

GCE

Physics B (Advancing Physics)

Unit G491: Physics in Action

Advanced Subsidiary GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

G491/01

Annotations available in Scoris

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
×	Incorrect response
ECF	Error carried forward
FT	Follow through
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
	Omission mark
RE	Rounding error
SF	Error in number of significant figures
	Correct response
AE	Arithmetic error
?	Wrong physics or equation
L1	Level 1
L2	Level 2
L3	Level 3
TE	Transcription error

G491/01

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
1	alternative and acceptable answers for the same marking point
(1)	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ecf	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

All questions should be annotated with ticks to show where marks have been awarded in the body of the text.

Please ensure that rounding errors RE and significant figure errors SF are only penalised a maximum **once** for each candidate. Places where these should be looked for will usually be indicated in the mark-scheme.

Subject-specific Marking Instructions

Note about significant figures:

If the data given in a question is to 2 sf, then allow to 2 or more significant figures. If an answer is given to fewer than 2 sf, then penalise once only in the entire paper. Any exception to this rule will be mentioned in the Additional Guidance

Question	Answer N		Guidance	
1 (a;b;	b;c) C ; $J s^{-1}$; $C^2 J^{-1} s^{-1}$	LSH	not alternative correct units e.g. As ; W ;	
	Tota	al 3		
Question	Answer	Marks	Guidance	
2 (a;b;	;) A ; C ; A	LSH		
	Т	otal 3		
Question	Answer	Marks	Guidance	
Question 3 (a)	Answer shorter focal length ; fewer waves of similar length by	Marks eye LS	Guidance accept 3/4/5 wavefronts in any shorter foca length	
Question 3 (a) (b)	Answer shorter focal length ; fewer waves of similar length by more powerful since more refraction / convergence at ea surface / more curvature added to wave fronts	Marks eye LS ach L	Guidance accept 3 / 4 / 5 wavefronts in any shorter focal length accept more since f is shorter AW but needs more and reason for the mark	

Section A

Question	Answer	Marks	Guidance
(a)	Any two from:		
4	noise values are very different from (most) others (1);	L	
	most values are similar to neighbours (1); noisy pixels will be more affected by the procedure than 'normal' pixels (1); median filter replaces a noise pixel value with that identical to one of its neighbours (1)	Μ	
(b)	If there was a white rock on the surface of Mercury of size one / two adjacent pixel(s) on the image it would be falsely removed.	Μ	accept edge pixels require another rule since they are not surrounded completely not loses / reduces detail
	Total	3	

Question	Answer	Marks	Guidance
5	method $I = \Delta Q / \Delta t / = 32 / 0.008$	L	
	evaluation = $4000 (A) / 4 k(A)$	L	
	Total	2	

Section A

Que	stion		Answer	Marks	Guidance
6	(a)		150 (Ω) ;	L	
	(b)	(i)	$(V_{BC} = 12 \text{ V} \times 50 \Omega / 150 \Omega) = 4.0 (\text{V})$	S	accept 4 (V)
	(b)	(ii)	V^2 / R or $4^2 / 50$	Н	method accept $I = 4 / 50 = 0.08$ A
			= 0.32 (W)	н	evaluation accept $I^2 R = 0.08^2 \times 50 = 0.32$ (W)
			Total	4	

Question	Answer	Marks	Guidance
7	$v = c / n$ or $= 3 \times 10^8 (\text{m s}^{-1}) / 1.6$	L	method
	1.9 × 10 ⁸ (m s⁻¹)	L	evaluation not 1.875 × 10 ⁸ (m s ⁻¹) SF penalty condone 1.88 × 10 ⁸
	Total	3	
	Section Total	20	

Section B			-
Question	Answer	Marks	Guidance
8 (a)	$A = \pi t^2 = \pi (38 \times 10^{-6} \text{ m})^2 = 4.5(4) \times 10^{-9} \text{ m}^2$	L	evaluation
	$R = \rho L / A = (1.10 \times 10^{-7} \Omega \text{ m} \times 0.40 \text{ m}) / (4.54 \times 10^{-9} \text{ m}^2)$	L	method accept substitution into $R = \rho L / \pi r^2$ for 2 marks
	= 9.7 Ω	S	evaluation accept 9.8 Ω with intermediate rounding
			ORA leading to $\rho = 1.13 \times 10^{-7} \Omega$ m for full marks
(b)	sensible scaling of T axis	L	expect use of ruler for line,
	i.e. more than $\frac{1}{2}$ horizontal scale used linearly		accept 10 Ω for R(0) and FT parts (c) and (d)
	correct straight line plotted	L	
(c) (i)	11.4 (Ω) read from graph	L	method accept answers in range 11.3 to 11.6 (Ω)
			allow ecf on poor scales on graph in (b)
(c) (ii)	$= \Delta R / \Delta T \text{ or } (13.5 \Omega - 9.7 \Omega) / 100^{\circ}\text{C} \text{ or } 3.8 \Omega / 100^{\circ}\text{C}$	L	method allow ecf on graph in (b)
		SS	evaluation ; unit
	$= 0.038$; $\Omega \circ C^{-1}$		allow in range 0.0345 to 0.0354 for graphs starting at 10 Ω
(d)	$\Delta T = \Delta R / \text{sensitivity}$ or $= 0.01 \Omega / 0.038 \Omega$	н	method
		Н	evaluation accept 0.3 (°C)
	$= \pm 0.26$ (°C)		
	Total	11	

Section	В
---------	---

Que	estion		Answer	Marks	Guidance
9	(a)		$1200 \times 900 \times 24 \times 15 = 389 \text{ Mbit s}^{-1} = 390 \text{ Mbit s}^{-1}$	L	accept 389 Mbit s ⁻¹
	(b)		(cycles $s^{-1} = cycles bit^{-1} x bit s^{-1}$)		
			$(= 350 \times 10^6 \times 40) = 14 \times 10^9 \text{ Hz} / 14(.0)\text{GHz}$	н	evaluation accept 15.6/16 GHz (using 389 GHz) / 1.4 x 10^{10}
	(c)	(i)	bit rate = samples $s^{-1} \times bits sample^{-1}$ or		method allow in words or numbers
			$20 \times 10^4 \times 12 = 0.24$ Mbit s ⁻¹	L	
			0.24 Mbit s ⁻¹ << 390 Mbit s ⁻¹	S	comparison to video bit rate must be clear for second mark not comparison to the carrier frequency ecf their value
	(c)	(ii)	10 kHz	S	
			at least one sample is needed on each wave peak and one on each wave trough or variation could be missed or at least 2 samples per cycle are needed to record the variation	н	allow AW and sensibly annotated diagrams accept for 1 mark that even then sampling at each zero point could lead to signal being missed / reasoning about aliasing not just a statement of ½ sampling frequency
	(c)	(iii)	12 bits gives $2^{12} = 4096$ levels $V_{total} / V_{noise} = 4096$ or $V_{total} = 4096 \times V_{noise}$ or $V_{total} = 0.03$ V so when the $V_{total} < 0.03$ V or $< V_{max} / 10$ then $V_{noise} > voltage$ level resolution or at least one of bits is redundant	S H H H	credit each correct mark point BUT QoWC all elements must be present and in a clear logical order to score 4 marks allow full credit for equivalent answers expressed in log ₂ form
	(d)	(i)	(-) 4.0 (D)	L	accept (-) 4 (D)
	(d)	(ii)	curvature out = curvature in + lens power or 1/v = -4.0 + 250 = 246 D $v = 1/246 = 4.07 \times 10^{-3} \text{ m}$ principal focus at $1/250 = 4.0 \times 10^{-3} \text{ m}$ so $\Delta = 0.07 \text{ mm}$ Total	S H H H 15	method accept in words or numbers not just lens formula evaluation
1					

Section	В
---------	---

Que	estion		Answer	Marks	Guidance
10	(a)	(i)	AB ; CD	SH	
	(-)	(::)	P	<u> </u>	
	(a)	(11)	B B	5	
	(b)	(i)	96 (M Pa)	L	
	(b)	(ii)	0.0105	S	
	(c)		$\varepsilon = 0.0122$	L	strain at C from graph : accept in range (0.0120 – 0.0125)
			$x = \varepsilon L$ / = 0.0122 x 2.0 = 2.44/2.4 x 10 ⁻² m	S	method and evaluation e.c.f. own strain accept in range $(2.4 \text{ to } 2.5) \times 10^{-2} \text{ m}$
	(d)		e.g. 0.0015, 96 x 10 ⁶ Pa $E = \sigma / \epsilon$ from ∞ region or = 96 x 10 ⁶ Pa/ 0.0015 = 6.4 x 10 ⁴ (MPa)	S H H	any pair σ , ϵ values from ∞ region give 2 marks method evaluation accept in range (5.4 to 7.2) x 10 ¹⁰ Pa
	(e)		bonding : is metallic / non-directional / by delocalised electrons in a lattice of + ions and is strong / stiff arrangement : is regular / crystalline / polycrystalline /		should link description of bonding to strength / stiffness of bonds
			with <u>grains</u> / <u>grain boundaries</u> with atoms in <u>stacked</u> <u>planes</u> / <u>layers</u> which are discrete elastic region <u>strong</u> / <u>stiff</u> bonds <u>stretch</u> and return after		should link description of arrangement to planes of atoms
			<u>stress</u> removed / return to zero <u>strain</u> plastic region at larger <u>stress</u> <u>layers of atoms</u> <u>slip</u> / <u>slide</u> over each other and do not return after stress removed /		should link description to return to zero strain when stress removed
			use ideas of <u>dislocation</u> motion and metal ends up permanently deformed / strained		should link description to permanent strain when stress removed
					QoWC must use 8 <u>specialist vocabulary</u> terms to get this and have a sense of explaining not just describing allow credit ideas from well labelled diagrams accept ball – spring type model if used diagrammatically
			Total	14	
			Total Section B	40	
			Total for paper	60	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2017