick line

Not acceptable - ‘hairy’ curve

Not acceptable – joining point-to-point
Determining gradients

All the working must be shown. A 'bald' value for the gradient may not be credited. It is helpful to both students and examiners if the triangle used to find the gradient were to be drawn on the graph grid and the co-ordinates of the vertices clearly labelled.

The length of the hypotenuse of the triangle should be greater than half the length of the line which has been drawn.

The values of $\Delta x$ and $\Delta y$ must be given to an accuracy of at least one small square (i.e. the 'read-off' values must be accurate to half a small square).

If plots are used which have been taken from the table of results then they must lie on the line of best fit (to within half a small square).

Students should remember to use appropriate units when reporting gradient values.
Intercept

The y-intercept must be read from an axis where \( x = 0 \). It is often the case that students will choose scales so that the plotted points fill the graph grid (as they should do) but then go on to read the y-intercept from a line other than \( x = 0 \).

Alternatively, the intercept value can be calculated, recognising that a straight-line graph has the basic formula \( y = mx + c \). Substituting the gradient value and a set of coordinates on the line of best fit and solving the equation will give the intercept.
One of the requirements of the Practical Endorsement is that students demonstrate that they can correctly cite sources of information. The point of referencing is to provide the sources of information that have been used to produce the document, and to enable readers to find that information. There are many different systems of reference in use; the most important thing for students to appreciate this level is that they should be consistent in how they reference, and that they provide sufficient information for the reader to find the source.

**Systems of citation**

Wherever a piece of information that has been retrieved from a source is provided in a text, an in-text citation should be included that links to the full original source in the reference list.

There are two main systems of in-text citation: the Vancouver system, which uses numerical citations, and the parenthetical system (of which the Harvard system is the best known version), in which limited reference information is given in brackets in the text.

Students are likely to find the Harvard system easier to handle. However, students should be aware of the Vancouver system as they may come across this system in their secondary research.

It does not matter which system students use in the context of the requirements for the Practical Endorsement. However, referencing should be complete and consistent. If students are already using a particular referencing system in another area of study, for example for an Extended Project qualification, it would make sense if they use the same system within their Geology studies.

**Vancouver system**

The Vancouver system looks like this:

The model that explains greywacke deposits as deposition from gravity flows was developed in the 1960 based on fieldwork.¹

The full references are given in a numbered list at the end of the document, with each number linked to the appropriate reference, e.g.:


The references are ordered in the sequence in which they are first cited in the text. The numbers are repeated in the in-text citations as required, so the same number is always used to cite a given reference.

**Parenthetical (Harvard) system**

The parenthetical system looks like this:

The model that explains greywacke deposits as deposition from gravity flows was developed in the 1960 based on fieldwork (Bouma, 1962).

The author(s) and date of the work are included in brackets at the appropriate point in the text. In this case, the list of full references at the end of the document is ordered alphabetically, and the references are not numbered.

For multi-author works, the full list of names is usually not given in in-text references. Rather, the first name is given followed by ‘et al.’. This is commonly done for works with more than three authors.
While different referencing systems have minor variations in how they present complete references, the basic information provided is always very similar, and based on the principle of providing sufficient information so that the reader can find the information source.

An overview is given below of standard referencing formats for the types of sources that students are likely to cite.

**Books**

General reference format:

Authors (year), *Title*, edition (if relevant), publisher's location, publisher

For example:


For books that have an editor or editors, include (ed.) or (eds) after the names.

If a book does not have named authors or editors, the reference begins with the title, e.g.:

*CLEAPSS Laboratory Handbook* (2001), Uxbridge, CLEAPSS School Science Service

**Journal articles**

General reference format:

Authors (year), 'Article title', *Journal title*, vol. no, issue no, pp. xxx–xxx

For example:


**Websites**

General reference format:

Authors (year), *Title*. [online] Last accessed date: URL

For example:


Webpages and online resources frequently do not have individual authors. In that case, the name of the organisation is given.

Similarly, it is often not possible to find the year in which online material or documents were produced. In that case, use the year in which the information was sourced.


If no author or organisation can be found, reference the website by title. However, in that case due consideration should be given as to whether the website is a trustworthy source!
Appendix 8: Resources

General resources
There are many resources available to help teachers provide support to students. These include both books and websites.

Useful websites are:

- Association for Science in Education (ASE) [www.schoolscience.co.uk](http://www.schoolscience.co.uk)
- CLEAPSS [www.cleapss.org.uk](http://www.cleapss.org.uk)
- Earth Science Teachers Association (ESTA) [www'esta-uk.net/](http://www.estauk.net/)
- ESTA/University of Liverpool Fieldwork Skills videos [www.estauk.net/fieldworkskills/](http://www.estauk.net/fieldworkskills/)
- The Geological Society at [www.geolsoc.org.uk/schools](http://www.geolsoc.org.uk/schools)
- Geologists Association [geologistsassociation.org.uk/education.html](http://geologistsassociation.org.uk/education.html)
- Arran Geopark Project [www.arrangeopark.co.uk/](http://www.arrangeopark.co.uk/)
- BGS Discovering Geology [www.bgs.ac.uk/discoveringGeology/newsAndEvents/links.html](http://www.bgs.ac.uk/discoveringGeology/newsAndEvents/links.html)
- Field Studies Council [www.field-studies-council.org/](http://www.field-studies-council.org/)
- Jurassic Coast Trust [jurassiccoast.org/learning/](http://jurassiccoast.org/learning/)
- London Pavement Geology (not just London) [londonpavementgeology.co.uk/](http://londonpavementgeology.co.uk/)
- Prof Iain Stewart YouTube channel [www.youtube.com/user/piss1964/feed](http://www.youtube.com/user/piss1964/feed)
- Rockwatch [www.rockwatch.org.uk/](http://www.rockwatch.org.uk/)
- Urban Geology [www.ucl.ac.uk/~ucfbrxs/Homepage/UrbanGeology.htm](http://www.ucl.ac.uk/~ucfbrxs/Homepage/UrbanGeology.htm)

Useful books:


CPD
OCR runs CPD courses every year, and these include sessions either wholly or partly to support the practical assessments, both in the written examinations and through the Practical Endorsement. More details about CPD provision are available at [www.cpdhub.ocr.org.uk](http://www.cpdhub.ocr.org.uk)

Practical Activity Support Service
OCR Subject Advisors are available to offer support and guidance on all aspects of the practical assessments. Centres can request guidance with regard to mapping their own activities, or activities provided by third parties, against the requirements of the Practical Endorsement to confirm whether the activities meet the requirements for any of the Practical Activity Groups.

Centres can direct queries regarding the Practical Endorsement to the OCR Science Team through: [pass@ocr.org.uk](mailto:pass@ocr.org.uk).

For other, more general, queries about any aspects GCE Geology specifications, please contact: [ScienceGCE@ocr.org.uk](mailto:ScienceGCE@ocr.org.uk)
Appendix 9: Interchange help sheet

Activities to support the Practical Endorsement can be obtained via OCR’s secure website, Interchange (https://interchange.ocr.org.uk).

Copies of the Data Sheets for Geology, Practical Skills Handbook, the Tracker and any other supporting documents are also available via Interchange.

Most of the documents are PDF files. You need Acrobat Reader for this. Free copies are available to download from http://www.adobe.com/uk/products/acrobat

You may also need a zip program such as WinZip or PKZip to extract the files. Most versions of Windows have a built in zip extractor.

How to use OCR Interchange

Your Examinations Officer is probably using OCR Interchange to administer qualifications already. If not, they will need to register. The website address for Interchange is: https://interchange.ocr.org.uk

Your Examinations Officer will be able to:

- download the relevant documents for you by adding the role of ‘Science Coordinator’ to their other roles or
- make you a New User (Science Coordinator role) so that you can access the GCE AS/A2 upto 2015 pages (where the reformed Geology H014/H414 resources are hosted) the GCE from 2015 pages (for the reformed Biology, Chemistry and Physics) and download documents when you need them.

Registering for Interchange

If your Examinations Officer is not already a registered user of Interchange then he/she will need to register before the activities can be downloaded.

This is a straightforward process:

- Go to the website – https://interchange.ocr.org.uk;
- The first page has a New User section;
- Click on Sign Up to access the OCR Interchange Agreement Form 1;
- Download this document and fill in your details;
- Return the form by post to OCR Customer Contact Centre, Westwood Way, Coventry, CV4 8JQ or fax the form back to 024 76 851633;
- OCR will then contact the Head of Centre with the details needed for the Examinations Officer to access OCR Interchange.

How the page works

Hovering the mouse pointer over an Activity or document link generates a summary of the file.

Simply clicking on the Activity link allows you to download the zipped material to your desktop. The zip file contains all three sample activities for a given PAG with a student sheet and a teacher/technician sheet. All files have a unique name so there is no danger of overwriting material on your computer.
E-mail updates
To be notified by e-mail when changes are made to the GCE Geology page on Interchange please e-mail GCEsciencetasks@ocr.org.uk including your centre number, a contact name and the subject line GCE Geology. It is strongly recommended that all centres register for e-mail updates.

Welcome
You can use Interchange to securely access candidate information and online services for all OCR qualifications, 24 hours a day.

New features will be added over the coming months. Please check the OCR website and your email for information.

Login
Login ID: [ ] (for centre users this will be your centre number)
Username: [ ]
Password: [ ] (case sensitive)
Forgotten your password?

Log in with the details from your Exams Officer.

First click here

Then click here
Qualification level – Click GCE AS/A2 upto 2015

Click on your subject area, then scroll down

Scroll down to view materials

Any important notices will appear here

How to sign up for updates

Supporting materials available to download, e.g. PAG Tracker

Practical activities
We'd like to know your view on the resources we produce. By clicking on the 'Like' or 'Dislike' button you can help us to ensure that our resources work for you. When the email template pops up please add additional comments if you wish and then just click 'Send'. Thank you.

Whether you already offer OCR qualifications, are new to OCR, or are considering switching from your current provider/awarding organisation, you can request more information by completing the Expression of Interest form which can be found here: www.ocr.org.uk/expression-of-interest

OCR Resources: the small print

OCR's resources are provided to support the delivery of OCR qualifications, but in no way constitute an endorsed teaching method that is required by OCR. Whilst every effort is made to ensure the accuracy of the content, OCR cannot be held responsible for any errors or omissions within these resources. We update our resources on a regular basis, so please check the OCR website to ensure you have the most up to date version.

This resource may be freely copied and distributed, as long as the OCR logo and this small print remain intact and OCR is acknowledged as the originator of this work.

Our documents are updated over time. Whilst every effort is made to check all documents, there may be contradictions between published support and the specification, therefore please use the information on the latest specification at all times. Where changes are made to specifications these will be indicated within the document, there will be a new version number indicated, and a summary of the changes. If you do notice a discrepancy between the specification and a resource please contact us at: resources.feedback@ocr.org.uk

OCR acknowledges the use of the following content:
Square down and Square up: alexwhite/Shutterstock.com

Please get in touch if you want to discuss the accessibility of resources we offer to support delivery of our qualifications: resources.feedback@ocr.org.uk

Looking for a resource?

There is now a quick and easy search tool to help find free resources for your qualification:
www.ocr.org.uk/i-want-to/find-resources/

www.ocr.org.uk

OCR Customer Contact Centre

General qualifications
Telephone 01223 553998
Facsimile 01223 552627
Email general.qualifications@ocr.org.uk

OCR is part of Cambridge Assessment, a department of the University of Cambridge. For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored.

© OCR 2018 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA. Registered company number 3484466. OCR is an exempt charity.