GCE

Physics B (Advancing Physics)

Unit G492: Understanding Processes/Experimentation and Data Handing Advanced Subsidiary GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations available in Scoris

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
3	Incorrect response
ECF	Error carried forward
FT	Follow through
NAQ	Not answered question
NBOT	Benefit of doubt not given
POT	Power of 10 error
\wedge	Omission mark
RE	Rounding error
SF	Error in number of significant figures
\checkmark	Correct response
AE	Arithmetic error
2	Wrong physics or equation

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
(1)	alternative and acceptable answers for the same marking point
reject	Separates marking points
not	Answers which are not worthy of credit
IGNORE	Answers which are not worthy of credit
ALLOW	Statements which are irrelevant
$\mathbf{(~)}$	Answers that can be accepted
-	Words which are not essential to gain credit
ecf	Underlined words must be present in answer to score a mark
AW	Error carried forward
ORA	Alternative wording
$\mathbf{(1) m}$	Or reverse argument
$\mathbf{(1) e}$	a method mark, awarded if a correct method is used
	an evaluation mark, awarded for correct substitution and evaluation

The following questions should be annotated with ticks to show where marks have been awarded in the body of the text:

Question		Answer	Marks	Guidance
1	a	force	1	
	b	force and velocity	1	both needed for the mark
	c	power...(force)....velocity	1	In correct order. Both needed for the mark.
2	a	A	1	
	b	A	1	
	c	B or D	1	Accept D due to similarity to graph B
3		$\begin{align*} & \text { Use of } x=\lambda L / d(1) \\ & =630 \times 10^{-9} \times 3.2 / 0.65 \times 10^{-3} \tag{1}\\ & =3.1 \times 10^{-3} \mathrm{~m}(1) \end{align*}$	3	$\begin{aligned} & \sin \theta \approx \tan \theta=\lambda / d=\left[630 \times 10^{-9} \mathrm{~m}\right] /\left[0.65 \times 10^{-3} \mathrm{~m}\right](1) \mathrm{m} ; \\ & \sin \theta=0.000969 \Rightarrow \theta=0.0555^{\circ}(1) ; \\ & x / L=x / 3.2 \mathrm{~m}=\tan \theta==0.000969=3.1 \times 10^{-3} \mathrm{~m}(1) \end{aligned}$
4			2	tip-to-tail (1) ; equilateral triangle (by eye (1)
5		Identify resultant forces $0.8 \mathrm{~N} \& 0.3 \mathrm{~N}$ (1) $\begin{aligned} & {[1.8 \mathrm{~N}-1.5 \mathrm{~N}]^{2}+[2.4 \mathrm{~N}-1.6 \mathrm{~N}]^{2}=0.85(4) \mathrm{N}(1)} \\ & m=1.5 \mathrm{~N} /\left[9.8 \mathrm{~m}^{-2}\right]=0.153 \text { or } 0.15 \mathrm{~kg}(1) ; \\ & a=F / m=0.854 \mathrm{~N} / 0.153 \mathrm{~kg}=5.58 \text { or } 5.6 \mathrm{~m} \mathrm{~s}^{-2}(1) \end{aligned}$	4	Allow ecf from part 1 A bald $5.58 / 5.6 \mathrm{~m} \mathrm{~s}^{-2}$ with no working gets all 4 marks
6	a	$\begin{aligned} & 1 / 2 \times\left(5 \mathrm{~s} \times 10 \mathrm{~m} \mathrm{~s}^{-1}\right)+1 \mathrm{~s} \times 10 \mathrm{~m} \mathrm{~s}^{-1}(1) \mathrm{m} ; \\ & =35 \mathrm{~m}(1) \end{aligned}$	2	A bald 35 m with no working gets both marks
	b	gradient to curve drawn at $8.5 \mathrm{~s}(1)$; gradient calculated including minimum Δt of 1 s (1)m ; acceptable range 1.3 to $2.0 \mathrm{~m} \mathrm{~s}^{-2}$ (1)	3	No drawn gradient = not shown.
		Section A Total	20	

Question			Answer	Marks	Guidance
			Total	10	
Question			Answer	Marks	Guidance
Section C					
11	a	(i)	Excluding 11.0 N , spread $=1.5$ (1); $11.0+(2 \times 1.5)=15.5>13.5$ so not outlier (1)	2	'Not far enough away from middle of peak' owtte gets 1/2
	a	(ii)	For whole set, mean $=13.34$ \& spread $=2.0(1)$; ΔF expressed to 1 s.f. (= 2 N) (1) $F_{\text {mean }}$ expressed to same number of decimal places as spread (1)	3	Both correct values needed(1) / accept fractional uncertainties incorrect ΔF expressed to 1 s.f. scores (1) allow ecf $13 \pm 2 \mathrm{~N}$ scores all three marks
	b		```For F, percentage uncertainty = 100% }\times(2\textrm{N}/13\textrm{N} = 15% (1); For d, percentage uncertainty \leq 100% }\times(0.005 mm/0.46 mm)=1% (1) so the error in F}\mathrm{ will dominate (1)```	3	
	c		$\begin{aligned} & A=\pi r^{2}=\pi\left[0.23 \times 10^{-3} \mathrm{~m}\right]^{2}=1.66 \times 10^{-7} \mathrm{~m}^{2}(1) ; \\ & \sigma=F / A=13 \mathrm{~N} / 6.65 \times 10^{-7} \mathrm{~m}^{2}=78 \text { to } 81 \mathrm{MPa}(1) ; \end{aligned}$ Calculation of $\Delta \sigma$ using max/min method or fractional uncertainties gives values in the range ± 8 $\mathrm{MPa} \text { to } \pm 12 \mathrm{MPa} \text { (1) }$	3	
			Total	11	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee

OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

