

GCE

Physics B (Advancing Physics)

Unit G494: Rise and Fall of the Clockwork Universe

Advanced GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

Annotations

Annotation	Meaning
BP	Blank page
BOD	Benefit of doubt given
CON	Contradiction
×	Incorrect Response
ECF	Error carried forward
FT	Follow through
NAQ	Not answered question
NBOD	Benefit of doubt not given
ΡΟΤ	Power of 10 error
^	Omission mark
RE	Rounding error
SF	Error in number of significant figures
✓	Correct Response
AE	Arithmetic error
?	Wrong physics or equation

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning				
1	alternative and acceptable answers for the same marking point				
(1)	Separates marking points				
reject	Answers which are not worthy of credit				
not	Answers which are not worthy of credit				
IGNORE	Statements which are irrelevant				
ALLOW	Answers that can be accepted				
()	Words which are not essential to gain credit				
	Underlined words must be present in answer to score a mark				
ECF	Error carried forward				
AW	Alternative wording				
ORA	Or reverse argument				
owtte	Or Words to That Effect				
EOR	Evidence Of (the) Rule				

Subject-specific Marking Instructions

Unless otherwise told in the marking scheme:

- Do not accept answers to 1 significant figure. All answers should be to 2 SF or greater.
- Correct answers to numerical questions score full marks.

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

Question		ion	Answer	Marks	Guidance
1	(a)		N m ⁻² (1)	1	
	(b)		kg m s ⁻² (1)	1	
2	(a)		1.0(3) s (1)	1	do NOT accept '1'
	(b)		(1) The first marking point can be achieved in either of the following two ways: Calculating the initial charge: $Q_o = 4700 \times 10^{-6} \times 3 / 0.0141(C)$ Stating/calculating that after 1 time constant, the charge is reduced to 36.8% / 37% / by a factor of 0.368 / 0.37 = 5.2 / 5.19 / 5.3 x 10 ⁻³ C (1)	2	Can use $Q = Q_0 e^{-t/RC}$ bald answer gains both marks
3			Evidence that the students understands that they must assess the area between the curve and the <i>x</i> -axis. (1) Accept values in the range $6.5 - 6.8 \times 10^4 \text{ J}$ (1)	2	Accept as evidence 1 big square = 10^4 J ¹ / ₄ of BIG square = 2500J 1 small square = 100J Note that the area (i.e., the potential) should be around the value 3.4 x 10^4 J/kg Bald answer gains both marks.
4	а		3.4(43) (1)	1	
	b		The (cosmological) redshift is due to the stretching of space(time) (1)	2	Ignore ref to the galaxy itself moving through space. Ignore references to the Doppler Effect.
			(the increased distance means there has been) a greater time of travel (for light) / light has been expanding for longer (1)		the further the source from Earth, the more it is redshifted as it passes through expanding space would not get the mark because it is not linking the redshift explicitly as <i>due to</i> the expanding space.

June 2017

Question		ion	Answer	Marks	Guidance	
5			120 x 28 x 4200/10.5 x 10 ³ (1) = 1300 / 1340 / 1344 / 1333 / 1346 s (1)	2	Accept answers that round to 1300s however, if the answer falls outside the typical values, check there is no glaring mistake made with the numbers.	
6	а		5 (1)	1	$1.34 \times 10 = 1 \text{ mark}[FOT]$	
	b		$1 - v^2/c^2 = 1/25$ (1)	2	Allow ECF for the value of γ from 6(a)	
			Working through to value of $v = 2.9(4) \times 10^8 \text{ ms}^{-1}$ (1)		Bald answer gains both marks.	
7	а		V is at any point where $a = 0$ (1)	1	Allow any correct mark that is vertically at the correct time.	
	b		X is at any point where $a = maximum$ (magnitude) (1)	1	Allow any correct mark that is vertically at the correct time.	
8			$v_{rms} = \sqrt{\frac{3PV}{Nm}}$ $v_{rms} = \sqrt{\frac{3 \times 1.4 \times 10^{-10} \times 2.4 \times 10^{-3}}{1 \times 10^8 \times 6.8 \times 10^{-27}}} (1)$ $= 1218 / 1220 / 1200 \text{ ms}^{-1} (1)$	2	Also credit the correct evaluation for $v_{\rm rms}^2 = 1.48 \times 10^6 {\rm m}^2/{\rm s}^2$	
			Section A Total	19		

Question		ion	Answer	Marks	Guidance
9	(a)		line perpendicular to equipotentials passing through X by eye (1) Correct direction (towards the asteroid) (1)	2	
	(b)		$F = -6.7 \times 10^{-11} \times 7.0 \times 10^{19} \times 2.9 \times 10^{2} / (1.45 \times 10^{5})^{2} $ (1)	2	
			= 64 / 64.4 / 64.5 / 65 N (1)		Ignore '-' sign
	(c) (i)		Answer based on $F = m \frac{v^2}{r}$:	4	
			$v = \left(\frac{2\pi r}{d}\right) = \frac{2\pi \mathrm{x}1.45\mathrm{x}10^5}{(320\mathrm{x}60)} / = 47.5 (1)$		
			$F = 2.9 \times 10^2 \times v^2 / 1.45 \times 10^5 (1)$		If the conversion to 's' is not done, $T=320s$ and $v = 2850m/s$
			= 4.5(03) N (1)		F = 16200N (2 marks)
			ALTERNATIVE ANSWER:		
			Answer based on $F = m\omega^2 r$:		
			$\omega = \left(\frac{2\pi}{T}\right) = \frac{2\pi}{(320\times60)} / = 3.27\times10^{-4} (1)$		
			$F = (m\omega^2 r) = 290 \text{ x} (3.27 \text{ x} 10^{-4})^2 \text{ x} 1.45 \text{ x} 10^5 $ (1)		If the conversion to 's' is not done, <i>T</i> =320s and $\omega = 1.96 \times 10^{-2}$ rad/s
			= 4.5(03) N (1)		F = 16200N (2 marks)
			Centripetal force less than weight of vehicle. (1)		
	(c) (ii)		There would be no effect (on the vehicle's likelihood of staying on the surface) (1)	2	
			Centripetal force: weight ratio is independent of mass AW (1)		
			total	10	

Question	Answer	Marks	Guidance
10 (a)	n = $\frac{0.6}{29}$ / 0.02069 (1) $V = \frac{0.6 \text{ x } 8.3 \text{ x } 298}{29 \text{ x } 1 \text{ x } 10^5}$ / $V = \frac{0.021 \text{ x } 8.3 \text{ x } 298}{1 \text{ x } 10^5}$ (1) = 5.1 x 10 ⁻⁴ m ³ (1)	3	Allow ECF for wrong calculation of <i>n</i> Note: It must be clear that the incorrect number being used is what they intend to be the value for <i>n</i> . First two marking points can be conflated.
(b)	More frequent collisions (between air particles and walls of container) (1) Greater rate of change of momentum (1)	2	Do not credit arguments based on the rearrangement of a formula e.g., <i>R</i> , <i>T</i> and <i>V</i> are constant, n has increased therefore, because $P = \frac{nRT}{V}$, <i>P</i> must increase.
(c)	Force due to air = $0.0017 \times \frac{9}{2}$ / 7.65 x 10 ⁻³ (1) $a = (7.65 \times 10^{-3} / 0.07) = 0.11 / 0.109 \text{ ms}^{-2}$ (1) ALTERNATIVE ANSWER – based on momentum $p_{\text{car}} = 1.7 \times 10^{-3} \times 9$ / 15.3 x 10 ⁻³ (1) (therefore a) = 0.11 / 0.109 ms^{-2} (1)	2	The first mark can also be given for the thrust = 7.65×10^{-3} 109 / 110 = 1 mark (incorrect conversion to kg)
(d)	 These marks are in groups of 2, for 'paired' answers. There are three arguments to consider – any two can be credited: As air is expelled the pressure drops (1) therefore rate of change of momentum (of the expelled air) decreases AND <i>a</i> decreases (1) The mass decreases (1) <i>a=F/m</i> AND <i>a</i> increases (1) Frictional effects on the car (1) reduces the total force, <i>F=ma</i> AND <i>a</i> decreases (1). 	10	To get the 2 nd mark, the change in the acceleration must be stated i.e., is increases or decreases.

Question		on	Answer	Marks	Guidance
11	(a)		$\lambda = 0.16/4 \times 10^{10} = 4 \times 10^{-12} (1)$	3	Working must be shown but first two marking points can be conflated.
			half-life, $t_{1/2} = 0.693/4 \times 10^{-12} = 1.7 \times 10^{11} \text{ s}$ (1)		
			= 5400 / 5415 / 5420 / 5313 / 5310 / 5300 years (1)		
	(b)	(i)	Correct y intercept at $N = 4.0 \times 10^{10}$ (1)	2	For example: (5,500, 2.0 x 10 ¹⁰), (11,000, 1.0 x 10 ¹⁰).
			Correct curve through at least two points (1)		
	(b)	(ii)	Read value read from $N = 2.0 \times 10^{10}$ to nearest half-square. Value should fall within the range: 5200 – 5600 years (1)	2	Allow ECF for the wrong curve in (b)(i)
			Uncertainty in the range: 250 to 500 years (1)		
	(c)	(i)	Activity = $0.16/2^{50000/5500}$ (1)	2	Calculation using $A = A_o e^{-\lambda t}$
			$2.9 / 2.6 / 2.66 / 2.7 \times 10^{-4} \text{ Bq}$ (1)		
		(ii)	Low decay rate / low activity / large uncertainty AW (1)	3	AW throughout
			Contamination: (The addition of modern organic material will) produce higher		
			decay rate (1)		
			giving a younger age (1)		
			total	12	

Question		on	Answer	Marks	Guidance
12	а		Acceleration towards equilibrium position / equilibrium point / the centre (of the motion) / midpoint of the oscillation AW (1)	1	Allow acceleration is always in a direction opposite to the displacement.
	b		$k = 4 \pi^{2} f^{2} m (1)$ = 4 \sigma^{2} \times 0.9^{2} \times 1.4 (1) = 44.8 \text{ Nm}^{-1} (1)	3	All working and own answer must be shown.
	C	i	Total energy = $\frac{1}{2} \times 44.8 \times 0.18^2 = 0.73 \text{ J}$ (1)	1	Allow ECF for the value of <i>k</i> from 12(b) Allow use of $v_{max} = A\omega$ and $\frac{1}{2} mv_{max}^2$
	С	ii	$(KE)_{Max} = Total energy$ (1)	3	Allow ECF for the value of total energy from (c)(i).
			$v = \sqrt{\frac{2 \times 0.73}{1.4}}$ (1) = 1.0(2) ms ⁻¹ (1) ALTERNATIVE ANSWER: $v_{max} = 2\pi fA$ (1) $v_{max} = 2\pi \times 0.90 \times 0.18$ (1)		First marking point can be implicit
			$= 1.0(2) \text{ ms}^{-1}$ (1)	0	
			total	0	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

