Oxford Cambridge and RSA

GCE

Physics B

Unit H157/01: Foundations of physics
Advanced Subsidiary GCE
Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

H157/01

Annotations available in Scoris

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
EEF	Incorrect response
FT	Error carried forward
NAQ	Follow through
NBOD	Not answered question
POT	Benefit of doubt not given
A	Power of 10 error
RE	Omission mark
SF	Rounding error or repeated error
N	Error in number of significant figures
AE	Correct response
\boldsymbol{S}	Arithmetic error

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
(1)	alternative and acceptable answers for the same marking point
reject	Separates marking points
not	Answers which are not worthy of credit
IGNORE	Answers which are not worthy of credit
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Alternative wording
AW	Or reverse argument
ORA	

Section A: MCQs

Question	Answer	Marks	
1	A	1	
2	C	1	
3	D	1	
4	D	1	
5	C	1	
6	B	1	
7	B	1	
8	C	1	
9	C	1	
10	B	1	
11	B	1	
12	D	1	
13	B	1	
14	C	1	
15	B	1	
16	C	1	
17	A	1	
18	A	1	
19	C	1	
20		1	
		20	

SECTION B

Question		Expected Answer	Mark	Rationale/Additional Guidance
21	(a)	$I_{\top}=I_{1}+I_{2}$	1	Allow if expressed in words e.g. "sum of I_{1} and I_{2} is I_{T} ". Any subject.
	(b)	V same R halved (for I_{2})	1 1	NOT voltage $=12 \mathrm{~V}$ across both. Can be implied by equations, or calculations. e.g. $I_{1}=V / 2 R$ and $I_{2}=V / R$. Allow R doubled for I_{1}. No mark for resistors are doubled / twice as many resistors.
	(c)	$\begin{aligned} & 1 / R_{\text {parallel }}=1 / R_{1}+1 / R_{2}=1 / 100+1 / 200=3 / 200 R_{\text {parallel }}=67 \Omega \\ & R_{\text {total }}=100+R_{\text {parallel }}=167 \Omega(<170 \Omega) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Evaluation of parallel resistance Evaluation of 167Ω. Both marks for bare 167Ω. Accept 166Ω if working shown. Accept evaluation of ($100+$ clear incorrect parallel calculation) for $2^{\text {nd }}$ mark. One mark for showing full correct working leading to incorrect final answer.
	(d)	$\begin{aligned} & \text { Power }=\left(V^{2} / R=\right) 12^{2} / 167=144 / 167 \\ & =0.86(\mathrm{~W}) \end{aligned}$	1 1	Method accept other working method e.g. by finding current = 72 mA . Accept use of 170Ω in place of their answer from (c) leading to $0.85(\mathrm{~W})$. Accept $0.9(\mathrm{~W})$. Evaluation allow ecf from part c.
		Total	7	

Question		Expected Answer	Mark	Rationale/Additional Guidance
$\mathbf{2 2}$		$1 / v=1 / u+1 / f=1 /(-0.5)+1 / 0.02$		
$=48$	$\mathbf{1}$	method and correct substitution		
		$v=1 / 48=0.021 \mathrm{~m}$	$\mathbf{1}$	Correct evaluation from their equation. Allow ecf on one error (eg sign/POT) from their calculation.
			$\mathbf{1}$	answer must be to 2 SF not 0.0208 cm. 0.019 m from sign error 2/3 Negative value in final answer loses one mark

Question		Expected Answer	Mark	Rationale/Additional Guidance
$\mathbf{2 3}$	(a)	stiffness decreases initially and starts to increase again; after (strain) in range 2.5 to 3.5	$\mathbf{1}$	Allow stiffer at low and high strains
	(b)	result in range 16 to 28 MPa construction of tangent above 48 MPa and correct method to find gradient $\mathbf{1}$	Stress range drawn over at least 20 MPa	

Question		Expected Answer	Mark	Rationale/Additional Guidance
25	(a)	$\sin \left(42^{\circ}\right) / \sin \left(27^{\circ}\right) O R \sin \left(27^{\circ}\right) / \sin \left(42^{\circ}\right)$ leading to 1.47 OR 0.68 AND relating to ratio of speeds.	1	Use of Snell's law Accept 1.5 e.g. $\mathrm{C}_{\text {glass }}=\mathrm{C}_{\text {air }} \times 0.68$ or evaluation of speed of light in glass $=2 \times 10^{8} \mathrm{~ms}^{-1}$
	(b)	Light travels faster in water than glass light bends away from the normal on entering water $r>i$ for glass into water	1 1	OR in terms of water and air: Light travels slower in water than air. If air and water described, both must be correct for this mark. Must have comparison or change of specific angle for r and i OR as the angle between the ray and the normal in water is smaller than the angle between the ray and the normal in air
		Total Total Section B	$\begin{gathered} 4 \\ 20 \end{gathered}$	

SECTION C

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Grid \& Expected Answer \& Mark \& Rationale/Additional Guidance \\
\hline 26 \& a \& \& \& \begin{tabular}{l}
(Force in direction of motion \(=) 1.5 \cos 20^{\circ}(=1.41)\) \\
Work done \(=\) force \(\times\) distance \(=1.41 \times 1=(1.41 \mathrm{~kJ})\)
\end{tabular} \& \begin{tabular}{l}
\[
1
\] \\
1
\end{tabular} \& \begin{tabular}{l}
Do not credit incorrect use of \(\cos 20^{\circ}\) \\
If answer given in J, need to see unit (e.g. 1409 J)
\end{tabular} \\
\hline \& b \& \& \& \((P=F V=1409 \times 40)=5.6 \times 10^{4} \mathrm{~W}\) \& 1 \& \begin{tabular}{l}
Ecf from (a). \\
No credit for \(1500 \times 40=6.0 \times 10^{4} \mathrm{~W}\) unless ecf.
\end{tabular} \\
\hline \& c \& i
ii

iii \& \& \begin{tabular}{l}
$$
\begin{aligned}
& A=\pi r^{2}=\pi \times 0.006^{2}=1.13 \times 10^{-4}\left(\mathrm{~m}^{2}\right) \\
& \text { stress }=1500 \mathrm{~N} / \text { cross sectional area } \\
& 1.3(3) \times 10^{7}(\mathrm{~Pa})
\end{aligned}
$$

safe because working stress is about 3% / a lot lower than breaking stress
$$
\begin{aligned}
& (\text { Strain }=\text { stress } / E)=1.33 \times 10^{7} / 210 \times 10^{9} \\
& 6.32 \times 10^{-5}
\end{aligned}
$$

 \&

$$
1
$$

1

1

 \&

Ignore POT error but penalise incorrect use of diameter

CSA for their value; allow 1.5 for force Evaluation consistent with unit; apply POT error Allow $2 / 3$ for use of 1.4 kN leading to 1.2×10^{7}. Allow $2 / 3$ for use of diameter leading to 3.3×10^{6}.

safety comment with explanation e.g. sensible suggestions about dangers of landing with flag deployed, cracks in wire reducing CSA, sudden additional force (e.g. wind, snagging)

Sense of difference must be clear, ie stress is less than breaking stress

allow ecf on stresses close to or above 460 MPa

Not just difference in values

Method allow ecf from stress in \mathbf{i}

POT error loses 1 mark

Evaluation accept 0.0063 \% if symbol given
\end{tabular}

\hline \& \& \& \& Total \& 9 \&

\hline
\end{tabular}

			Expected Answer	Mark	Rationale/Additional Guidance
$$			Any 3 from: Sample (the signal) at regular intervals The sample rate should be at least twice the highest frequency There are a limited number of levels of pd (stated or shown e.g. by several equally spaced horizontal lines on the figure). Assign (the sampled pd) to the nearest level.	3	Could be shown on figure by at least 4 equally spaced vertical lines from x axis to curve (This point scores two marks, including the regular interval mark) Accept "quantisation levels" in place of "levels of pd". Could be shown on figure by several equally spaced horizontal lines. Allow indication on figure of equally spaced vertical and horizontal sample-and-hold stepped line. This could be awarded marking points 1 and 3 and 4 if clear. Ignore any references to binary coding.
	(b)	i	2 points plotted correctly best fit line (with intercept)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Points plotted to within half square tolerance Expect intercept with $1 / 2$ small square of 10 . Penalise line which clearly goes through origin. Line should be clean and straight.
		ii	(positive) non-zero intercept (at $\approx 10 \mathrm{kbytes} /$ their intercept) when message time is zero	1	Accept line does not pass through origin
		iii	Gradient calculation leading to gradient in range 14 to 16 kbyte / s Bit rate due to sound $=8 \times$ gradient \approx answer in range 1.12 to 1.28×10^{5} bit $/ \mathrm{s}$	1	Inaccurate gradient x 8 correctly evaluated gets 1 mark
			Total	9	

Question			Expected Answer	Mark	Rationale/Additional Guidance
28	a	i	Hard to judge the point when it is quietest (consistently) / intensity will have a broad minimum	1	Expect answers which relate to a judgement of where the minimum is Allow answers referring to hearing Allow any reference to stray signals / reflections / difficulty in reading small changes in oscilloscope trace
	a	ii	(Difficult to produce consistent results because of) placement of ruler / measuring tape may sag / uncertain where centre of microphone or speaker is	1	Allow suggestions relating to unknown location of detection of sound on microphone or speaker Allow suggestions which would improve the precision e.g position marker at centre of each speaker
	b	i	Path difference $=4.17-3.56$ (=0.61m) Wavelength is the path difference (at this point for waves to be in phase) $=0.61 \mathrm{~m}$		Full credit for 0.61 m on answer line
	b	ii	It will reduce (percentage) uncertainty in the measurement of speaker / microphone distances But the uncertainty in the microphone position (at minimum) is unchanged / more significant (so there is no/little change in the percentage error of the wavelength)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Ignore reference to accuracy of measurement.
	c		$v=(f \lambda=560 \times 0.61)=342 \quad\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Largest smallest method: Either largest estimate $590 \times 0.65=384\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ or smallest estimate $530 \times 0.57=302\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ OR percentage uncertainty method: Finding percentage in $f(30 / 560=5.4 \%)$ AND percentage in $\lambda(0.04 / 0.61=6.6 \%)$	1 1	Evaluation. Accept 340. Allow ecf from (b)(i) throughout. accept $\max =590 \times 0.63=372$ for using ± 0.02 accept $\min =530 \times 0.59=313$ for using ± 0.02 Accept 3.3% for $\lambda(0.02 / 0.61)$

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

