Oxford Cambridge and RSA

GCE

Physics B

Unit H557A/01: Fundamentals of physics
Advanced GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations available in RM Assessor

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
3	Incorrect response
ECF	Error carried forward
L1	Level 1
L2	Level 2
13	Level 3
TE	Transcription error (in copying data from root of question - ALLOW method mark(s) if no further error but zero credit for evaluation)
NBOD	Benefit of doubt not given
POT	Power of 10 error
\wedge	Omission mark
SF	Error in number of significant figures
\checkmark	Correct response
2	Wrong physics or equation

Question		Answer	Marks	Guidance
1	D	D	1	
2	B	B	1	
3	A	A	1	
4	A	A	1	
5	B	B	1	
6	B	B	1	
7	A	A	1	
8	B	B	1	
9	C	C	1	
10	C	C	1	
11	A	A	1	
12	D	D	1	
13	C	C	1	
14	C	C	1	
15	D	D	1	
16	B	B	1	
17	D	D	1	
18	B	B	1	
19	D	D	1	
20	D	D	1	
21	A	A	1	
22	D	D	1	
23	C	C	1	
24	D	D	1	
25	B	B	1	
26	C	C	1	
27	B	B	1	
28	A	A	1	
29	B	B	1	
30	A	A	1	
		Total	30	

Section B

Question			Answer				Marks	Guidance
32	(a)		$\begin{aligned} & c / C_{\text {glass_ }} \\ & c / c_{\text {water }} \end{aligned}$			\checkmark	1	
32	(b)		$\begin{aligned} & { }_{\mathrm{g}} n_{\mathrm{w}}=1.3 / 1.6=0.81(3) \\ & r=\sin ^{-1}(\sin 30 \% / 0.813)=38^{\circ} \end{aligned}$ OR $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$ method $r=\sin ^{-1}\left(\sin 30^{\circ} \times 1.6 / 1.3\right)$	\checkmark	$=38^{\circ}$	\checkmark \checkmark \checkmark	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	first mark for evaluating / using correct index not 240 have inverted the index only if this method is clear allow $n_{1} / n_{2}=1.6 / 1.3=1.2(3)$ for first mark
			Total				3	

Question			Answer		Marks	Guidance
33	(a)	(i)	$\begin{aligned} & \Delta E=m c \Delta \theta \\ & =4200 \times 17=71.4(\mathrm{~kJ}) \end{aligned}$	\checkmark	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	method evaluation accept 71 (kJ)
33	(a)	(ii)	$\begin{aligned} & \quad \Delta t=m c \Delta \theta / I V \quad \text { or }=71.4 \times 10^{3} /(230 \times 46) \\ & =6.7(5)(\mathrm{s}) \end{aligned}$		1	method in rearranged algebra or numbers accept $t=E / P$ evaluation not 6.74 (s) RE allow ecf on value from (a)
33	(b)		$\Delta \theta$ doubled so flow (rate) or $\Delta m / \Delta t$ will have to halve	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	accept mass flow rate drops from 0.15 to $0.075 \mathrm{~kg} \mathrm{~s}^{-1}$ not ΔE doubles so time doubles / other time reasoning max 1 for just flow (rate) less or slower
			Total		6	

Question			Answer	Marks	Guidance
34	(a)		$\begin{aligned} & (4.5 \times 1 / 10)=0.45 \\ & (4.5-0.45)=4.05 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	ignore 4.1
34	(b)	(i)	$\Delta Q \approx I \Delta t=V \Delta t / R$ and $V=Q / C \quad(\Rightarrow \Delta Q \approx Q \Delta t / R C)$	1	accept algebra expressed in words $/=$ or \approx symbols not credit for any exponential type reasoning
34	(b)	(ii)	assumes current / voltage / charge (on capacitor) is constant during Δt (instead of continuously decaying) overcome by making Δt smaller / as small as possible (as needed for better approximation) not just make Δt small	1	assumption not just rate is constant accept rate of charge flow is constant or rate of discharge is constant how overcome for 1 standalone mark if no answer to assumption
			Total	6	

Question		Answer	Marks	Guidance
35	(a)	$\begin{aligned} & v=0.24 \times 60 \times 3 \times 10^{8} /\{60 \times 60 \times 24\} \\ & =5.0 \times 10^{4}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	accept $\left\{4.32 \times 10^{9} \mathrm{~m} \div 8.64 \times 10^{4} \mathrm{~s}\right\}$
35	(b)	$\begin{aligned} & \text { range } R=44.444 \times 60 \times 3 \times 10^{8}=\left(8.0 \times 10^{11} \mathrm{~m}\right) \\ & v_{\text {perp. }}=R \omega=8.0 \times 10^{11} \times 1.8 \times 10^{-3} /(24 \times 3600) \\ &=1.66 \times 10^{4}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$ OR alternative method for last 2 marks $\begin{aligned} & s_{\text {perp. }} \approx R \theta=8 \times 10^{11} \times 1.8 \times 10^{-3}=\left(1.44 \times 10^{9} \mathrm{~m}\right) \\ & v_{\text {perp }}=s_{\text {perp }} / t=1.44 \times 10^{9} /(24 \times 3600)=1.66 \times 10^{4}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	1	accept ranges based on either time or mean time of signal travel all give range $=8.0 \times 10^{11} \mathrm{~m}(2$ S.F. $)$ method evaluation method accept $\sin \theta \approx \tan \theta \approx \theta$ for small angle θ n.b. $s_{\text {perp. }}=0.08$ light minutes can be credited more method \& evaluation allow answers close to $280 \mathrm{~m} \mathrm{~s}^{-1}$ to score $2 / 3$ marks because light mins treated as light secs so $1 / 60$ of correct answer so one small eror
		Total Total section B	$\begin{gathered} 5 \\ 23 \end{gathered}$	

Section C

Question			Answer	Marks	Guidance
36	(a)		velocity vector is changing direction constantly towards the centre of the orbit (magnitude / speed remains constant) and acceleration = rate of change of velocity so there is an acceleration OR (circular motion) requires a force towards the centre of the circle (otherwise the mass will move in a straight line at a tangent to the circle) and acceleration \propto force so there is an acceleration (towards the centre)	1	accept in annotated diagram form dependent on the first mark accept (circular motion) requires centripetal force ignore references to gravitational force of Earth on Moon cause Moon to accelerate towards earth dependent on the first mark accept $a=F / m$ so there is an acceleration (towards the centre)
36	(b)	(i)	$a=V^{2} / R=\{2 \pi R\}^{2} /\left\{T^{2} R\right\}=\ldots \ldots$ OR $a=R \omega^{2}=R\{2 \pi / T\}^{2}=$	1	algebraic reasoning accept using forces and $F=m a=m v^{2} / R$ and cancelling m and completing
36	(b)	(ii)	$4 \pi^{2} \times 3.84 \times 10^{8} /\left(2.35 \times 10^{6}\right)^{2}=0.0027 \mathrm{~m} \mathrm{~s}^{-2} \quad \checkmark$	1	evaluation accept $2.74 \mathrm{~mm} \mathrm{~s}^{-2} / 2.75 \mathrm{~mm} \mathrm{~s}^{-2} \quad(\pi \approx)$
36	(b)	(iii)	$\begin{aligned} & g_{\text {at moon orbit }}=g_{\text {Earth surface }} / 60^{2} \\ & =9.8 / 3600=2.7(2) \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$ same value as (ii)	1	method using inverse square law reasoning in numbers / words / algebra evaluation accept $g=9.81 \mathrm{~m} \mathrm{~s}^{-2} /$ correct use of $a=G M / D^{2}$ comparison allow ecf from (ii) if compared sensibly to $3 \mathrm{~mm} \mathrm{~s}^{-2}$
			Total	7	

Question			Answer	Marks	Guidance
37	(a)		$\begin{aligned} & v_{\text {terminal }}=0.65\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ & \pm 0.02\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	1	```v terminal read from graph accept in range 0.64 to 0.66 (m s uncertainty estimate apply SF penalty for 2 or 3 SF e.g. 0.019 or 0.0195 (m s```
37	(b)		(at $t=0.5 \mathrm{~s}$) ball is accelerating (and a is decreasing) because downwards weight is larger than upwards drag force	1	```credit numerical estimates of acceleration }\approx0.55\mp@subsup{\textrm{m s}}{}{-2 accept in algebra W>D or > (D+U) accept if upthrust U is overlooked / air resistance or friction for drag not U confused with D not just because net force is downwards```
37	(c)	(i)	temperature should be monitored or held constant since the viscosity / drag force will depend on T	1	accept density of the glycerol ; as it will affect upthrust accept viscosity of the glycerol ; as it will affect drag accept purity of the glycerol ; as moisture affects viscosity accept density of ball bearing ; as it will affect the weight accept mass of ball bearing ; as it will affect the weight not height drop or air bubbles in glycerol or keep same liquid ignore edge effect
37	(c)	(ii)	$D^{2} / v_{T}=$ constant OR $\quad v_{T} / D^{2}=$ constant D^{2} / v_{T} values: $144,145,144,204,221\left(\mathrm{~mm}^{2} \mathrm{~m}^{-1} \mathrm{~s}\right) \checkmark \checkmark$ OR $v_{T} / D^{2} \text { values }(6.9,6.9,6.9,4.9,4.5) \times 10^{-3}\left(\mathrm{~m} \mathrm{~s}^{-1} \mathrm{~mm}^{-2}\right)$	2	proposal if $v_{T} / D^{2}=$ constant accept log / log graph allow $v_{T}=\mathrm{k} D^{2}$ working expect at least 2 data tests for credit 1 mark and all 5 data tested for 2 marks accept table of D^{2} values (for v_{T} vs D^{2} sketch graph) accept calculated $\log v_{T}$ and $\log D$ values same rule on data

Question	Answer	Marks	Guidance
	noticing smallest three b.bs have almost constant k largest two b.bs have a different sensible constant smallest and largest b.bs k not constant \qquad consideration of quantitative uncertainty in k $\begin{aligned} D^{2} / v_{T} & =144,145,144 & & \text { constant to } \pm 0.3 \% \\ & =204,221 & & \text { constant to } \pm 4 \% \end{aligned}$ correct statement about their test showing proportionality or not showing proportionality If graphs sketched 2 marks from: sketches of \log / \log graph or sketches of v_{T} vs D^{2} correct comment on gradient or linearity of their graph	2	conclusions 2 marks available for any sensible test involving 2 or more data points accept any two or all three of smallest b.bs have almost constant k accept largest two b.bs have sensible constant k (if only 2 tested) accept use of 3% uncertainty based on the uncertainty in v_{T} from (a) OR comment on differences in their k values 144, 221 show increase in k of about 50% / decrease of about 35% for graph method candidates
	Total	11	

Question			Answer	Marks	Guidance
38	(a)		draw tangent and suitable large Δ at $t=1$ or 3 s $1.1\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ OR identifying $A=0.70 \mathrm{~m} \quad f=1 / 4 \mathrm{~Hz} \quad v_{\text {max }}=A \omega$ $=0.7 \times 2 \pi \times 1 / 4=1.1\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	method accept tangent and $\Delta s / \Delta t=1.6 / 1.5$ ignore signs here award magnitude evaluation accept in range 1.0 to $1.2\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ alternative method for two marks
38	(b)		- $\boldsymbol{\operatorname { s i n }}$ graph of period 4 s and shape by eye scaled to amplitude of $1.1 \mathrm{~m} \mathrm{~s}^{-1}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	accept - sin graph scaled to agree with (a) ecf ignore shape of graph here just peak values
38	(c)	(i)	$L=T^{2} g / 4 \pi^{2} \quad$ or equivalent using numbers $=4^{2} \times 9.8 / 4 \pi^{2}=3.97 \mathrm{~m}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	method not just $T=2 \pi \sqrt{ }\{L / g\}$ evaluation accept $g=9.81$ gives $L=3.98 \mathrm{~m}$
			Total	6	

Question			Answer	Marks	Guidance
39	(a)		\mathbf{X} pure β no γ at background with 5 mm lead \checkmark \mathbf{Y} α, β, γ large drop with paper \therefore must have α \checkmark Z β, γ (no drop with paper \therefore no α) counts with lead so some γ \checkmark	1	all identifications correct for first mark even if no explanations total zero if three sources incorrect two correct explanations for second mark three correct explanations for third mark ignore comments on β as present in all three sources not credit for descriptions of data expect logical analysis
39	(b)	(i)	$\Delta \log C / \Delta \log R$ or e.g. $(4.0-0.5) /(0.4-1.9)=$ $=-2.3$	1 1	method evidence of sensible gradient taken or tangent drawn or Δ constructed in downward section of graph even if sign is wrong evaluation accept in range - 2.0 to - 2.5 must have correct sign here allow both marks if bare answer in this range
39	(b)	(ii)	Graph comments: $C=k / R^{2}$ gives $\log C=\log k-2 \log R$ OR gradient close to 2 suggests R^{2} variation and - sign indicates inverse relation $1 / R^{2}$ accuracy: - 2.3 is close but not perfect fit for low range is not a good fit (log graph flat) higher range only is a reasonable fit	4	any 4 points from the list but must include a comment on graph AND a suggestion about radiation for full marks i.e. a max 3 from each section complete log analysis worth 2 marks accept if k taken as 1 conclusion ecf on their gradient value if outside range then not a good fit accept need to know \pm uncertainties to estimate the significance of the small difference i.e. recognising the significance of knee in graph

Question		Answer	Marks	Guidance
	Suggestions about radiation: a attenuated by a few cms in air inverse square law applies to point sources, close to source will not be a good approximation / it will be more constant γ should follow 1/ R^{2} dilution γ travel in straight lines from (point) source with little interaction / absorption by the air	accept β with explanation that these follow $1 / R^{2}$ reasonably well up to this range		
	Total	$\mathbf{9}$		

Question			Answer	Marks	Guidance
40	(a)		$\left(50 \mathrm{MPa} / 7 \times 10^{-4}\right)=7.1(4) \times 10^{10}(\mathrm{~Pa}) \quad \checkmark$	1	evaluation accept in range 7.0 to $7.3 \times 10^{10}(\mathrm{~Pa})$
40	(b)		alloy absorbs more energy (per volume) alloy is stronger / has higher breaking stress	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	choice explained accept alloy because it is tougher not stiffer not any credit for pure metal takes greater strain and prolongs time of collision
40	(c)	(i)	method: any $\{$ scaled distance \div appropriate number of atoms $\}$ evaluation: e.g. 4 atoms per nm gives $0.25 \mathrm{~nm} / 2.5 \times 10^{-10}(\mathrm{~m})$ OR 5 atoms per nm gives $0.20 \mathrm{~nm}=2.0 \times 10^{-10}(\mathrm{~m})$		allow atom counting angled to atomic rows not unreal estimates like 10 atoms per 1 nm estimation accept in range $\{1.8$ to 2.7$\} \times 10^{-10}(\mathrm{~m})$ credit 2 marks for answer in range with no working
40	(c)	(ii)	a dislocation / edge dislocation \checkmark	1	accept extra half-plane of atoms
40	(d)		Level 3 (5-6 marks) Marshals argument in a clear manner and includes clear explanation of three strands: - metallic bonding - structure of metal and alloy - elastic and plastic deformation There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.	6	Look for number of strands attempted to help decide the Level, then look at quality. Indicative scientific points may include: Metallic bonding - +ve ion lattice in sea / gas of free mobile electrons - non-directional strong electrostatic bond electron glue - similar for pure metal and alloy Structure of metal and alloy - ordered regular stacking of atoms in planes in metal - alloy has a few impurity metal atoms of different size - most metals are polycrystalline with grains and grain boundaries between crystals of different orientation - ions can slip and atomic planes move

Question	Answer	Marks	Guidance
	Level 2 (3-4 marks) Shows clear understanding of at least two of the three strands above to the argument or covers all three at a superficial manner and does not include enough indicative points for level 3. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Makes at least two independent points (possibly from one strand) that are relevant to the argument but does not link them together and shows only superficial engagement with the argument. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks no response worthy of credit remember No response at all record NR		- dislocations are stacking imperfections e.g. extra half plane reduce stress at which planes slip by localising stress Elastic and plastic deformation - elastic behaviour atoms return to original position when stress removed stretched stiff bonds spring back - metals and alloys are stiff and elastic for small strains - dislocation movement in pure metals allows slip and plastic deformation at relatively low stress this is permanent and ions do not return when stress removed - dislocations are pinned by impurity atoms in alloy which restricts slip giving a smaller plastic region at higher yield stress - reference to Fig. 40.2 - accept well labelled diagrams throughout for credit if integrated into the explanation
	Total	12	

Question			Answer	Marks	Guidance
41	(a)			2	both at mid-points of charges judged by eye and field lines (may need magnification to see amongst field lines)
41	(b)	(i)		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	both sketches any 3 equipotentials of roughly correct shape judged by eye accept ΔV not equal (as diagram) expect attempt at orthogonality accept on Fig. 41.1 three equipotential loops surrounding both charges
41	(c)		$\begin{aligned} \underset{\checkmark}{E} & =2 \mathrm{kQ} / R^{2} \text { or }=2 \times 9 \times 10^{9} \times 1 / 500^{2} \\ & =7.2 \times 10^{4}\left(\mathrm{~V} \mathrm{~m}^{-1}\right) \end{aligned}$	1	method must have 2 factor for method mark evaluation allow 1 mark for $3.6 \times 10^{4}(1 / 2$ correct value)
41	(d)		Level 3 (5-6 marks) Marshals argument in a clear manner and includes clear explanation of three strands: - work done - area under $E(R)$ field graph - gradient of $V(R)$ potential graph There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Shows clear understanding of at least two of the three strands above to the argument or covers all three at a superficial manner and does not include enough indicative points for level 3. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence.	6	Look for number of strands attempted to help decide the Level, then look at quality. Do not penalise incorrect signs in this answer. Indicative scientific points may include: work done - work W is done against electrical attraction of + and charges which increases the electrical potential energy of the system - + charge is worked on in raising it up the potential well of the - charge - $W_{\text {total }}=\Sigma \Delta W=\Sigma F \Delta s=\Sigma F \Delta R$ area under $E(R)$ graph: accept algebraic or numerical reasoning - $W_{\text {total }}=\Sigma \Delta W=\Sigma F \Delta s=\Sigma F \Delta R$ only credit once - $E_{\text {field }}=F / q$ but test charge is unit charge $q=1 \mathrm{C}$ - in this example $E_{\text {field }}=F$

Question	Answer	Marks	Guidance
	Level 1 (1-2 marks) Makes at least two independent points that are relevant to the argument but does not link them together and shows only superficial engagement with the argument. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response worthy of credit scores zero No response record NR		- $\therefore W=$ Area under the field graph - 15 squares $\times 4 \times 10^{6} \mathrm{~J}$ per square $=60 \mathrm{MJ} \mathrm{C}^{-1}$ or MV - agrees with increase in potential from (-90 to -30) MV - recognising that $E=k Q / R^{2}$ gradient of $V(R)$ graph - $E_{\text {field }}=-$ gradient of $V(R)=-\mathrm{d} V / \mathrm{d} R=-\Delta V / \Delta R$ - tangent to graph drawn and shown = field - e.g. at $R=200 \mathrm{~m}$ grad $=(120 \mathrm{MV}) / 600 \mathrm{~m}$ $=2 \times 10^{5} \mathrm{Vm}^{-1}$ - agrees with the field at $R=200 \mathrm{~m}$ of $20 \times 10^{4} \mathrm{~V} \mathrm{~m}^{-1}$ - recognising that $V=k Q / R$ check graphs for annotation credit
	Total	12	
	Total section C Total sections B \& C	$\begin{aligned} & 56 \\ & 80 \end{aligned}$	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

